Chapter 6: Process
Synchronization

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

“»7" Shared Buffer by Circular Array
counter++: counter--:
registerl = counter register2 = counter ,
registerl = registerl + 1 register2 = register2 - 1 |
counter = registerl counter = register2
Concurrency Problem !
Empty Full
if counter == if counter == BS
C r/w counter r/w P
> &
out Buffer [1z
Shared Memory

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

e Critical Section Problem

B Consider system of n processes {py, P1; --- Pp-1}
B Each process has a critical section
® If one process in critical section, no other process can

B Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

B Critical section problem is to design protocol to solve this

Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

¢ «wﬁ
. ot Critical Section

LA\

B General structure of process p;is

do {

entry secfion |

critical section

exit secfion

remainder section
} while (TRUE);

Figure 6.1 General structure of a typical process F.

Operating System Concepts — 8t" Edition 3.4

o,

a2
=

g . a g -
“»”’Requirements of Critical-Section Prob.

1. Mutual Exclusion - If process P, is in its critical section, then
no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
some processes wish to enter their critical section, then the
selection of the next process cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes enter critical sections after a

process has made a request to enter its critical section and
before that request is granted

® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the n
processes

A ‘5 3
Operating System Concepts — 8" Edition 3.5 Silberschatz, Galvin and Gagne ©2009

1st: Use lock

shared int locked = O;
do{
while (locked == 1);
locked = 1;
critical section
locked = 0;
remainder section
} while (true);

B Fails to meet
B Solution: Allow only one process to

Operating System Concepts — 8t" Edition 3.6

Silberschatz, Galvin and Gagne ©2009

P

v

/%(
A«‘ml

oV .
X 1st: Use lock
Process 0: Process 1:

shared int locked = 0; shared int locked = 0;

do { do {
while (locked == 1); while (locked == 1);
locked = 1; locked = 1;
critical section critical section
locked = O; locked = 0;
remainder section remainder section

} while (true); } while (true);

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009‘

2"d: Take turns

shared int turn = 0;
do{
while (turn = me);
critical section
turn = I me;
remainder section
} while (true);

B Fails to meet
B Solution: Check if the other process

Operating System Concepts — 8t" Edition 3.8

Silberschatz, Galvin and Gagne ©2009

P

v

%
/!‘ ,«eﬂ"hl

r.ai 2nd: Take turns

Process 0:

shared int turn = 0;

do {
while (turn == 1);
critical section
turn = 1;
remainder section

} while (true);

Operating System Concepts — 8t" Edition

3.9

Process 1:

shared int turn = 0;

do{

while (turn ==0);

critical section

turn = 0;

remainder section

} while (true);

Silberschatz, Galvin and Gagne ©2009

P

v

3rd : Check intention

shared int flag[2];

do{
flag[me] = true;
while (flag[!me] == true);
critical section
flag[me] = false;
remainder section

} while (true);

B Fails to meet
B Solution: check both

Operating System Concepts — 8t" Edition 3.10

Silberschatz, Galvin and Gagne ©2009

P

v

=R
f‘"""’l

57 3rd : Check intention
Process 0: Process 1:

shared int flag[2]; shared int flag[2];

do { do{
flag[O] = true; flag[1] = true;
while (flag[1] == true); while (flag[O] == true);
critical section critical section
flag[O] = false; flag[1] = false;
remainder section remainder section

} while (true); } while (true);

Operating System Concepts — 8" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

N Peterson’s Solution

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == ! me);
critical section
flaglme] = false;
remainder section
} while (true);

B Provable that

1. Mutual exclusion:
2. Progress:

3. Bounded-waiting:

Operating System Concepts — 8" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

Y

o Peterson’s Solution
Process 0: Process 1:

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == me);
critical section
flag[me] = false;
remainder section
} while (true);

Operating System Concepts — 8" Edition 3.13

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == | me);
critical section
flag[me] = false;
remainder section

} while (true);

Silberschatz, Galvin and Gagne ©2009

