
HW5	

HW5	

•  클래스	
 이름:	
 Person	

– Data:	

•  나이	
 (integer)	

•  이름	
 (string)	

•  성별 (char),	
 F=여성,	
 M=남성
•  학교이름	
 (string)	

•  좋아하는 것들 (vector<string>):	
 좋아하는것들의 리스트.	

중복 불가

•  싫어하는 것들 (vector<string>):	
 싫어하는것들의 리스트.	

중복 불가

•  단,	
 같은 내용이 좋아하는 것과 싫어하는것에 중복되어
있을 수 없다	

Sol	

	
 Person(string	
 name,	
 char	
 gender)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 this-­‐>name	
 =	
 name;	

	
 	
 	
 	
 	
 	
 	
 	
 age	
 =	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 if(gender	
 !=	
 'M'	
 &&	
 gender	
 !=	
 'F')	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 this-­‐>gender	
 =	
 'F';	

	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 this-­‐>gender	
 =	
 gender;	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 schoolname	
 =	
 "NO	
 SCHOOL";	

	
 	
 	
 	
 	
 	
 	
 	
 favorite.clear();	

	
 	
 	
 	
 	
 	
 	
 	
 dislike.clear();	

	
 	
 	
 	
 }	

HW5	

•  GeQers	

– string	
 get_name()	

–  int	
 get_age()	

– char	
 get_gender()	

– string	
 get_favorite(int	
 i):	
 i번째	
 좋아하는것	

– string	
 get_dislike(int	
 i):	
 i번째	
 싫어하는것	

–  int	
 get_fav_cnt():	
 좋아하는것의	
 갯수	

–  int	
 get_dis_cnt():	
 싫어하는것의	
 갯수	

Sol	

string	
 Person::get_name()	
 const	
 {	

	
 	
 	
 	
 return	
 this-­‐>name;	

}	

int	
 Person::get_age()	
 const	
 {	

	
 	
 	
 	
 return	
 this-­‐>age;	

}	

char	
 Person::get_gender()	
 const	
 {	

	
 	
 	
 	
 return	
 this-­‐>gender;	

}	

string	
 Person::get_favorite(int	
 i)	

const	
 {	

	
 	
 	
 	
 return	
 this-­‐>favorite.at(i-­‐1);	

}	

	

	

string	
 Person::get_dislike(int	
 i)	

const	
 {	

	
 	
 	
 	
 return	
 this-­‐>dislike.at(i-­‐1);	

}	

int	
 Person::get_fav_cnt()	
 const	
 {	

	
 	
 	
 	
 return	
 this-­‐>favorite.size();	

}	

int	
 Person::get_dis_cnt()	
 const	
 {	

	
 	
 	
 	
 return	
 this-­‐>dislike.size();	

}	

HW5	

•  SeQers	

– void	
 set_name(
 string	
 name	
)	

– void	
 set_age(
 int	
 age	
)	

Sol	

void	
 Person::set_name(string	
 name)	
 {	

	
 	
 	
 	
 this-­‐>name	
 =	
 name;	

}	

void	
 Person::set_age(int	
 age)	
 {	

	
 	
 	
 	
 this-­‐>age	
 =	
 age;	

}	

	

HW5	

•  Checkers	

– bool	
 is_female():	
 여자면	
 참,	
 아니면	
 거짓	

– bool	
 is_schoolkid():	
 나이가 7살 이상,	
 19살 이하
면 참	

Sol	

•  bool	
 Person::is_female()	
 {	

•  	
 	
 	
 	
 return	
 this-­‐>gender	
 ==	
 'F';	

•  }	

•  bool	
 Person::is_schoolkid()	
 {	

•  	
 	
 	
 	
 return	
 this-­‐>age	
 >=	
 7	
 &&	
 this-­‐>age	
 <=	
 19;	

•  }	

HW5	

•  Operator	
 overloading	

– operator++(prefix):	
 나이	
 1	
 증가	

– operator>:	
 나이를	
 비교	

Sol	

Person&	
 Person::operator++()	
 {	

	
 	
