
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: Process
Synchronization

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Concurrency Problem

■  Concurrent access to shared data may result in data inconsistency

■  Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes

■  Think about shared memory problem

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Buffer by Circular Array	

P
	

C	

in	

out	

#define BS 100
typedef struct {…} item;

item buf[BS]
int in = 0
int out = 0	

* Buffer is empty if
 in == out
* Buffer is full if
 (in+1)%BS == out
* Maximum items count
 BS-1	

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer

while (true) {  
 /* Produce an item */

 while ((in + 1) % BUFFER_SIZE == out)
 ; /* do nothing -- no free buffers */
 buffer[in] = item;
 in = (in + 1) % BUFFER SIZE;

 }

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer

while (true) {
 while (in == out)
 ; // do nothing --

nothing to consume

 // remove an item from the buffer
 item = buffer[out];
 out = (out + 1) % BUFFER SIZE;

}

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fix	

■  We can use only up to BUFFER_SIZE-1 spaces
●  empty if in == out
●  full if (in + 1)%BUFFER_SIZE == out

■  How can we use all the space of the buffer?

■  Use a counter variable to indicate the number of data
●  empty if counter == 0
●  full if counter == BUFFER_SIZE
●  Producer counter++ after writing a data
●  Consumer counter– after reading a data	

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer

while (true) {

 /* produce an item and put in nextProduced */

 while (counter == BUFFER_SIZE)
; // do nothing

 buffer [in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;

}

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Consumer

 while (true) {
 while (counter == 0)

 ; // do nothing
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;

 counter--;

 /* consume the item in nextConsumed */
}

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Race Condition

■  counter++ could be implemented as 
 
 register1 = counter 
 register1 = register1 + 1  
 counter = register1

■  counter-- could be implemented as 
 
 register2 = counter 
 register2 = register2 - 1  
 count = register2

■  Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5} 
S1: producer execute register1 = register1 + 1 {register1 = 6}  
S2: consumer execute register2 = counter {register2 = 5}  
S3: consumer execute register2 = register2 - 1 {register2 = 4}  
S4: producer execute counter = register1 {count = 6 }  
S5: consumer execute counter = register2 {count = 4}

