Crash Course for C++

What is C++7?

is a better C (Procedural Programming)

SU
SuU
SuU

D
D

D

oorts data abstraction
oorts object-oriented programming

0orts generic programming

Hello World

// helloworld.cpp

#include <iostream>

int main(int argc, char** argv)
{

std::cout << "Hello, World!" << std::endl;

return 0;

Comments

// helloworld.cpp

/* this is a multiline
* C-style comment. The
* compiler will ignore
*it.

*/

Preprocessor Directives

* Building C++ Program takes 3 steps

1. preprocessor
* recognize meta-information about code

2. compile
* translate code into machine language objects
3. linking

e combine objects into one application

Preprocessor Directives

e #include
— Insert the file content here

—in C, #include <stdio.h>

— in C++, #include <iostream>
 “h” is omitted for standard library

— in C++, include C library
* for <stdio.h>, do #include <cstdio>

Preprocessor Directives

 Hdefine

#tdefine MAX 10 // constant value, macro
if(x < MAX) exit(1);

#tdefine TESTING // option
#ifdef TESTING // include

cout << “Testing now”;

Hendif

#ifndef TESTING // exclude
cout << “Not testing”;
#endif

Variables

* Declare anywhere, use within declared block
or contained blocks

Type Description Usage
int Positive and negative integers (range int 1 = 7;
depends on compiler settings)
short Short integer (usually 2 bytes) short s = 13;
long Long integer (usually 4 bytes) long 1 = -7;
unsigned int Limits the preceding types to unsigned int i =2;
unsigned short values >=0 unsigned short s = 23;
unsigned long unsigned long 1 = 5400;
float Floating-point and double precision float £ = 7.2;
double numbers double d = 7.2
char A single character char ch = 'm';
bool true or false (same as non-0 or 0) bool b = true;

Variables

Casting

— Convert a variable’s value into other compatible
type

— Three ways of casting

bool someBool = (bool)somelnt; // C-style

bool someBool = bool(somelnt);
bool someBool = static_cast<bool>(somelnt);

— if some information is lost, compiler warns
* int someint = somefloat;

Operator Description Usage
= Binary operator to assign the value on the right to int ;
the variable on the left. i = 3;
int j;
Jj = 1i;
! Unary operator to negate the true/false (non-0/0) bool b = !true;
status of a variable. bool b2 = !b;
- Binary operator for addition. int 1 = 3 + 2;
int j =1 + 5;
int k = 1 + j;
- Binary operators for subtraction, multiplication, int 1 = 5-1;
* and division. int §j = 5%*2;
/ int k = j / 1i;
% Binary operator for remainder of a division int remainder = 5 % 2;
operation. Also referred to as the mod operator.
- Unary operator to increment a variable by 1. If the i++;
operator occurs before the variable, the result of ++1;

the expression is the unincremented value. If the
operator occurs after the variable, the result of the
expression is the new value.

Unary operator to decrement a variable by 1.

Shorthand syntaxfori = 1 + j

Shorthand syntax for
i=1-73;
i=1*73;
i=17/ 3;
i=1% 3;

Takes the raw bits of one variable and performs a
bitwise “and” with the other variable.

Takes the raw bits of one variable and performs a
bitwise “or” with the other variable.

(R R SR S

. -

J;
j;
j;

= J;

Operator

Description

Takes the raw bits of a variable and “shifts” each
bit left (<<) or right (>>) the specified number of
places.

Performs a bitwise “exclusive or” operation on
the two arguments.

e e e e

Enumerator

typedef enum { kPieceTypeKing,

kPieceTypeQueen, kPieceTypeRook,
kPieceTypePawn

} PieceT;

Exception Handling

* Exception
— unexpected situation
— Traditional way of indicating error

* return a special value, NULL
— C++ way
* throws an exception object
* The caller of the function catches it

#include <stdexcept>

double divideNumbers (double inNumerator, double inDenominator)
{
if (inDenominator == 0) {
throw std::exception();

}

return (inNumerator / inDenominator) ;

#include <iostream>
#include <stdexcept>

int main(int argc, char** argv)
{
try {
std::cout << divideNumbers (2.5, 0.5) << std::endl;
std::cout << divideNumbers (2.3, 0) << std::endl;
} catch (std::exception exception) {
std::cout << "An exception was caught!" << std::endl;

const

* Constants
— Variable whose value never changes
— const float pi =3.14

* Protected variable
— protect a variable from changes
— void myfunc(const char®* myString);

User-defined Types

* Design of a program is to
— decide which types you want
— determine operations needed for each type

* Example
— We want a point type in 2D coordination
— Type Point?
— What state (data) it needs?

— What operations it needs?

Type Point

* State
— X, y coordinates
* Operations Py
— constructors
— destructors S alxy)
— setX(), setY()
— vector operations

(+1 W,)
— comparisons (==, !=)

Class Point: Declaration

class Point {
double x, y;
public:
Point ();
Point (double, double);
~Point();
void setX(double);
void setY(double);
friend Point operator+(Point, Point);
friend Point operator-(Point, Point);
friend bool operator==(Point, Point);
friend bool operator!=(Point, Point);

Class Point: Definition

class Point {
double x, y;
public:
Point () { x=y=0; }
Point (double, double)
~Point() {}
void setX(double ix);
void setY(doubleiy) {y=1iy; }
friend Point operator+(Point, Point);
friend Point operator-(Point, Point);
friend bool operator==(Point, Point);
friend bool operator!=(Point, Point);

Point::Point(double ix, iy)
{

X =iX;
y =ly;
}

void Point::setX(double ix)
{

X =iX;

}

Point operator+(Point a, b)

{

return Point(a.x+b.x, a.y+b.y);

}

Class Point: Use

int main() {
Point a(1, 2);
Point b(3, 4);
Pointc=a + b;
Pointd =a—b;
if(c==d)
out << “a=b=(0,0)” << end|;

Class Shape

enum Kind {circle, triangle} * One class handles all
related objects

class Shape { * different kind needs
Kind k; different data
Point center; * draw() does different job
Color col; for different kind
 What if we need to add
public: new kind? rectangle?
void draw(); * Very difficult to manage
void rotate(); code

radiusX

radiusY

Class Hierarchy

draw()
center rotate() Abstract Type
color ? move() Concrete Type

Triangle

Abstract Class

// Provides common interface to all shapes
class Shape{

Point center;

Color col;
public:

Point where(){ return center; }
void move(Point to) {center=to; draw();}

virtual void draw()=0;
virtual void rotate(int angle)=0;

Sub class/Super class

class Oval: public Shape {
int radiusX;
int radiusy;
public:
Oval (Point p, int rX, rY);
void draw(){/*...*/}
void rotate(int) {/*...*/}
Iy
class Circle : public Oval {
public:
Circle(Point p, intr) : Oval(p, r, r) {}
void rotate(int) {};

Benefit of abstract class

void draw_all (vector<Shape> v) {
for(int i=0 ;i<v.size(); ++i)
v[i]->draw();

Generic Programming

// Make a stack of any type
template<class T> class Stack {
T* v;
int max_size;
int top;
public:
Stack(int s);
~Stack();
void push(T);
T pop();
5

Date

Time

Student
Stack

Queue

Bank account
Set

Animal
Anything...

Classes