 	
 	
 age++;	

	
 	
 	
 	
 return	
 *this;	

}	

	

bool	
 operator	
 >(const	
 Person	
 lhs,	
 const	
 Person	
 rhs)	

{	

	
 	
 	
 	
 return	
 lhs.age	
 >	
 rhs.age;	

}	

HW5	

•  Other	
 func]ons	

– void	
 goto_school(string	
 schoolname)	

• 학교이름을 설정해준다.	
 단,	
 나이가 7살이상 19살
이하가 아니면 "NO	
 SCHOOL"로

– void	
 add_favorite(string	
 thing)	

•  thing을 좋아하는것들에 추가 (새로운 것만)	

• 싫어하는 것들에 있으면 삭제

– void	
 add_dislike(string	
 thing)	

•  thing을 싫어하는 것들에 추가 (새로운 것만)	

• 좋아하는 것들에 있으면 삭제	

Sol	

void	
 Person::goto_school(string	
 schoolname)	
 {	

	
 	
 	
 	
 if(!is_schoolkid())	

	
 	
 	
 	
 	
 	
 	
 	
 this-­‐>schoolname	
 =	
 schoolname;	

	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 this-­‐>schoolname	
 =	
 "NO	
 SCHOOL";	

}	

void	
 Person::add_favorite(string	
 thing)	
 {	

	
 	
 	
 //	
 add	
 thing	
 to	
 favorite	

	
 	
 	
 //	
 remove	
 from	
 dislike	

}	

void	
 Person::add_dislike(string	
 thing)	
 {	

	
 	
 	
 //	
 add	
 thing	
 to	
 dislike	

	
 	
 	
 //	
 remove	
 from	
 favorite	

}	

Sol	

void	
 Person::add_favorite(string	
 thing)	
 {	

	
 vector<string>::iterator	
 it;	

	

	
 	
 	
 	
 //	
 add	
 thing	
 to	
 favorite	

	
 	
 if(
 find(
 fav.begin(),	
 fav.end(),	
 thing	
)	
 ==	
 fav.end()	
)	

	
 	
 	
 fav.push_back(thing);	

	

	
 //	
 remove	
 from	
 dislike	

	
 	
 if(
 (it=find(
 dislike.begin(),	
 dislike.end(),	
 thing	
))	
 !=	
 fav.end()	
)	

	
 	
 	
 dislike.erase(it);	

}	

Test	
 Code	

int	
 main()	
 {	

	
 	
 	
 	
 Person	
 p1("철수",	
 'M');	

	
 	
 	
 	
 check("1.	
 이름",	
 p1.get_name(),	
 "철수");	
 //	
 생성자

	
 	
 	
 	
 Person	
 p2("영희",	
 'S');	

	
 	
 	
 	
 check("2.	
 성별",	
 p2.get_gender(),	
 'F');	
 //	
 생성자

	
 	
 	
 	
 Person	
 p3("태희",	
 'F');	

	
 	
 	
 	
 p3.set_name("혜교");	

	
 	
 	
 	
 check("3.	
 이름",	
 p3.get_name(),	
 "혜교");	
 //	
 geQer	
 점
검
 p3.set_age(15);	

	
 	
 	
 	
 check("4.	
 나이",	
 p3.is_schoolkid(),	
 true);	
 //	
 checker	
 점
검	

	
 	
 	
 	
 	

	
 	
 	
 	
 Person	
 p4("영수",	
 'M');	

	
 	
 	
 	
 Person	
 p5("민아",	
 'T');	

	
 	
 	
 	
 p4++;	

	
 	
 	
 	
 check("5.	
 나이",	
 p4	
 <	
 p5,	
 false);	
 //	
 opertor	
 overloading	

점검	

	
 	
 	
 	
 	

	
 Person	
 p7("민식",	
 'M');	

	
 	
