
Standard	
  Library	
  and	
  
Standard	
  Template	
  Library	
  (STL)	
  



Standard	
  Library	
  Organiza6ons	
  

•  namespace	
  std	
  
•  organized	
  by	
  headers	
  
•  c	
  libraries	
  
– header	
  <cX>	
  =	
  header	
  <X.h>	
  



Containers	
  

•  Contains	
  mul6ple	
  items	
  



Algorithms	
  

Iterators	
  



General	
  U6li6es	
  

Diagnos6cs	
  



Strings	
  

•  <cstring>:	
  strlen(),	
  strcpy()	
  
•  <cstdlib>:	
  atoi(),	
  atof()	
  



Input/Output	
  



Language	
  Support	
  



Numerics	
  



Container	
  

•  The	
  most	
  useful	
  component	
  of	
  standard	
  
library,	
  called	
  Standard	
  Template	
  Library	
  (STL)	
  

•  Container:	
  an	
  object	
  that	
  holds	
  other	
  objects	
  
•  Func6onali6es	
  
– Constructors	
  
– Set	
  proper6es	
  
–  Insert	
  /	
  remove	
  /	
  replace	
  
–  Iterate	
  /	
  random	
  access	
  
– Algorithms	
  



Vector	
  

•  Most	
  oQen	
  used	
  
•  Array	
  like,	
  sequen6al	
  container	
  
•  Implemented	
  by	
  array	
  
•  Cheap:	
  append	
  (push_back()),	
  	
  
	
   	
   	
  	
  	
  random	
  access([])	
  

•  Expensive:	
  insert	
  in	
  the	
  middle,	
  expansion	
  
	
  



Vector	
  

•  vector<T>	
  v;	
  
•  v.push_back(T	
  v):	
  append	
  
•  v[i],	
  v.at(i)	
  



Itera6ng	
  a	
  sequen6al	
  container	
  
•  Vector,	
  List,	
  Deque	
  
•  Using	
  index	
  

–  for(	
  into	
  i;	
  i	
  <	
  v.size();	
  i++	
  )	
  {	
  …	
  v[i]	
  …	
  }	
  
–  only	
  works	
  for	
  vector/deque	
  

•  Using	
  iterator	
  
–  for(vector<T>::iterator	
  p=v.begin();	
  	
  

	
   	
  p	
  !=	
  v.end();	
  p++)	
  {	
  …	
  *p	
  …	
  }	
  
•  Using	
  auto	
  (C++11)	
  

–  for(auto	
  p=v.begin();	
  p!=v.end();	
  p++)	
  {…	
  *p	
  …}	
  
•  Using	
  abbrevia6on	
  (C++11)	
  

–  for(	
  auto	
  p	
  :	
  v	
  )	
  {	
  …	
  *p	
  …	
  }	
  
•  Using	
  while 	
  	
  



Generic	
  Programming	
  by	
  Macro	
  
•  Very	
  powerful	
  if	
  used	
  correctly	
  
–  for(	
  auto	
  val	
  :	
  v	
  )	
  {	
  <opera6ons>	
  }	
  
–  FORALL_BEGIN(v)	
  <opera6ons>	
  FORALL_END	
  
–  FORALL(v,	
  <opera6ons>)	
  
– MAP(v,	
  <ini6alize>,	
  <ops>,	
  <finalize>)	
  

•  Why	
  not	
  by	
  template	
  func6on?	
  
–  Very	
  difficult	
  to	
  pass	
  the	
  opera6ons	
  
–  Func6on	
  pointer?	
  hard	
  
– Opera6on	
  Class?	
  hard	
  to	
  define	
  generic	
  opera6on	
  



List	
  

•  Sequen6al	
  container	
  
•  Implemented	
  by	
  doubly-­‐linked	
  list	
  
•  Cheap:	
  append	
  (push_back())	
  
	
   	
   	
  	
  	
  prepend	
  (push_front())	
  
	
   	
   	
  	
  	
  insert	
  in	
  the	
  middle	
  
	
   	
   	
  	
  	
  expansion	
  

•  Expensive:	
  random	
  access	
  (impossible)	
  
•  Only	
  use	
  iterator	
  
	
  



Deque	
  

•  Array	
  like,	
  sequen6al	
  container	
  
•  Implemented	
  by	
  dynamic	
  array	
  
•  Cheap:	
  append	
  (push_back())	
  
	
   	
   	
  	
  	
  random	
  access([])	
  
	
   	
   	
  	
  	
  prepend	
  (push_front())	
  
	
   	
   	
  	
  	
  expansion	
  

•  Expensive:	
  insert	
  in	
  the	
  middle	
  
	
  


