
Generic	
  Programming	
  



Why	
  Generic	
  func2on?	
  
int	
  main()	
  
{	
  
	
  	
  	
  	
  const	
  int	
  size	
  =	
  10;	
  
	
  	
  	
  	
  int	
  numbers[size];	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  size;	
  ++i)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  numbers[i]	
  =	
  i+1;	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  displayInt(numbers,	
  size);	
  
	
  	
  	
  	
  string	
  names[]	
  =	
  {"Jim",	
  "Fred",	
  "Jane",	
  "Bob",	
  "Mary",	
  
	
  	
  	
  	
  	
  	
  	
  	
  "Mike",	
  "Terri",	
  "Allison",	
  "Mason",	
  
	
  	
  	
  	
  	
  	
  	
  	
  "Meredith"};	
  
	
  	
  	
  	
  displayStr(names,	
  size);	
  
	
  	
  	
  	
  return	
  0;	
  
}	
  



Non-­‐generic	
  func2on	
  
void	
  displayInt(int	
  arr[],	
  int	
  size)	
  {	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  size;	
  ++i)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  arr[i]	
  <<	
  "	
  ";	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  cout	
  <<	
  endl;	
  
}	
  
	
  
void	
  displayStr(string	
  arr[],	
  int	
  size)	
  {	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  size;	
  ++i)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  arr[i]	
  <<	
  "	
  ";	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  cout	
  <<	
  endl;	
  
}	
  



Generic	
  func2ons	
  

template	
  <typename	
  T>	
  
void	
  display(T	
  arr[],	
  int	
  size)	
  {	
  
	
  	
  	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  size;	
  ++i)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  cout	
  <<	
  arr[i]	
  <<	
  "	
  ";	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  cout	
  <<	
  endl;	
  
}	
  
	
  



Non-­‐generic	
  func2on	
  
void	
  maxInt(int	
  a,	
  int	
  b)	
  {	
  
	
  	
  	
  	
  return	
  (a>b)	
  ?	
  a	
  :	
  b;	
  
}	
  
	
  
void	
  maxDouble(double	
  a,	
  double	
  b)	
  {	
  
	
  	
   	
  return	
  (a>b)	
  ?	
  a	
  :	
  b;	
  
}	
  
	
  
void	
  maxStr(string	
  a,	
  string	
  b)	
  {	
  
	
  	
   	
  return	
  (a>b)	
  ?	
  a	
  :	
  b;	
  
}	
  
	
  



Generic	
  func2ons	
  

template	
  <typename	
  T>	
  
T	
  &max(T	
  &a,	
  T	
  &b)	
  {	
  
	
  	
  	
  	
  return	
  (a>b)	
  ?	
  a	
  :	
  b;	
  
}	
  



Non-­‐generic	
  class	
  
class	
  Stack	
  {	
  
private:	
  
	
  	
  	
  	
  int	
  datastore[100];	
  
	
  	
  	
  	
  int	
  top;	
  
public:	
  
	
  	
  	
  	
  Stack()	
  {	
  top	
  =	
  -­‐1;	
  }	
  
	
  	
  	
  	
  void	
  push(int	
  num)	
  {	
  	
  datastore[++top]	
  =	
  num;	
  }	
  
	
  	
  	
  	
  int	
  pop()	
  {	
  return	
  datastore[top-­‐-­‐];	
  }	
  
	
  	
  	
  	
  int	
  peek()	
  {return	
  datastore[top];	
  }	
  
};	
  

top	
  



Generic	
  class	
  
template	
  <typename	
  T>	
  
class	
  Stack	
  {	
  
private:	
  
	
  	
  	
  	
  T	
  datastore[100];	
  
	
  	
  	
  	
  int	
  top;	
  
public:	
  
	
  	
  	
  	
  Stack()	
  {	
  top	
  =	
  -­‐1;	
  }	
  
	
  	
  	
  	
  void	
  push(T	
  num)	
  {	
  	
  datastore[++top]	
  =	
  num;	
  }	
  
	
  	
  	
  	
  T	
  pop()	
  {	
  return	
  datastore[top-­‐-­‐];	
  	
  datastore[top+1]	
  =	
  0;	
  }	
  
	
  	
  	
  	
  T	
  peek()	
  {return	
  datastore[top];	
  }	
  
};	
  
	
  
•  Stack<int>,	
  Stack<double>	
  works	
  
•  Stack<string>	
  doesn’t	
  work!	
  



Template	
  specializa2on	
  
template	
  <>	
  
class	
  Stack<string>	
  {	
  
private:	
  
	
  	
  	
  	
  string	
  datastore[100];	
  
	
  	
  	
  	
  int	
  top;	
  
public:	
  
	
  	
  	
  	
  Stack()	
  {	
  top	
  =	
  -­‐1;	
  }	
  
	
  	
  	
  	
  void	
  push(string	
  num)	
  {	
  	
  datastore[++top]	
  =	
  num;	
  }	
  
	
  	
  	
  	
  string	
  pop()	
  {	
  return	
  datastore[top-­‐-­‐];	
  	
  datastore[top+1]	
  =	
  “”;	
  }	
  
	
  	
  	
  	
  string	
  peek()	
  {return	
  datastore[top];	
  }	
  
};	
  
•  Now	
  Stack<string>	
  works	
  



Map	
  
int	
  main()	
  
{	
  
	
  	
  	
  	
  MyMap<string,	
  int>	
  grades;	
  
	
  	
  	
  	
  grades.insert("Jones",	
  88);	
  
	
  	
  	
  	
  grades.insert("Smith",	
  90);	
  
	
  	
  	
  	
  cout	
  <<	
  grades.find("Smith")	
  <<	
  endl;	
  
	
  	
  	
  	
  
	
  	
  	
  	
  MyMap<int,	
  string>	
  numbers;	
  
	
  	
  	
  	
  numbers.insert(1,	
  "one");	
  
	
  	
  	
  	
  numbers.insert(2,	
  "two");	
  
	
  	
  	
  	
  cout	
  <<	
  numbers.find(1)	
  <<	
  endl;	
  	
  	
  	
  	
  
}	
  

“Jones”	
  à	
  88	
  
“Smith”	
  à	
  90	
  

1	
  à	
  “one”	
  
2	
  à	
  “two”	
  



Generic	
  Class	
  
template<class	
  T,	
  class	
  U>	
  
class	
  MyMap	
  {	
  
private:	
  
	
  	
  	
  	
  vector<T>	
  keys;	
  
	
  	
  	
  	
  vector<U>	
  values;	
  
public:	
  
	
  	
  	
  	
  void	
  insert(T	
  key,	
  U	
  value)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  keys.push_back(key);	
  
	
  	
  	
  	
  	
  	
  	
  	
  values.push_back(value);	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  U	
  find(	
  T	
  key	
  )	
  {	
  for(int	
  i=0;	
  i<keys.size();	
  i++)	
  	
  

	
   	
  if(key	
  ==	
  keys[i])	
  return	
  values[i];	
  return	
  0;	
  }	
  
};	
  


