
Polymorphism	

Par-al	
 Lis-ng	
 of	
 	

the	
 MFC	
 Class	
 Hierarchy	

h9p://msdn.microso>.com/ko-­‐kr/library/ws8s10w4(v=vs.100).aspx	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 3	

Review	
 —	
 Accessing	
 Members	
 of	

Base	
 and	
 Derived	
 Classes	

class B {
public:

void m();
void n();
...

} // class B

class D: public B {
public

void m();
void p();
...

} // class D	

•  The	
 following	
 are	
 legal:–	

 B_obj.m() //B’s m()
B_obj.n()

D_obj.m() //D’s m()
D_obj.n() //B’s n()
D_obj.p()

 B_ptr->m() //B’s m()
B_ptr->n()

D_ptr->m() //D’s m()
D_ptr->n() //B’s n()
D_ptr->p()

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 4	

Review	
 —	
 Accessing	
 Members	
 of	

Base	
 and	
 Derived	
 Classes	
 (con-nued)	

class B {
public:

void m();
void n();
...

} // class B

class D: public B {
public

void m();
void p();
...

} // class D	

•  The	
 following	
 are	
 legal:–	

 B_ptr = D_ptr;	

•  The	
 following	
 are	
 not	
 legal:–	

 D_ptr = B_ptr;
B_ptr->p();
	
 Even	
 if	
 B_ptr	
 is	
 known	
 to	
 point	

to	
 an	
 object	
 of	
 class	
 D

Class	
 D	
 redefines	
 method	
 m()

Class	
 Hierarchy	

Animal	

Dog	
 Shark	
 Lion	

•  Define	
 how	
 animals	
 make	
 sound	
 and	
 eat	

– say(),	
 eat()	

Call	
 ambiguity	

Animal	

say()	

eat()	

name()	

Animal	

say()	

eat()	

name()	

Dog	

say()	

eat()	

name()	

“something”	

“wang”	

“bone”	

“dog”	

“something”	

“something”	

call	
 say()	

answer	
 “say	
 something”	

call	
 say()	

answer	
 “say	
 something”?	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 or	
 “wang”?	

Call	
 ambiguity	

Animal	

say()	

eat()	

name()	

Dog	

say()	

eat()	

name()	

“wang”	

“bone”	

“dog”	

•  Dog	
 zong;	

•  zong.say();	

•  Dog	
 &dr	
 =	
 zong;	

•  dr.say();	

•  Dog	
 *dp	
 =	
 &zong;	

•  dp-­‐>say();	

•  Animal	
 &ar	
 =	
 zong;	

•  ar.say();	

•  Animal	
 *ap	
 =	
 &zong;	

•  ap-­‐>say();	
 ar.say()	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dr.say()	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Why	
 Polymorphism	

•  Cat	
 is	
 an	
 Animal	
 (Cat	
 is	
 a	
 type	
 of	
 Animal)	

•  Upcas7ng	
 is	
 possible	

•  A	
 func-on:	

explain(
 Animal	
 &an	
)	
 {	

cout	
 <<	
 an.name()	
 <<	
 “	
 eats	
 “	
 <<	
 an.eat()	
 <<	
 endl;	

} 	
 	

•  explain(zong)	

Polymorphism	

•  Polymorphism:–	
 from	
 the	
 Greek	
 “having	

mul-ple	
 forms”	

•  In	
 programming	
 languages,	
 the	
 ability	
 to	
 assign	
 a	

different	
 meaning	
 or	
 usage	
 to	
 something	
 in	
 different	

contexts	

•  The	
 ability	
 to	
 declare	
 func-ons/methods	
 as	

virtual	
 is	
 one	
 of	
 the	
 central	
 elements	
 of	

polymorphism	
 in	
 C++	

Polymorphism	

•  make	
 a	
 func-on	
 virtual	

class	
 Animal	
 {	

virtual	
 void	
 say();	

}	

class	
 Dog	
 :	
 public	
 Animal	

{	

void	
 say();	

}	

Animal	

say()	

eat()	

name()	

Dog	

say()	

eat()	

name()	

ar.say()	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dr.say()	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Abstract	
 and	
 Concrete	
 Classes	

•  Abstract	
 Classes	

–  Classes	
 from	
 which	
 it	
 is	
 never	
 intended	
 to	
 instan-ate	
 any	
 objects	

•  Incomplete—derived	
 classes	
 must	
 define	
 the	
 “missing	
 pieces”.	

•  Too	
 generic	
 to	
 define	
 real	
 objects.	

–  Normally	
 used	
 as	
 base	
 classes	
 and	
 called	
 abstract	
 base	
 classes	

•  Provide	
 appropriate	
 base	
 class	
 frameworks	
 from	
 which	
 other	
 classes	
 can	

inherit.	

