
Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Chapter 6: Process
Synchronization

3.2! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Critical Section Problem

  General structure of process pi is"

3.3! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Requirements of Critical-Section Prob.

1. Mutual Exclusion - If process Pi is in its critical section, then
no other processes can be executing in their critical sections"

2. Progress - If no process is executing in its critical section and
some processes wish to enter their critical section, then the
selection of the next process cannot be postponed indefinitely"

3. Bounded Waiting - A bound must exist on the number of
times that other processes enter critical sections after a
process has made a request to enter its critical section and
before that request is granted"
�  Assume that each process executes at a nonzero speed "
�  No assumption concerning relative speed of the n

processes"

3.4! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

"shared int locked = false;"
"do { "
" "while (locked == true); "
" "locked = true;"
" "critical section !
" "locked = false;"
" "remainder section !
"} while (true); "

"
  Fails to meet "
  Solution: Allow only one process to "

1st: Use lock

3.5! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

"shared int turn = 0;"
"do { "
" "while (turn != me); "
" "critical section !
" "turn = !me;"
" "remainder section !
"} while (true); "

"
  Fails to meet "
  Solution: Check if the other process"

2nd: Take turns

3.6! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

"shared int flag[2];"
"do { "
" "flag[me] = true;"
" "while (flag[!me] == true); "
" "critical section !
" "flag[me] = false;"
" "remainder section !
"} while (true); "

"
  Fails to meet "
  Solution: check both "

3rd : Check intention

3.7! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

"shared int turn, flag[2];"
"do { "
" "flag[me] = true; "
" "turn = ! me; "
" "while (flag[! me] && turn == ! me); "
" "critical section "
" "flag[me] = false; "
" "remainder section "
"} while (true); "

"
  Provable that "
1.  Mutual exclusion:"
2.  Progress:"
3.  Bounded-waiting:"

Peterson’s Solution

3.8! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Process 0:"
"

"shared int turn, flag[2];"
"do { "
" "flag[me] = true; "
" "turn = ! me; "
" "while (flag[! me] && turn == ! me); "
" "critical section "
" "flag[me] = false; "
" "remainder section "
"} while (true); "

"

Peterson’s Solution

Process 1:"
"

"shared int turn, flag[2];"
"do { "
" "flag[me] = true; "
" "turn = ! me; "
" "while (flag[! me] && turn == ! me); "
" "critical section "
" "flag[me] = false; "
" "remainder section "
"} while (true); "

"

3.9! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Lessons

  Need a locking mechanism"
" "acquire lock !
" " "critical section "
" "release lock !

  Peterson’s algorithm still needs atomic access to shared variables"
  Problem about shared variable comes from "

  the interruptible gap between get value & set value operations"
"register ß <memory>"
"register = <new value>"
"<memory> ß register"

  Make these operations not interruptible, but HOW?"

3.10! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Disabling interrupts

  Uniprocessors – could disable interrupts"
  Currently running code would execute without

preemption"
  Generally too inefficient on multiprocessor systems"

 Operating systems using this not broadly scalable"

3.11! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

"shared int locked = false;"
"do { "
" "while (locked == true); "
" "locked = true;"
" "critical section !
" "locked = false;"
" "remainder section !
"} while (true); "

Atomic instruction

Remove gap between TEST and SET!!

while(TestSet(&locked));"

Returns the current value
and set TRUE if FALSE

3.12! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

TestAndSet Instruction

"
 boolean TestAndSet (boolean *target)"
 {"
 boolean rv = *target;"

" " if(*target == FALSE)"
 "*target = TRUE;"
 return rv:"
 }"
"

3.13! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

TestAndSet Instruction-Better

"
 boolean TestAndSet (boolean *target)"
 {"
 boolean rv = *target;"
 *target = TRUE;"
 return rv:"
 }"
" <Value> <Value>

TRUE

(1)

(2)

target return

3.14! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Solution using TestAndSet

  Shared boolean variable lock, initialized to FALSE"
" "do {"

 while (TestAndSet (&lock));"
"

" " " " "critical section"
"
 lock = FALSE;"
"

" " " " "remainder section "
"
 } while (TRUE);"
"
 "

MX"

Prog."

