
Class	
 &	
 Operator	
 Overloading	

Oct	
 6	

Class	
 Time	

class	
 Time	
 {	

	
 int	
 h; 	
 //	
 0~23	

	
 int	
 m; 	
 //	
 0~59	

	
 int	
 s; 	
 //	
 0~59	

public:	

	
 //	
 Constructor	

	
 Time()	
 {	
 h=m=s=0;	
 }	

	
 Time(
 int	
 hour,	
 int	
 min,	
 int	
 sec	
)	
 {	
 h=hour;	
 m=min;	
 s=sec;	
 }	

	

	
 //	
 accessor	
 (geHer)	

	
 int	
 getHour()	
 {	
 return	
 h;	
 }	

	
 int	
 getMin()	
 {	
 return	
 m;	
 }	

	
 int	
 getSec()	
 {	
 return	
 s;	
 }	

	

	
 //	
 accessor	
 (seHer)	

	
 void	
 setHour(
 int	
 hour	
)	
 {	
 if(
 0	
 <=	
 hour	
 &&	
 hour	
 <=	
 23	
)	
 h	
 =	
 hour;	
 }	

	
 void	
 setMin(
 int	
 min	
)	
 {	
 if(
 0	
 <=	
 min	
 &&	
 min	
 <=	
 59	
)	
 m	
 =	
 min;	
 }	

	
 void	
 setSec(
 int	
 sec	
)	
 {	
 if(
 0	
 <=	
 sec	
 &&	
 sec	
 <=	
 59	
)	
 s	
 =	
 sec;	
 }	

	

	
 friend	
 Time	
 operator+(
 Time	
 t1,	
 Time	
 t2	
);	

};	

Time	
 operator+(
 Time	
 t1,	
 Time	
 t2	
)	
 {	

	
 Time	
 t;	

	
 t.h	
 =	
 t1.h	
 +	
 t2.h;	

	
 t.m	
 =	
 t1.m	
 +	
 t2.m;	

	
 t.s	
 =	
 t1.s	
 +	
 t2.s;	

	
 return	
 t;	

}	

	

HW4	

•  생성자 Time(
 int	
 hour,	
 int	
 min,	
 int	
 sec	
)가 불리면 주어진 값을 저
장하기 이전에 hour,	
 min,	
 sec	
 의 범위를 체크하고,	
 범위에 맞지
않을 때에는 범위가 벗어난 값 대신에 -­‐1을 저장한다.	

•  예:	
 Time(3,	
 100,	
 20)	
 =⇒	
 h=3,	
 m=-­‐1,	
 s=20	

•  새로운 생성자 Time(
 int	
 sec	
)을 추가하여라.	
 그리고 주어진 sec	

값이 음수면 s=-­‐1.	
 만약 sec	
 값이 60	
 이상이면 이를 시,	
 분,	
 초로
다시 계산해서 h,	
 m,	
 s값을 설정하도록 한다.	
 단,	
 h가 24	
 이상이
면 24로 나눈 나머지만 취한다.	
 예를 들어서 sec=3700	
 이면
h=1,	
 m=1,	
 s=40	
 으로 설정한다.	

•  operator	
 +	
 를 다음과 같이 수정한다.	
 두 Time의 s,	
 m,	
 h	
 값을 각
각 더한 후에도 s와 m이 0에서 59	
 사이에 있도록 값을 자동으
로 조절한다.	
 단,	
 h	
 값은 이 경우 24	
 이상이면 24로 나눈 나머지
값을 취한다.	
 	

•  예:	
 Time(3,	
 30,	
 30)	
 +	
 Time(5,	
 40,	
 40)	
 ==	
 Time(
 9,	
 11,	
 10	
)	

•  예:	
 Time(15,	
 30,	
 30)	
 +	
 Time(15,	
 20,	
 40)	
 ==	
 Time(
 6,	
 51,	
 10	
)	

HW4	
 EvaluaVon	

void	
 checkTime(
 string	
 testname,	
 Time	
 t,	
 int	
 h,	

int	
 m,	
 int	
 s	
)	

{	

	
 	
 	
 	
 if(
 t.getHour()	
 ==	
 h	
 &&	
 t.getMin()	
 ==	
 m	
 &&	

t.getSec()	
 ==	
 s	
)	

	
 	
 	
 	
 	
 	
 	
 	
 cout	
 <<	
 testname	
 <<	
 "	
 passed"	
 <<	
 endl;	

	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 cout	
 <<	
 testname	
 <<	
 "	
 	
 failed"	
 <<	
 endl;	

	
 	
 	
 	
 	

}	

nt	
 main()	
 	

{	

	
 	
 	
 	
 Time	
 t1(1,	
 2,	
 74);	

	
 	
 	
 	
 checkTime(
 "test	
 1",	
 t1,	
 1,	
 2,	
 -­‐1	
);	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 Time	
 t2(1,	
 -­‐3,	
 23);	

	
 	
