Linked List
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* Insert/Delete at any place
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class LList

class LList {
public:
LList();
void append(T v);
Node *find(T v);
void delete(T v);
void print();
}
class Node {
T data;
Node *next;
public:
Node(T v, Node *next);
T getData();
Node *next();
void setNext( Node *node );



LList: isEmpty()

* Empty
NULL Node *head;
head == NULL;

* Non-Empty

head != NULL;




LList: Append()

* Empty

NULL
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head = new Node(data, NULL);

* Non-Empty

find last node
last_node->setNext(new Node(data, NULL))



LList: Print()

Node *n = head;

while( n ) {
cout << n->data << “=2”;
n = n->next();

}

cout << “NULL"” << endl;



LList: Find(data)

Node *n = head;
while( n ) {
if( n->getData() == data )
return n;
n = n->next();
}
return NULL;



LList: Insert(n, data)
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Insert after node n

newnode = new Node(data, n->next());
n->setNext(newnode);

or

n->setNext(new Node(data, n->next() ));



LList: Delete(data)

* Find previous node and delete
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* Find matching node, but store previous node
* prev_node->setNext( found_node->next() );

e delete found node;




