Chapter 6: Process
Synchronization

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

o Critical Section Problem

LA\

B General structure of process p;is

do {

entry secfion |

critical section

exit secfion

remainder section
} while (TRUE);

Figure 6.1 General structure of a typical process F.

Operating System Concepts — 8t" Edition 3.2

o,

a2
=

g . a g -
“»”’Requirements of Critical-Section Prob.

1. Mutual Exclusion - If process P, is in its critical section, then
no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
some processes wish to enter their critical section, then the
selection of the next process cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes enter critical sections after a

process has made a request to enter its critical section and
before that request is granted

® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the n
processes

A ‘5 3
Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

L 1st: Use lock

shared int locked = false;
do{
while (locked == true);
locked = true;
critical section
locked = false;
remainder section
} while (true);

B Fails to meet
B Solution: Allow only one process to

Operating System Concepts — 8t" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

" e 2nd: Take turns

shared int turn = 0;
do{
while (turn != me);
critical section
turn = Ime;
remainder section
} while (true);

B Fails to meet
B Solution: Check if the other process

Operating System Concepts — 8t" Edition 3.5

Silberschatz, Galvin and Gagne ©2009

P

v

e o 3@ : Check intention

IL\,

shared int flag[2];

do{
flag[me] = true;
while (flag[!me] == true);
critical section
flag[me] = false;
remainder section

} while (true);

B Fails to meet
B Solution: check both

Operating System Concepts — 8t" Edition 3.6

Silberschatz, Galvin and Gagne ©2009

P

v

N Peterson’s Solution

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == ! me);
critical section
flaglme] = false;
remainder section
} while (true);

B Provable that

1. Mutual exclusion:
2. Progress:

3. Bounded-waiting:

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

™

~5 Peterson’s Solution
Process 0: Process 1:

shared int turn, flag[2]; shared int turn, flag[2];

do { do {
flag[me] = true; flag[me] = true;
turn = ! me; turn = ! me;
while (flag[! me] && turn == ! me); while (flag[! me] && turn == ! me);
critical section critical section
flag[me] = false; flag[me] = false;
remainder section remainder section

} while (true); } while (true);

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

4

o
~7 Lessons

S\

B Need a locking mechanism
acquire lock
critical section
release lock
B Peterson’s algorithm still needs atomic access to shared variables
B Problem about shared variable comes from
@ the interruptible gap between get value & set value operations
register & <memory>
register = <new value>
<memory> < register
® Make these operations not interruptible, but HOW?

Operating System Concepts — 8" Edition 3.9 Silberschatz, Galvin and Gagne ©2009

4

”m“k . . n
7 Disabling interrupts

S\

B Uniprocessors — could disable interrupts

® Currently running code would execute without
preemption

® Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable

Operating System Concepts — 8" Edition 3.10 Silberschatz, Galvin and Gagne ©2009

ol .. :
> o Atomic instruction

shared int locked = false;
do {

while (locked ==1true); pamgye gap between TEST and SET!!
locked = true;
critical section
locked = false;
remainder section

} while (true); while(TestSet(&locked));

Returns the current value
and set TRUE if FALSE

74
U X
Operating System Concepts — 8" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

S TestAndSet Instruction

boolean TestAndSet (boolean *target)

{
boolean rv = *target;
if(*target == FALSE)
*target = TRUE;
return rv:
}

Operating System Concepts — 8t" Edition 3.12

Silberschatz, Galvin and Gagne ©2009

P

v

TestAndSet Instruction-Better

boolean TestAndSet (boolean *target)

{
boolean rv = *target;
*target = TRUE;
return rv:
} return target

TRUE (2)

Operating System Concepts — 8t" Edition 3.13

2 Solution using TestAndSet

B Shared boolean variable lock, initialized to FALSE
do {
while (TestAndSet (&lock));

critical section

lock = FALSE;
MX
remainder section Prog.
BW

} while (TRUE);

