
HW7,	
  Excep+on	
  



HW7	
  
List<string>	
  grocery;	
  
	
  	
  	
  	
  grocery.add("milk");	
  grocery.add("eggs");	
  grocery.add("bread");	
  
	
  	
  	
  	
  check("add()/size()",	
  grocery.size(),	
  3	
  );	
  
	
  	
  	
  	
  grocery.display();	
  //	
  각	
  줄에	
  milk,	
  eggs,	
  bread가	
  출력됨	
  (세줄)	
  
	
  	
  	
  	
  grocery.clear();	
  
	
  	
  	
  	
  check("clear()",	
  grocery.size(),	
  0	
  );	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  List<Student>	
  students;	
  
	
  	
  	
  	
  Student	
  s1("Shin",	
  88);	
  Student	
  s2("Kim",	
  72);	
  Student	
  s3("Cho",	
  91);	
  
	
  	
  	
  	
  students.add(	
  s1	
  );	
  students.add(	
  s2	
  );	
  students.add(	
  s3	
  );	
  
	
  	
  	
  	
  Student	
  s4("Shin",	
  90);	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  check("exist()",	
  students.exist(	
  s4	
  ),	
  false	
  );	
  
	
  	
  	
  	
  check("exist()",	
  students.exist(	
  s3	
  ),	
  true	
  );	
  



HW7Sol	
  
template	
  <typename	
  T>	
  
class	
  List{	
  
	
  	
  	
  	
  vector<T>	
  data;	
  
public:	
  
	
  	
  	
  	
  List()	
  {	
  }	
  
	
  	
  	
  	
  void	
  add(T	
  item)	
  {	
  data.push_back(item);	
  }	
  
	
  	
  	
  	
  int	
  size()	
  {	
  return	
  data.size();	
  }	
  
	
  	
  	
  	
  void	
  clear()	
  {	
  data.clear();	
  }	
  
	
  	
  	
  	
  void	
  display()	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  for(int	
  i	
  =	
  0;	
  i	
  <	
  data.size();	
  ++i)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  data[i]	
  <<	
  endl;	
  
	
  	
  	
  	
  }}	
  
	
  	
  	
  	
  bool	
  exist(T	
  item)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  return	
  (find(	
  data.begin(),	
  data.end(),	
  item	
  )	
  !=	
  data.end());	
  
	
  	
  	
  	
  }	
  
};	
  



Excep+on	
  Handling	
  

•  Handle	
  errors	
  (excep+on)	
  to	
  avoid	
  crash	
  
•  Error	
  occurs	
  
–  throw	
  an	
  excep+on	
  
– Any	
  object	
  can	
  be	
  thrown	
  
– Beaer	
  use	
  std::excep+on	
  or	
  its	
  subclasses	
  

•  Handle	
  error	
  
– catch	
  the	
  excep+on	
  	
  
– Catches	
  based	
  on	
  the	
  type	
  of	
  thrown	
  object	
  



Constant	
  throw-­‐catch	
  
•  No	
  error	
  handling	
  

int	
  a=10,	
  b=0;	
  
if(	
  !b	
  )	
  cout	
  <<	
  “ERROR”	
  <<	
  endl;	
  
else	
  cout	
  <<	
  a/b;	
  

•  Throw-­‐catch	
  handling	
  
try	
  {	
  

if(	
  b	
  ==	
  0	
  )	
  throw	
  1;	
  
cout	
  <<	
  a	
  /	
  b;	
  

}	
  catch	
  (int	
  e)	
  {	
  
cout<<	
  “EXCEPTION:	
  “	
  <<	
  e	
  <<	
  endl;	
  

}	
  
•  Throw	
  “const	
  int	
  DeivByZero=1”	
  instead	
  of	
  1	
  



Constant	
  throw-­‐catch:	
  Limita+on	
  

try	
  {	
  
if(	
  b	
  ==	
  0	
  )	
  throw	
  1;	
  
if(	
  a	
  ==	
  0	
  )	
  throw	
  2;	
  
cout	
  <<	
  a	
  /	
  b;	
  

}	
  catch	
  (int	
  e)	
  {	
  
	
  if(	
  e	
  ==	
  1	
  )	
  cout<<	
  “ERR:	
  DivideByZero“	
  <<	
  endl;	
  
	
  else	
  if(	
  e	
  ==	
  2	
  )	
  cout	
  <<	
  “ERR:	
  DivideZero”	
  <<	
  

endl;	
  
}	
  

•  Hard	
  to	
  dis+nguish	
  between	
  errors	
  



Beaer	
  way:	
  Custom	
  Excep+on	
  Type	
  
try	
  {	
  

if(	
  b	
  ==	
  0	
  )	
  throw	
  DivideByZero();	
  
if(	
  a	
  ==	
  0	
  )	
  throw	
  DivideZero();	
  
cout	
  <<	
  a	
  /	
  b;	
  

}	
  catch	
  (DivideByZero	
  &e)	
  {	
  
	
  cout<<	
  “ERR:	
  DivideByZero“	
  <<	
  endl;	
  

}	
  catch	
  (DivideZero	
  &e)	
  {	
  
	
  cout	
  <<	
  “ERR:	
  DivideZero”	
  <<	
  endl;	
  

}	
  catch	
  (…)	
  {	
  	
  
	
  cout	
  <<	
  “ERR:	
  Unknown”	
  <<	
  endl;	
  

}	
  
	
  



Excep+on	
  Class	
  

class	
  DivideByZero	
  :	
  public	
  run+me_error	
  
{	
  
public:	
  
	
  	
  	
  	
  DivideByZero()	
  :	
  
	
  	
  	
  	
  run+me_error("Divide	
  by	
  zero	
  excep+on")	
  {}	
  
};	
  



Excep+on	
  Class	
  
	
  double	
  number1,	
  number2,	
  ra+o;	
  
	
  	
  	
  	
  cout	
  <<	
  "Enter	
  a	
  numerator:	
  ";	
  
	
  	
  	
  	
  cin	
  >>	
  number1;	
  
	
  	
  	
  	
  cout	
  <<	
  "Enter	
  a	
  denominator:	
  ";	
  
	
  	
  	
  	
  cin	
  >>	
  number2;	
  
	
  	
  	
  	
  try	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  ra+o	
  =	
  quo+ent(number1,	
  number2);	
  
	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  "Result	
  is:	
  "	
  <<	
  ra+o	
  <<	
  endl;	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  catch	
  (DivideByZero	
  &except)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  except.what()	
  <<	
  endl;	
  
	
  	
  	
  	
  }	
  


