
Memory	
 Management	

Beyond	
 Scope	

•  Variable	
 exists	
 within	
 the	
 scope	

–  Disappears	
 outside	
 the	
 scope	

– We	
 want	
 scope-­‐independent	
 objects!	

Student	
 *createStudent(string	
 name)	
 {	

Student	
 s(name);	

return	
 &s;	

}	

Student	
 *newStudent;	

newStudent	
 =	
 createStudent(“kim”);	

cout	
 <<	
 newStudent	
 <<	
 endl;	
 	
 ßUnexpected	
 result!	

C++	
 way	
 of	
 malloc	

•  new	

–  create	
 an	
 object	
 in	
 heap	
 memory	

•  delete	

–  destroy	
 new’ed	
 object	
 	

Student	
 *createStudent(string	
 name)	
 {	

return	
 new	
 Student;	
 	

}	

void	
 removeStudent(Student	
 *s)	
 {	

delete	
 s;	

}	

Memory	
 Leak	

•  C++	
 has	
 no	
 garbage	
 collector	

– YOU	
 MUST	
 FREE	
 ALL	
 NEW’ed	
 OBJECTS!	

– Don’t	
 forget	
 to	
 delete	

•  delete	
 X	

– X	
 is	
 a	
 pointer	
 returned	
 by	
 new	
 keyword	

– or	
 X	
 is	
 NULL	
 (0)	
 à	
 no	
 effect	

Mul^ple	
 objects	

•  Array	

– Create	
 an	
 array	
 of	
 objects	

•  student_array	
 =	
 new	
 Student[
 100	
];	

– Destroy	
 an	
 array	
 of	
 objecgts	

•  delete[]	
 student_array;	

•  Vector	

– Vector	
 is	
 a	
 single	
 object	

– vector<Student>	
 *p	
 =	
 new	
 vector<Student>	
 (100);	

– delete	
 p;	

Under	
 the	
 hood	

•  new,	
 delete,	
 new[],	
 delete[]	
 are	
 implemented	

using	
 operator	
 func^ons	

– void	
 *operator	
 new(size_t)	

– void	
 operator	
 delete(void	
 *)	

– void	
 *operator	
 new[]	
 (size_t)	

– void	
 operator	
 delete[]	
 (void	
 *)	

