Chapter 6: Process
Synchronization
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e Critical Section Problem

B Consider system of n processes {py, P1; --- Pp-1}
B Each process has a critical section
® If one process in critical section, no other process can

B Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

B Critical section problem is to design protocol to solve this
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B General structure of process p;is

do {

entry secfion |

critical section

exit secfion

remainder section
} while (TRUE);

Figure 6.1 General structure of a typical process F.
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“»”’Requirements of Critical-Section Prob.

1. Mutual Exclusion - If process P, is in its critical section, then
no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
some processes wish to enter their critical section, then the
selection of the next process cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes enter critical sections after a

process has made a request to enter its critical section and
before that request is granted

® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the n
processes
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1st: Use lock

shared int locked = O;
do{
while (locked == 1);
locked = 1;
critical section
locked = 0;
remainder section
} while (true);

B Fails to meet
B Solution: Allow only one process to
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X 1st: Use lock
Process 0: Process 1:

shared int locked = 0; shared int locked = 0;

do { do {
while (locked == 1); while (locked == 1);
locked = 1; locked = 1;
critical section critical section
locked = O; locked = 0;
remainder section remainder section

} while (true); } while (true);
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2"d: Take turns

shared int turn = 0;
do{
while (turn = me);
critical section
turn = I me;
remainder section
} while (true);

B Fails to meet
B Solution: Check if the other process
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r.ai 2nd: Take turns

Process 0:

shared int turn = 0;

do {
while (turn == 1);
critical section
turn = 1;
remainder section

} while (true);
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Process 1:

shared int turn = 0;

do{

while (turn ==0);

critical section

turn = 0;

remainder section

} while (true);
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3rd : Check intention

shared int flag[2];

do{
flag[me] = true;
while (flag[ !me] == true);
critical section
flag[me] = false;
remainder section

} while (true);

B Fails to meet
B Solution: check both
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57 3rd : Check intention
Process 0: Process 1:

shared int flag[2]; shared int flag[2];

do { do{
flag[ O ] = true; flag[ 1 ] = true;
while (flag[ 1 ] == true); while (flag[ O ] == true);
critical section critical section
flag[ O ] = false; flag[ 1 ] = false;
remainder section remainder section

} while (true); } while (true);
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N Peterson’s Solution

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == ! me);
critical section
flaglme] = false;
remainder section
} while (true);

B Provable that

1. Mutual exclusion:
2. Progress:

3. Bounded-waiting:
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o Peterson’s Solution
Process 0: Process 1:

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == me);
critical section
flag[me] = false;
remainder section
} while (true);

Operating System Concepts — 8" Edition 3.13

shared int turn, flag[2];
do {
flag[me] = true;
turn = I me;
while (flag[! me] && turn == | me);
critical section
flag[me] = false;
remainder section

} while (true);
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