
Crash	
  Course	
  for	
  C++	
  

Oct	
  2	
  



What	
  is	
  C++?	
  

•  is	
  a	
  be4er	
  C	
  (Procedural	
  Programming)	
  
•  supports	
  data	
  abstrac>on	
  
•  supports	
  object-­‐oriented	
  programming	
  
•  supports	
  generic	
  programming	
  



Hello	
  World	
  



Comments	
  

//	
  helloworld.cpp	
  	
  
	
  
/*	
  this	
  is	
  a	
  mul>line	
  	
  
	
  	
  *	
  C-­‐style	
  comment.	
  The	
  	
  
	
  	
  *	
  compiler	
  will	
  ignore	
  	
  
	
  	
  *	
  it.	
  	
  
*/	
  	
  
	
  



Preprocessor	
  Direc>ves	
  	
  

•  Building	
  C++	
  Program	
  takes	
  3	
  steps	
  
1.  preprocessor	
  
•  recognize	
  meta-­‐informa>on	
  about	
  code	
  

2.  compile	
  
•  translate	
  code	
  into	
  machine	
  language	
  objects	
  

3.  linking	
  
•  combine	
  objects	
  into	
  one	
  applica>on	
  



Preprocessor	
  Direc>ves	
  	
  

•  #include	
  	
  
–  Insert	
  the	
  file	
  content	
  here	
  

–  in	
  C,	
  #include	
  <stdio.h>	
  
–  in	
  C++,	
  #include	
  <iostream>	
  
•  	
  “.h”	
  is	
  omi4ed	
  for	
  standard	
  library	
  

–  in	
  C++,	
  include	
  C	
  library	
  
•  for	
  <stdio.h>,	
  do	
  #include	
  <cstdio>	
  



Preprocessor	
  Direc>ves	
  	
  
•  #define	
  	
  

#define	
  MAX	
  10	
  //	
  constant	
  value,	
  macro	
  
if(	
  x	
  <	
  MAX	
  )	
  exit(1);	
  

#define	
  TESTING	
  //	
  op>on	
  
#ifdef	
  TESTING	
  //	
  include	
  	
  

cout	
  <<	
  “Tes>ng	
  now”;	
  
#endif	
  
	
  
#ifndef	
  TESTING	
  //	
  exclude	
  

	
  cout	
  <<	
  “Not	
  tes>ng”;	
  
#endif	
  



Variables	
  

•  Declare	
  anywhere,	
  use	
  within	
  declared	
  block	
  
or	
  contained	
  blocks	
  



Variables	
  

•  Cas>ng	
  
– Convert	
  a	
  variable’s	
  value	
  into	
  other	
  compa>ble	
  
type	
  

– Three	
  ways	
  of	
  cas>ng	
  
bool	
  someBool	
  =	
  (bool)someInt;	
  	
  //	
  C-­‐style	
  
bool	
  someBool	
  =	
  bool(someInt);	
  	
  
bool	
  someBool	
  =	
  sta>c_cast<bool>(someInt);	
  	
  

–  if	
  some	
  informa>on	
  is	
  lost,	
  compiler	
  warns	
  
•  int	
  someint	
  =	
  somefloat;	
  







Enumerator	
  

typedef	
  enum	
  {	
  kPieceTypeKing,	
  
	
  kPieceTypeQueen,	
  kPieceTypeRook,	
  
kPieceTypePawn	
  	
  
}	
  PieceT;	
  
	
  
	
  



Excep>on	
  Handling	
  

•  Excep>on	
  
– unexpected	
  situa>on	
  
– Tradi>onal	
  way	
  of	
  indica>ng	
  error	
  
•  return	
  a	
  special	
  value,	
  NULL	
  

– C++	
  way	
  
•  throws	
  an	
  excep>on	
  object	
  
•  The	
  caller	
  of	
  the	
  func>on	
  catches	
  it	
  





const	
  

•  Constants	
  
– Variable	
  whose	
  value	
  never	
  changes	
  
– const	
  float	
  pi	
  	
  =	
  3.14	
  

•  Protected	
  variable	
  
– protect	
  a	
  variable	
  from	
  changes	
  
– void	
  myfunc(const	
  char*	
  myString);	
  	
  



	
  User-­‐defined	
  Types	
  

•  Design	
  of	
  a	
  program	
  is	
  to	
  
– decide	
  which	
  types	
  you	
  want	
  
– determine	
  opera>ons	
  needed	
  for	
  each	
  type	
  

•  Example	
  
– We	
  want	
  a	
  point	
  type	
  in	
  2D	
  coordina>on	
  
– Type	
  Point?	
  
– What	
  state	
  (data)	
  it	
  needs?	
  
– What	
  opera>ons	
  it	
  needs?	
  



Type	
  Point	
  

•  State	
  
–  x,	
  y	
  coordinates	
  

•  Opera>ons	
  
–  constructors	
  
–  destructors	
  
–  setX(),	
  setY()	
  
–  vector	
  opera>ons	
  	
  
(+,	
  -­‐,	
  .)	
  

