Chapter 6: Process
Synchronization

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

O oy
" & Concurrency Problem

B Concurrent access to shared data may result in data inconsistency

B Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes

B Think about shared memory problem

Operating System Concepts — 8" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

»” Shared Buffer by Circular Array

P
out s
v
A
in
C
(#define BS 100 I Buffer is empty if
typedef struct {...} item; in == out
* Buffer is full if
item buf[BS] (in+1)%BS == out
intin=20 * Maximum items count
intout =0 BS-1

Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

) .f‘f“""'”'k
7 Bounded-Buffer — Producer

while (true) {
/* Produce an item */

while ((in + 1) % BUFFER_SIZE == out)
; /* do nothing -- no free buffers */
buffer[in] = 1tem;

in = (in + 1) % BUFFER SIZE;

}

A -» vi o

Silberschatz, Galvin and Gagne ©200

© A=

Operating System Concepts — 8t Edition 3.4

;'J Bounded Buffer —- Consumer

while (true) {
while (in == out)

; // do nothing --
nothing to consume

// remove an item from the buffer
1tem = buffer[out];
out = (out + 1) % BUFFER SIZE;

A -» vi o

Operating System Concepts — 8t Edition 3.5 Silberschatz, Galvin and Gagne ©200

© A=

4

|
o Fix

W
S\

B We can use only up to BUFFER_SIZE-1 spaces
® empty if in == out
o fullif (in + 1)%BUFFER_SIZE == out

B How can we use all the space of the buffer?

B Use a counter variable to indicate the number of data
® empty if counter ==
e full if counter == BUFFER_SIZE
® Producer counter++ after writing a data
® Consumer counter— after reading a data

Operating System Concepts — 8" Edition 3.6

Silberschatz, Galvin and Gagne ©2009

=7 Producer

while (true) {

/* produce an item and put in nextProduced */
while (counter == BUFFER_SIZE)
; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

ré Consumer

lL\\J

while (true) {
while (counter == 0)
; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

/* consume the item in nextConsumed */

Operating System Concepts — 8" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

| ‘e
Sy Race Condition

B counter++ could be implemented as

register1 = counter
register1 = reqgister1 + 1
counter = register1

B counter-- could be implemented as

register2 = counter
register2 = register2 - 1
count = register2

B Consider this execution interleaving with “count = 5” initially:

SO0: producer execute register1 = counter {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}

S3: consumer execute regisier?2 = register2 - 1 {register2 = 4}
S4: producer execute counter = registeri {count =6 }

S5: consumer execute counter = register2 {count = 4}

Ve

Operating System Concepts — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©200

w &

