Standard Library and
Standard Template Library (STL)

Standard Library Organizations

* hamespace std
* organized by headers
e clibraries

— header <cX> = header <X.h>

Containers

e Contains multiple items

<vector>
<list>
<deque>
<queue>
<stack>
<map>
<ser>
<bitset>

one-dimensional array of T

doubly-linked list of T
double-ended queue of T
queue of T

stack of T

associative array of T
setof T

array of booleans

Algorithms

<algorithm> general algorithms
<cstdlib> bsearch () gsort()

lterators

<iterator> iterators and iterator support

General Utilities

<utility> operators and pairs
<functional> function objects
<memory> allocators for containers
<ctime> C-style date and time
Diagnostics

<exception> exception class
<stdexcept> standard exceptions
<cassert> assert macro
<cerrno> C-style error handling

Strings

<string> string of T

<cctype> character classification

<cwtype> wide-character classification
<cstring> C-style string functions

<cwchar> C-style wide-character string functions
<cstdlib> C-style string functions

» <cstring>: strlen(), strcpy()
o <cstdlib>: atoi(), atof()

Input/Output

<iosfwd> forward declarations of 1/0 facilities
<iostream> standard iostream objects and operations
<ios> iostream bases

<streambuf> stream buffers

<istream> input stream template

<ostream> output stream template

<iomanip> manipulators

<sstream> streams to/from strings

<cstdlib> character classification functions
<fstream> streams to/from files

<cstdio> printf() family of I/O

<cwchar> printf() -style I/O of wide characters

Language Support

<limits>
<climits>
<cfloat>
<new>
<typeinfo>
<exception>
<cstddef>
<cstdarg>
<csetjmp>
<cstdlib>
<ctime>
<csignal>

numeric limits

C-style numeric scalar-limit macros
C-style numeric floating-point limit macros
dynamic memory management
run-time type identification support
exception-handling support

C library language support
variable-length function argument lists
C-style stack unwinding

program termination

system clock

C-style signal handling

Numerics

<complex>
<valarray>
<numeric>
<cmath>
<cstdlib>

complex numbers and operations
numeric vectors and operations
generalized numeric operations
standard mathematical functions
C-style random numbers

Container

 The most useful component of standard
library, called Standard Template Library (STL)

* Container: an object that holds other objects
* Functionalities

— Constructors

— Set properties

— Insert / remove / replace

— Iterate / random access
— Algorithms

Vector

Most often used
Array like, sequential container
Implemented by array

Cheap: append (push_back()),
random access([])

Expensive: insert in the middle, expansion

Vector

* vector<l>v;
* v.push _back(T v): append
e v[i], v.at(i)

lterating a sequential container

Vector, List, Deque

Using index

— for(intoi; i< v.size(); i++) {... v[i] ... }

— only works for vector/deque

Using iterator

— for(vector<T>::iterator p=v.begin();
p I=v.end(); p++){.. *p ..}

Using auto (C++11)

— for(auto p=v.begin(); p!=v.end(); p++) {... *p ...}

Using abbreviation (C++11)

— for(autop:v){..*p..}

Using while

Generic Programming by Macro

* Very powerful if used correctly
— for(auto val : v) { <operations> }
— FORALL BEGIN(v) <operations> FORALL END
— FORALL(v, <operations>)
— MAP(v, <initialize>, <ops>, <finalize>)

* Why not by template function?
— Very difficult to pass the operations
— Function pointer? hard
— Operation Class? hard to define generic operation

List

e Sequential container
* Implemented by doubly-linked list

* Cheap: append (push_back())

prepend (push front())
insert in the middle

expansion
* Expensive: random access (impossible)

* Only use iterator

Deque

* Array like, sequential container
* Implemented by dynamic array

* Cheap: append (push_back())
random access([])
prepend (push_front())

expansion
* Expensive: insert in the middle

