Memory Management

Beyond Scope

* Variable exists within the scope
— Disappears outside the scope
— We want scope-independent objects!

Student *createStudent(string name) {
Student s(name);
return &s;

)

Student *newStudent;
newStudent = createStudent(“kim”);

cout << newStudent << endl; <-Unexpected result!

C++ way of malloc

°* new

— create an object in heap memory
* delete

— destroy new’ed object

Student *createStudent(string name) {
return new Student;

)

void removeStudent(Student *s) {
delete s;

}

Memory Leak

* C++ has no garbage collector
— YOU MUST FREE ALL NEW’ed OBJECTS!
— Don’t forget to delete

e delete X
— X is a pointer returned by new keyword
— or X is NULL (0) = no effect

Multiple objects

* Array

— Create an array of objects
e student_array = new Student[100 |;

— Destroy an array of objecgts
* delete[] student_array;

* Vector
— Vector is a single object
— vector<Student> *p = new vector<Student> (100);
— delete p;

Under the hood

* new, delete, new[], delete[] are implemented
using operator functions

— void *operator new(size t)

— void operator delete(void *)
— void *operator new(] (size_t)
— void operator delete[] (void *)