 	
 	
 p7.add_favorite("자동차");	

	
 	
 	
 	
 p7.add_favorite("영화");	

	
 	
 	
 	
 p7.add_favorite("책");	

	
 	
 	
 	
 p7.add_favorite("장난감");	

	
 	
 	
 	
 p7.add_favorite("장난감");	

	
 	
 	
 	
 p7.add_favorite("영화");	

	
 	
 	
 	
 check("6.	
 추가",	
 p7.get_favorite(2),	
 "책");	
 //	
 vector	
 중
복점검 (2점)
 check("7.	
 추가",	
 p7.get_fav_cnt(),	
 4);	
 //	
 vector	
 갯수
점검

	
 	
 	
 	
 Person	
 p8("강현",	
 'F');	

	
 	
 	
 	
 p8.add_favorite("노래");	

	
 	
 	
 	
 p8.add_favorite("춤");	

	
 	
 	
 	
 p8.add_favorite("가수");	

	
 	
 	
 	
 p8.add_dislike("춤");	

	
 	
 	
 	
 check("8.	
 추가",	
 p8.get_favorite(2),	
 "가수");	
 //	
 vector	

중복제거 점검 (2점)

	
 	
 	
 	
 system("pause");	

}	

Advanced	
 Sol	
 for	
 add_fav/dislike	

•  algorithm::remove(
 begin,	
 end,	
 val	
)	

– move	
 all	
 matching	
 items	
 to	
 the	
 end	
 of	
 the	
 list	

–  return	
 first	
 posi]on	
 of	
 moved	
 items	
 	

•  //x	
 contains	
 (dog,	
 cat,	
 dog,	
 cow)	

•  it	
 =	
 remove(x.begin(),	
 x.end(),	
 “dog”)	

•  //x	
 conains	
 (cat,	
 cow,	
 dog,	
 dog)	

•  //it	
 points	
 to	
 3rd	
 item-­‐-­‐-­‐^	

•  erase(
 it	
)	

–  erase	
 at	
 it	

•  erase(
 begin,	
 end	
)	

–  erase	
 all	
 from	
 start	
 to	
 end	

Advanced	
 Sol	
 for	
 add_fav/dislike	

it	
 =	
 list.erase(
 remove(
 list.begin(),	
 list.end(),	
 thing	
)	
 ,	
 list.end()	
)	

•  list에서	
 thing을 모두 찾아서 지운다	

•  예	

–  list:	
 	

•  (
 dog,	
 cat,	
 cow,	
 dog,	
 duck,	
 bird	
)	

–  aker	
 remove	

•  (
 cat,	
 cow,	
 duck,	
 bird,	
 dog,	
 dog	
)	

•  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 it	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐^	

–  aker	
 remove	
 erase(it,	
 end)	

•  (
 cat,	
 cow,	
 duck,	
 bird	
)	

Advanced	
 Sol	
 for	
 add_fav/dislike	

void	
 Person::add_favorite(string	
 thing)	
 {	

	
 this-­‐>favorite.erase(

	
 	
 remove(this-­‐>favorite.begin(),	
 this-­‐>favorite.end(),	
 thing),	
 	

	
 	
 this-­‐>favorite.end()	

	
);	

	
 this-­‐>dislike.erase(remove(this-­‐>dislike.begin(),	
 this-­‐>dislike.end(),	
 thing),	
 this-­‐

>dislike.end());	

	
 this-­‐>favorite.push_back(thing);	

}	

void	
 Person::add_dislike(string	
 thing)	
 {	

	
 this-­‐>favorite.erase(remove(this-­‐>favorite.begin(),	
 this-­‐>favorite.end(),	
 thing),	

this-­‐>favorite.end());	

	
 this-­‐>dislike.erase(remove(this-­‐>dislike.begin(),	
 this-­‐>dislike.end(),	
 thing),	
 this-­‐
>dislike.end());	

	
 this-­‐>dislike.push_back(thing);	

}	

