HW'/, Exception

HW 7/

List<string> grocery;
grocery.add("milk"); grocery.add("eggs"); grocery.add("bread");
check("add()/size()", grocery size(), 3);
grocery.display(); // Zf 20| milk, eggs, bread?t SHE (MIE)
grocery.clear();
check("clear()", grocery.size(), 0);

List<Student> students;
Student s1("Shin", 88); Student s2("Kim", 72); Student s3("Cho", 91);
students.add(s1); students.add(s2); students.add(s3);
Student s4("Shin", 90);

check("exist()", students.exist(s4), false);
check("exist()", students.exist(s3), true);

HW7Sol

template <typename T>
class List{
vector<T> data;
public:
List() { }
void add(T item) { data.push_back(item); }
int size() { return data.size(); }
void clear() { data.clear(); }
void display() {
for(int i =0; i < data.size(); ++i) {
cout << datal[i] << end|;
1
bool exist(T item) {
return (find(data.begin(), data.end(), item) != data.end());

Exception Handling

* Handle errors (exception) to avoid crash
* Error occurs

— throw an exception
— Any object can be thrown
— Better use std::exception or its subclasses

 Handle error
— catch the exception
— Catches based on the type of thrown object

Constant throw-catch

* No error handling
int a=10, b=0;
if(b) cout << “ERROR” << endl;
else cout << a/b;

 Throw-catch handling

try {
if(b==0) throw 1;
cout<<a/ b;
} catch (int e) {
cout<< “EXCEPTION: “ << e << endl;

)

 Throw “const int DeivByZero=1" instead of 1

Constant throw-catch: Limitation

try {
if(b==0) throw 1;
if(a==0) throw 2;
cout<<a/ b;
} catch (int e) {
if(e == 1) cout<< “ERR: DivideByZero“ << end|;
else if(e == 2) cout << “ERR: DivideZero” <<
endl;

}

* Hard to distinguish between errors

Better way: Custom Exception Type

try {
if(b ==0) throw DivideByZero();
if(a ==0) throw DivideZero();
cout<<a/b;
} catch (DivideByZero &e) {
cout<< “ERR: DivideByZero“ << endl;
} catch (DivideZero &e) {
cout << “ERR: DivideZero” << endl;
} catch (...) {
cout << “ERR: Unknown” << end];

Exception Class

class DivideByZero : public runtime_error

{
public:

DivideByZero() :
runtime_error("Divide by zero exception") {}

5

Exception Class

double numberl, number2, ratio;

cout << "Enter a numerator: ";

cin >> numberl;

cout << "Enter a denominator: ";

cin >> number2;

try {
ratio = quotient(numberl, number2);
cout << "Result is: " << ratio << endl;

}

catch (DivideByZero &except) {
cout << except.what() << end|;

}