–  comparisons	
  (==,	
  !=)	
  
– …	
  

p(x,y)	
  

q(x,y)	
  



Class	
  Point:	
  Declara>on	
  
class	
  Point	
  {	
  

	
  double	
  x,	
  y;	
  
public:	
  

	
  Point	
  ();	
  
	
  Point	
  (	
  double,	
  double	
  );	
  
	
  ~Point();	
  
	
  void	
  setX(	
  double	
  );	
  
	
  void	
  setY(	
  double	
  );	
  
	
  friend	
  Point	
  operator+(	
  Point,	
  Point	
  );	
  
	
  friend	
  Point	
  operator-­‐(	
  Point,	
  Point	
  );	
  
	
  friend	
  bool	
  operator==(	
  Point,	
  Point	
  );	
  
	
  friend	
  bool	
  operator!=(	
  Point,	
  Point	
  );	
  

}	
  
	
  



Class	
  Point:	
  Defini>on	
  
class	
  Point	
  {	
  

	
  double	
  x,	
  y;	
  
public:	
  

	
  Point	
  ()	
  {	
  x=y=0;	
  }	
  
	
  Point	
  (	
  double,	
  double)	
  
	
  ~Point()	
  {}	
  
	
  void	
  setX(	
  double	
  ix	
  );	
  
	
  void	
  setY(	
  double	
  iy	
  )	
  {	
  y	
  =	
  iy;	
  }	
  
	
  friend	
  Point	
  operator+(	
  Point,	
  Point	
  );	
  
	
  friend	
  Point	
  operator-­‐(	
  Point,	
  Point	
  );	
  
	
  friend	
  bool	
  operator==(	
  Point,	
  Point	
  );	
  
	
  friend	
  bool	
  operator!=(	
  Point,	
  Point	
  );	
  

}	
  
	
  

Point::Point(double	
  ix,	
  iy)	
  
{	
  

	
  x	
  =	
  ix;	
  
	
  y	
  =	
  iy;	
  

}	
  
	
  
void	
  Point::setX(	
  double	
  ix	
  )	
  	
  
{	
  

	
  x	
  =	
  ix;	
  
}	
  
	
  
Point	
  operator+(Point	
  a,	
  b)	
  
{	
  
return	
  Point(a.x+b.x,	
  a.y+b.y);	
  
}	
  



Class	
  Point:	
  Use	
  

int	
  main()	
  {	
  
Point	
  a(1,	
  2);	
  
Point	
  b(3,	
  4);	
  
Point	
  c	
  =	
  a	
  +	
  b;	
  
Point	
  d	
  =	
  a	
  –	
  b;	
  

	
  if(	
  c	
  ==	
  d	
  )	
  	
  
	
   	
  out	
  <<	
  “a=b=(0,0)”	
  <<	
  endl;	
  

}	
  



Class	
  Shape	
  
enum	
  Kind	
  {circle,	
  triangle}	
  
	
  
class	
  Shape	
  {	
  

Kind	
  k;	
  
Point	
  center;	
  
Color	
  col;	
  
…	
  

public:	
  
void	
  draw();	
  
void	
  rotate();	
  
…	
  

}	
  

•  One	
  class	
  handles	
  all	
  
related	
  objects	
  

•  different	
  kind	
  needs	
  
different	
  data	
  

•  draw()	
  does	
  different	
  job	
  
for	
  different	
  kind	
  

•  What	
  if	
  we	
  need	
  to	
  add	
  
new	
  kind?	
  rectangle?	
  

•  Very	
  difficult	
  to	
  manage	
  
code	
  



Class	
  Hierarchy	
  

?	
  
Shape	
  

center	
  
color	
  

draw()	
  
rotate()	
  
move()	
  

Oval	
  

Circle	
  

Rectangle	
  

Square	
  

Triangle	
  

radiusX	
  
radiusY	
  

width	
  
height	
  

Abstract	
  Type	
  
Concrete	
  Type	
  



Abstract	
  Class	
  
//	
  Provides	
  common	
  interface	
  to	
  all	
  shapes	
  
class	
  Shape{	
  	
  
	
  Point	
  center;	
  	
  
	
  Color	
  col;	
  	
  

public:	
  	
  
	
  Point	
  where(){	
  return	
  center;	
  }	
  
	
  void	
  move(Point	
  to)	
  {center=to;	
  	
  draw();}	
  	
  
	
  virtual	
  void	
  draw()=0;	
  
	
  virtual	
  void	
  rotate(int	
  angle)=0;	
  	
  

};	
  	
  
	
  



Sub	
  class/Super	
  class	
  
class	
  Oval:	
  public	
  Shape	
  {	
  	
  

int	
  radiusX;	
  	
  
int	
  radiusY;	
  

public:	
  
	
  Oval	
  (	
  Point	
  p,	
  int	
  rX,	
  rY	
  );	
  
	
  void	
  draw(){/*...*/}	
  
	
  void	
  rotate(int)	
  {/*...*/}	
  

};	
  	
  
class	
  Circle	
  :	
  public	
  Oval	
  {	
  
public:	
  

	
  Circle(	
  Point	
  p,	
  int	
  r)	
  :	
  Oval(	
  p,	
  r,	
  r	
  )	
  {}	
  
	
  void	
  rotate(int)	
  {};	
  

}	
  



Benefit	
  of	
  abstract	
  class	
  

void	
  draw_all	
  (vector<Shape>	
  v)	
  {	
  
for(int	
  i=0	
  ;i<v.size();	
  ++i)	
  

	
  v[i]-­‐>draw();	
  	
  

}	
  



Generic	
  Programming	
  
//	
  Make	
  a	
  stack	
  of	
  any	
  type	
  
template<class	
  T>	
  class	
  Stack	
  {	
  	
  

	
  T*	
  v;	
  	
  
	
  int	
  max_size;	
  	
  
	
  int	
  top;	
  	
  

public:	
  	
  
	
  Stack(int	
  s);	
  	
  
	
  ~Stack();	
  	
  
	
  void	
  push(T);	
  	
  
	
  T	
  pop();	
  	
  

};	
  	
  



Classes	
  	
  
•  Date	
  
•  Time	
  
•  Student	
  
•  Stack	
  
•  Queue	
  
•  Bank	
  account	
  
•  Set	
  
•  Animal	
  
•  Anything…	
  


