
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: Process
Synchronization

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Buffer by Circular Array	

P
	

C	

Buffer out	
 in	

counter

Shared Memory

r/w r/w

Empty
if counter == 0

Full
if counter == BS

Concurrency Problem !

counter++:
 register1 = counter
 register1 = register1 + 1
 counter = register1

counter--:
 register2 = counter
 register2 = register2 - 1
 counter = register2

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Problem

■  Consider system of n processes {p0, p1, … pn-1}
■  Each process has a critical section

●  If one process in critical section, no other process can

■  Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

■  Critical section problem is to design protocol to solve this

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section

■  General structure of process pi is

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Requirements of Critical-Section Prob.

1. Mutual Exclusion - If process Pi is in its critical section, then
no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
some processes wish to enter their critical section, then the
selection of the next process cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes enter critical sections after a
process has made a request to enter its critical section and
before that request is granted
�  Assume that each process executes at a nonzero speed
�  No assumption concerning relative speed of the n

processes

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

shared int locked = 0;
do {

while (locked == 1);
locked = 1;
critical section
locked = 0;
remainder section

} while (true);

■  Fails to meet
■  Solution: Allow only one process to

1st: Use lock

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process 0:

shared int locked = 0;
do {

while (locked == 1);
locked = 1;
critical section
locked = 0;
remainder section

} while (true);

1st: Use lock

Process 1:

shared int locked = 0;
do {

while (locked == 1);
locked = 1;
critical section
locked = 0;
remainder section

} while (true);

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

shared int turn = 0;
do {

while (turn != me);
critical section
turn = ! me;
remainder section

} while (true);

■  Fails to meet
■  Solution: Check if the other process

2nd: Take turns

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process 0:

shared int turn = 0;
do {

while (turn == 1);
critical section
turn = 1;
remainder section

} while (true);

2nd: Take turns

Process 1:

shared int turn = 0;
do {

while (turn == 0);
critical section
turn = 0;
remainder section

} while (true);

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

shared int flag[2];
do {

flag[me] = true;
while (flag[!me] == true);
critical section
flag[me] = false;
remainder section

} while (true);

■  Fails to meet
■  Solution: check both

3rd : Check intention

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process 0:

shared int flag[2];
do {

flag[0] = true;
while (flag[1] == true);
critical section
flag[0] = false;
remainder section

} while (true);

3rd : Check intention

Process 1:

shared int flag[2];
do {

flag[1] = true;
while (flag[0] == true);
critical section
flag[1] = false;
remainder section

} while (true);

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

shared int turn, flag[2];
do {

flag[me] = true;
turn = ! me;
while (flag[! me] && turn == ! me);
critical section
flag[me] = false;
remainder section

} while (true);

■  Provable that
1.  Mutual exclusion:
2.  Progress:
3.  Bounded-waiting:

Peterson’s Solution

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process 0:

shared int turn, flag[2];
do {

flag[me] = true;
turn = ! me;
while (flag[! me] && turn == ! me);
critical section
flag[me] = false;
remainder section

} while (true);

Peterson’s Solution

Process 1:

shared int turn, flag[2];
do {

flag[me] = true;
turn = ! me;
while (flag[! me] && turn == ! me);
critical section
flag[me] = false;
remainder section

} while (true);