 	
 	
 checkTime(
 "test	
 2",	
 t2,	
 1,	
 -­‐1,	
 23	
);	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 Time	
 t3(3700);	

	
 	
 	
 	
 checkTime(
 "test	
 3",	
 t3,	
 1,	
 1,	
 40	
);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 Time	
 t4(3,	
 30,	
 30);	

	
 	
 	
 	
 Time	
 t5(5,	
 40,	
 40);	

	
 	
 	
 	
 Time	
 t6	
 =	
 t4	
 +	
 t5;	

	
 	
 	
 	
 	

	
 	
 	
 	
 checkTime(
 "test	
 4",	
 t6,	
 9,	
 11,	
 10	
);	

	
 	
 	
 	
 	

	
 	
 	
 	
 Time	
 t7(15,	
 30,	
 30);	

	
 	
 	
 	
 Time	
 t8(15,	
 20,	
 40);	

	
 	
 	
 	
 Time	
 t9	
 =	
 t7	
 +	
 t8;	

	

	
 	
 	
 	
 checkTime(
 "test	
 5",	
 t9,	
 6,	
 51,	
 10	
);	

}	

HW4	
 Sol	

Time::Time(int	
 hour,	
 int	
 min,	
 int	
 sec)	

{	

	
 s	
 =	
 (
 0	
 <=	
 sec	
 &&	
 sec	
 <=	
 59	
)	
 ?	
 sec	
 :	
 -­‐1;	

	
 m	
 =	
 (
 0	
 <=	
 min	
 &&	
 min	
 <=	
 59	
)	
 ?	
 min	
 :	
 -­‐1;	

	
 h	
 =	
 (
 0	
 <=	
 hour	
 &&	
 hour	
 <=	
 23	
)	
 ?	
 hour	
 :	
 -­‐1;	

}	

HW4	
 Sol	

Time::Time(int	
 sec)	

{	

	
 h	
 =	
 (sec	
 /	
 3600)	
 %	
 24;	

	
 m	
 =	
 (sec	
 %	
 3600)	
 /	
 60;	

	
 s	
 =	
 sec	
 %	
 60;	

}	

HW4	
 Sol	

Time	
 operator+(
 Time	
 t1,	
 Time	
 t2	
)	
 {	

	
 return	
 Time(
 (
 t1.h	
 +	
 t2.h	
)*3600	
 +	
 (t1.m	
 +	
 t2.m)	
 *	
 60	
 +	
 (t1.s	
 +	
 t2.s)	
);	

}	

More	
 Time	

•  showTime()	

•  ==	

•  <	

•  <=	

•  >	

•  >=	

•  +=	

•  -­‐=	

•  ++	

•  -­‐-­‐	

•  <<	

•  >>	

Reference	
 vs.	
 Pointer	

•  Pointer	

– Hold	
 the	
 memory	
 address	
 of	
 a	
 data	
 	

– Need	
 dereferencing	
 (*)	

– Used	
 for	
 call	
 by	
 reference	

•  Reference	

– Hold	
 a	
 nick	
 name	
 of	
 a	
 data	

– No	
 need	
 dereferencing	

– Used	
 for	
 call	
 by	
 reference	

Reference	
 vs.	
 Pointer	

•  int	
 x;	

•  int	
 *px	
 =	
 &x;	

•  (*px)++;	

•  int	
 &rx	
 =	
 x;	

•  int	
 rx++;	

Call	
 by	
 Reference	

void	
 swap(
 int	
 x,	
 int	
 y	
)	
 {	

int	
 temp=x;	
 x=y;	
 y=temp;	
 	

}	

void	
 swap(
 int	
 *px,	
 int	
 *py	
)	
 {	

	
 int	
 temp	
 =	
 *px;	
 *px	
 =	
 *py;	
 *py	
 =	
 temp;	

}	

void	
 swap(
 int	
 &x,	
 int	
 &y	
)	
 {	

	
 int	
 temp	
 =	
 x;	
 x	
 =	
 y;	
 y	
 =	
 temp;	

}	

Overloading	

bool	
 operator==(
 const	
 Time	
 d1,	
 const	
 Time	
 d2	
);	

bool	
 operator>(
 const	
 Time	
 d1,	
 const	
 Time	
 d2	
);	
 	

bool	
 operator>=(
 const	
 Time	
 d1,	
 const	
 Time	
 d2	
);	

Date	
 &operator+=(int	
 n);	

Date	
 &operator=(const	
 Date	
 &d);	

Date	
 &operator++(Time	
 &d);	

Date	
 operator++(Time	
 &d,	
 int)	

Overloading	
 <<	

ostream	
 &operator<<(ostream	
 &output,	
 const	
 Time	
 &t)	
 {	

	
 output	
 <<	
 …	

	
 return	
 output;	

}	

	

Overloading	
 >>	

istream	
 &operator<<(istream	
 &input,	
 Time	
 &t)	
 {	

	
 input	
 >>	
 …	

	
 return	
 input;	

}	

	

