Generic Programming

Why Generic function?

int main()
{
const int size = 10;
int numbers|size];
for (inti=0;i<size; ++i) {
numbers|i] = i+1;
}
displaylnt(numbers, size);
string names|[] = {"Jim", "Fred", "Jane", "Bob", "Mary",
"Mike", "Terri", "Allison", "Mason",
"Meredith"};
displayStr(names, size);
return O;

Non-generic function

void displayInt(int arr[], int size) {
for (inti=0;i<size; ++i) {

cout << arr[i] << " ";

}

cout << endl;

}

void displayStr(string arr[], int size) {
for (inti=0;i<size; ++i) {
cout << arr[i] << " ";

}

cout << endl;

}

Generic functions

template <typename T>
void display(T arr[], int size) {
for (inti=0;i<size; ++i) {
cout << arrfi] << " "

}

cout << endl;

Non-generic function

void maxInt(int a, int b) {
return (a>b) ? a : b;

}

void maxDouble(double a, double b) {
return (a>b) ? a : b;

}

void maxStr(string a, string b) {
return (a>b) ? a : b;

}

Generic functions

template <typename T>
T &max(T &a, T &b) {
return (a>b) ? a : b;

Non-generic class

class Stack {
private: p—

int datastore[100]; top —
int top;
public:

Stack() { top =-1; }

void push(int num) { datastore[++top] = num; }
int pop() { return datastore[top--]; }

int peek() {return datastore[top]; }

Generic class

template <typename T>
class Stack {
private:
T datastore[100];
int top;
public:
Stack() {top =-1; }
void push(T num) { datastore[++top] = num; }
T pop() { return datastore[top--]; datastore[top+1]=0; }
T peek() {return datastore[top]; }

5

* Stack<int>, Stack<double> works
* Stack<string> doesn’t work!

Template specialization

template <>

class Stack<string> {

private:
string datastore[100];
int top;

public:
Stack() {top =-1; }
void push(string num) { datastore[++top] = num; }
string pop() { return datastore[top--]; datastore[top+1] =“"; }
string peek() {return datastore[top]; }

;

* Now Stack<string> works

Map

int main()

{

MyMap<string, int> grades;
grades.insert("Jones", 88);
grades.insert("Smith", 90);

cout << grades.find("Smith") << endlI;

MyMap<int, string> numbers;
numbers.insert(1, "one");
numbers.insert(2, "two");

cout << numbers.find(1) << endl;

Generic Class

template<class T, class U>
class MyMap {
private:
vector<T> keys;
vector<U> values;
public:
void insert(T key, U value) {
keys.push_back(key);
values.push_back(value);
}
U find(T key) { for(int i=0; i<keys.size(); i++)
if(key == keysJi]) return values][i]; return O; }