•  Concrete	
 Classes	

–  Classes	
 used	
 to	
 instan-ate	
 objects	

–  Must	
 provide	
 implementa-on	
 for	
 every	
 member	
 func-on	
 they	
 define	

Abstract	
 Class	

•  A	
 class	
 only	
 for	
 polymorphism	

•  Has	
 interfaces,	
 but	
 no	
 implementa-on	

– pure	
 virtual	
 func-on	

class	
 Animal	
 {	

virtual	
 void	
 say()	
 =	
 0;	

virtual	
 void	
 eat()	
 =	
 0;	

virtual	
 void	
 name()	
 =	
 0;	

}	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 13	

Pure	
 virtual	
 Func-ons	

•  A	
 class	
 is	
 made	
 abstract	
 by	
 declaring	
 one	
 or	

more	
 of	
 its	
 virtual	
 func-ons	
 to	
 be	
 “pure”	

–  I.e.,	
 by	
 placing	
 "= 0"	
 in	
 its	
 declara-on	

•  Example	

	
 virtual void draw() const = 0;

–  "= 0"	
 is	
 known	
 as	
 a	
 pure	
 specifier.	

– Tells	
 compiler	
 that	
 there	
 is	
 no	
 implementa-on.	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 14	

Pure	
 virtual	
 Func-ons	
 (con-nued)	

•  Every	
 concrete	
 derived	
 class	
 must	
 override	
 all	

base-­‐class	
 pure	
 virtual	
 func-ons	

– with	
 concrete	
 implementa-ons	

•  If	
 even	
 one	
 pure	
 virtual	
 func-on	
 is	
 not	

overridden,	
 the	
 derived-­‐class	
 will	
 also	
 be	

abstract	

– Compiler	
 will	
 refuse	
 to	
 create	
 any	
 objects	
 of	
 the	

class	

– Cannot	
 call	
 a	
 constructor	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 15	

Purpose	

•  When	
 it	
 does	
 not	
 make	
 sense	
 for	
 base	
 class	
 to	

have	
 an	
 implementa-on	
 of	
 a	
 func-on	

•  So>ware	
 design	
 requires	
 all	
 concrete	
 derived	

classes	
 to	
 implement	
 the	
 func-on	

•  Themselves	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 16	

Why	
 Do	
 we	
 Want	
 to	
 do	
 This?	

•  To	
 define	
 a	
 common	
 public	
 interface	
 for	
 the	

various	
 classes	
 in	
 a	
 class	
 hierarchy	

– Create	
 framework	
 for	
 abstrac-ons	
 defined	
 in	
 our	

so>ware	
 system	

•  The	
 heart	
 of	
 object-­‐oriented	
 programming	

•  Simplifies	
 a	
 lot	
 of	
 big	
 so>ware	
 systems	

•  Enables	
 code	
 re-­‐use	
 in	
 a	
 major	
 way	

•  Readable,	
 maintainable,	
 adaptable	
 code	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 17	

Abstract	
 Classes	
 and	
 Pure	
 virtual	
 Func-ons	

•  Abstract	
 base	
 class	
 can	
 be	
 used	
 to	
 declare	
 pointers	

and	
 references	
 referring	
 to	
 objects	
 of	
 any	
 derived	

concrete	
 class	

•  Pointers	
 and	
 references	
 used	
 to	
 manipulate	

derived-­‐class	
 objects	
 polymorphically	

•  Polymorphism	
 is	
 par-cularly	
 effec-ve	
 for	

implemen-ng	
 layered	
 so>ware	
 systems	
 –	
 e.g.,	

1.  Reading	
 or	
 wri-ng	
 data	
 from	
 and	
 to	
 devices.	

2.  Iterator	
 classes	
 to	
 traverse	
 all	
 the	
 objects	
 in	
 a	
 container.	

Polymorphism	
 CS-­‐2303,	
 C-­‐Term	
 2010	
 18	

Example	
 –	
 Graphical	
 User	
 Interfaces	

•  All	
 objects	
 on	
 the	
 screen	
 are	
 represented	
 by	
 derived	

classes	
 from	
 an	
 abstract	
 base	
 class	

•  Common	
 windowing	
 func-ons	

•  Redraw	
 or	
 refresh	

•  Highlight	

•  Respond	
 to	
 mouse	
 entry,	
 mouse	
 clicks,	
 user	
 ac-ons,	
 etc.	

•  Every	
 object	
 has	
 its	
 own	
 implementa-on	
 of	
 these	

func-ons	

•  Invoked	
 polymorphically	
 by	
 windowing	
 system	

