Linked List

HW10

e 1. String= X| &/ Sl= Queuve® =M
e). ma|n%|'A XFA"

— menQ, womenQ =7} 2| QueueE A M
— I -= Y1 Al menQ, womenQO|| G|O|E =7t

— menQ=E2 womenQ0j| O|O|E 7} SIS 77HX|
H8AHEZS =4

= = =

— AFEHO| H2 Queuelf| CHSHA] HE2 M+ =

24510 O AN 0|22 Z2{BHLt.

* Insert/Delete at any place

data next

3

Linked List

data next

A

head

10

data next

2

data next

1

Linked List

* |nsert
newNode newNode
B B
\
4 h |
Slal Pl lal’| |c
node node.next node
 Delete
—>»| A —>» B —» C >
hode nodenext node.next.next
de.ne node.next.next

hode

class LList

class LList {
public:
LList();
void append(T v);
Node *find(T v);
void delete(T v);
void print();
}
class Node {
T data;
Node *next;
public:
Node(T v, Node *next);
T getData();
Node *next();
void setNext(Node *node);

LList: isEmpty()

* Empty
NULL Node *head;
head == NULL;

* Non-Empty

head != NULL;

LList: Append()

* Empty

NULL

O —l—

head = new Node(data, NULL);

* Non-Empty

find last node
last_node->setNext(new Node(data, NULL))

LList: Print()

Node *n = head;

while(n) {
cout << n->data << “=2”;
n = n->next();

}

cout << “NULL"” << endl;

LList: Find(data)

Node *n = head;
while(n) {
if(n->getData() == data)
return n;
n = n->next();
}
return NULL;

LList: Insert(n, data)

newNode newNode
B B

\
A]
—»| A —+» C —» I A / C —1>

node node.next node

Insert after node n

newnode = new Node(data, n->next());
n->setNext(newnode);

or

n->setNext(new Node(data, n->next()));

LList: Delete(data)

* Find previous node and delete

—>»A| —T»B| | C| >

hode node.next node.next.next

> A M—» c| —»
hode de.ne node.next.next

* Find matching node, but store previous node
* prev_node->setNext(found_node->next());

e delete found node;