BW"

3.15! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Another way of doing it

<Value> <Value>

TRUE

(1)

(2)

TestAndSet()

target return

<Value> TRUE
(swap) Swap()

target var

3.16! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Swap Instruction

"
  Definition:"

 void Swap (boolean *a, boolean *b)"
 {"
 boolean temp = *a;"
 *a = *b;"
 *b = temp:"
 }"
"

3.17! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Solution using Swap
  Shared Boolean variable lock initialized to FALSE; Each process has a local

Boolean variable key"
 do {"
 key = TRUE;"
 while (key == TRUE)"
 Swap (&lock, &key);"
 // critical section"
 lock = FALSE;"
"
 // remainder section "
 } while (TRUE);"
 "

3.18! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Bounded-waiting Mutual Exclusion
with TestandSet()

"do { "
" "waiting[i] = TRUE; "
" "key = TRUE; "
" "while (waiting[i] && key) "
" " "key = TestAndSet(&lock); "
" "waiting[i] = FALSE; "
" " "// critical section "
" "j = (i + 1) % n; "
" "while ((j != i) && !waiting[j]) "
" " "j = (j + 1) % n; "
" "if (j == i) "
" " "lock = FALSE; "
" "else "
" " "waiting[j] = FALSE; "
" " "// remainder section "
"} while (TRUE);"

3.19! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore

  Synchronization tool that does not require busy waiting !
  Semaphore S – integer variable"
  Two standard operations modify S: wait() and signal()"

  Originally called P() and V()"
  Less complicated"
  Can only be accessed via two indivisible (atomic) operations"

  wait (S) { "
 while S <= 0"
" " ; // no-op"

 S--;"
 }"
  signal (S) { "
 S++;"
 }"

3.20! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore as
General Synchronization Tool

  Counting semaphore – integer value can range over an unrestricted domain"
  Binary semaphore – integer value can range only between 0  

and 1; can be simpler to implement"
  Also known as mutex locks!

  Can implement a counting semaphore S as a binary semaphore"
  Provides mutual exclusion"

Semaphore mutex; // initialized to 1"
do {"
"wait (mutex);"

 // Critical Section"
 signal (mutex);"
" "// remainder section"

} while (TRUE);"
"

3.21! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore Implementation

  Must guarantee that no two processes can execute wait () and signal () on
the same semaphore at the same time"

  Thus, implementation becomes the critical section problem where the wait
and signal code are placed in the crtical section"
  Could now have busy waiting in critical section implementation"

  But implementation code is short"
  Little busy waiting if critical section rarely occupied"

  Note that applications may spend lots of time in critical sections and therefore
this is not a good solution"

 "
"

3.22! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore Implementation
with no Busy waiting

  With each semaphore there is an associated waiting queue"
  Each entry in a waiting queue has two data items:"

  value (of type integer)"
  pointer to next record in the list"
"

  Two operations:"
  block – place the process invoking the operation on the appropriate

waiting queue"
  wakeup – remove one of processes in the waiting queue and place it

in the ready queue"
 "

3.23! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Semaphore Implementation with
no Busy waiting (Cont.)

  Implementation of wait:"
 wait(semaphore *S) { "

" " "S->value--; "
" " "if (S->value < 0) { "
" " " "add this process to S->list; "
" " " "block(); "
" " "} "
" "}"

  Implementation of signal:"
"

" "signal(semaphore *S) { "
" " "S->value++; "
" " "if (S->value <= 0) { "
" " " "remove a process P from S->list; "
" " " "wakeup(P); "
" " "}"
" "} "

3.24! Silberschatz, Galvin and Gagne ©2009!Operating System Concepts – 8th Edition!

Deadlock and Starvation

  Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes"

  Let S and Q be two semaphores initialized to 1"
! ! P0 " P1"

" " wait (S); " wait (Q);"
" " wait (Q); " wait (S);"
" ". " "."
" ". " "."
" ". " "."
" " signal (S); " signal (Q);"
" " signal (Q); " signal (S);"

  Starvation – indefinite blocking "
  A process may never be removed from the semaphore queue in which

it is suspended"
  Priority Inversion – Scheduling problem when lower-priority process holds

a lock needed by higher-priority process"
  Solved via priority-inheritance protocol!