74
£ 3\
Operating System Concepts — 8" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

Another way of doing it

return

TestAndSet()

TRUE

Swap()

780D N
Operating System Concepts — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©2009

Swap Instruction

B Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;
*a ="b;
*b = temp:

Operating System Concepts — 8t" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

)

<)
M»‘ \:;

Solution using Swap

B Shared Boolean variable lock initialized to FALSE; Each process has a local
Boolean variable key

do{
key = TRUE;
while (key == TRUE)
Swap (&lock, &key);
/I critical section
lock = FALSE;

// remainder section
} while (TRUE);

Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

) ™ Bounded-waiting Mutual Exclusion
r.af with TestandSet()

‘L\L,

do{
waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)
key = TestAndSet(&lock);
waiting[i] = FALSE;
/[critical section
j=(@+1)%n;
while ((j = i) && !waiting[j])
j=(+1)%n;
if (j ==1)
lock = FALSE;
else
waiting[j] = FALSE;
// remainder section
} while (TRUE);

P

v

Operating System Concepts — 8t" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

Xl Semaphore
B Synchronization tool that does not require busy waiting

Semaphore S — integer variable
Two standard operations modify S: wait() and signal()

® Oiriginally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

® wait (S){
while S<=0
; [/ no-0p

S--;

¥
® signal (S){
S++;

}

Ve

Operating System Concepts — 8t Edition 3.19 Silberschatz, Galvin and Gagne ©200

w &

" Semaphore as
General Synchronization Tool

B Counting semaphore — integer value can range over an unrestricted domain

B Binary semaphore — integer value can range only between O
and 1; can be simpler to implement

® Also known as mutex locks
B Can implement a counting semaphore S as a binary semaphore
B Provides mutual exclusion
Semaphore mutex; // initialized to 1
do{
wait (mutex);
// Critical Section
signal (mutex);
// remainder section
} while (TRUE);

Ve

Operating System Concepts — 8t Edition 3.20 Silberschatz, Galvin and Gagne ©200

w &

4

o I
G Semaphore Implementation

S s

B Must guarantee that no two processes can execute wait () and signal () on
the same semaphore at the same time

B Thus, implementation becomes the critical section problem where the wait
and signal code are placed in the crtical section

® Could now have busy waiting in critical section implementation
» But implementation code is short
» Little busy waiting if critical section rarely occupied

B Note that applications may spend lots of time in critical sections and therefore
this is not a good solution

\\
L\

'~ x 1\

L \ N

\ ‘,?’/ﬁi\@\\\\‘
A« 9%

Operating System Concepts — 8" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

4

Semaphore Implementation

| «m.k
r with no Busy waiting

€\,

B With each semaphore there is an associated waiting queue
B Each entry in a waiting queue has two data items:

® value (of type integer)

® pointer to next record in the list

B Two operations:

® block — place the process invoking the operation on the appropriate
waiting queue

® wakeup — remove one of processes in the waiting queue and place it
in the ready queue

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.22

™ Semaphore Implementation with
& no Busy waiting (Cont.)

B Implementation of wait:
wait(semaphore *S) {
S->value--;
if (S->value <0){
add this process to S->list;
block();

}
}

B Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <=0) {
remove a process P from S->list;
wakeup(P);

}

74
A X
Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

4

{

Deadlock and Starvation

&\

B Deadlock —two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

B LetS and Q be two semaphores initialized to 1

P, P,
wait (S); wait (Q);
wait (Q); wait (S);
sigr.1al (S); siénal (Q);
signal (Q); signal (S);

B Starvation — indefinite blocking

® A process may never be removed from the semaphore queue in which
it is suspended

B Priority Inversion — Scheduling problem when lower-priority process holds
a lock needed by higher-priority process

. - - - . e 7
® Solved via priority-inheritance protocol VN
Operating System Concepts — 8t Edition 3.24 Silberschatz, Galvin and Gagne ©2009

