Polymorphism

Partial Listing of
the MFC Class Hierarchy

CObject
CCmdTarget CExceptions

Cwnd CWinThread

CFile
CFrameWnd CWinApp
CDialog
CDC
CView

Figure 10-5 Partial listing of the MFC class hierarchy

http://msdn.microsoft.com/ko-kr/library/ws8s10w4(v=vs.100).aspx

Review — Accessing Members of
Base and Derived Classes

class B { * The following are legal:—
public: B obj.m() //B's m()
void m() ; B obj.n()
void n() ;
D obj.m() //D's m()
} // class B D obj.n() //B's n()
D obj.p()

class D: public B {
B ptr->m() //B's m()

13
public B ptr->n()

void m() ;

void p(); D ptr->m() //D's m()

D ptr->n() //B’s n()

} // class D D ptr->p ()

Review — Accessing Members of
Base and Derived Classes (continued)

class B { * The following are legal:—
public: B ptr = D ptr;
voild m(); * The following are not legal:—
void n() ;
... D ptr = B ptr;
B ptr-> ;
} // class B _ptr->p()

Even if B_ptr is known to point
to an object of class D
class D: public B {
public
void m() ; <——1 Class D redefines method m ()
void p() ;

} // class D

Class Hierarchy

Dog [shori [Lon

e Define how animals make sound and eat
— say(), eat()

Call ambiguity

Animal

“something”

“something”

“something”

call say()
answer “say something”

call say()
answer “say something”?
or “wang”?

Call ambiguity

Dog zong;
zong.say();
Dog &dr = zong;

dr.say();

Dog *dp = &zong;
dp->say();

Animal &ar = zong;
ar.say();

Animal *ap = &zong;
ap->say();

ar.say()

dr.say()

Why Polymorphism

Cat is an Animal (Cat is a type of Animal)
Upcasting is possible
A function:

explain(Animal &an) {
cout << an.name() << “ eats “ << an.eat() << end|;

}

explain(zong)

Polymorphism

* Polymorphism:—from the Greek “having

multiple forms”

* |In programming languages, the ability to assign a
different meaning or usage to something in different
contexts

* The ability to declare functions/methods as
virtual is one of the central elements of
polymorphism in C++

Polymorphism

* make a function virtual Dog

class Animal {

virtual void say();

}

class Dog : public Animal

{

void say();
} ar.say()

dr.say()

Abstract and Concrete Classes

* Abstract Classes
— Classes from which it is never intended to instantiate any objects
 Incomplete—derived classes must define the “missing pieces’ .
* Too generic to define real objects.

— Normally used as base classes and called abstract base classes

* Provide appropriate base class frameworks from which other classes can
inherit.

* Concrete Classes
— Classes used to instantiate objects
— Must provide implementation for every member function they define

Abstract Class

* A class only for polymorphism
* Has interfaces, but no implementation

— pure virtual function

class Animal {
virtual void say() = O;

virtual void eat() = O;

virtual void name() = 0;

Pure virtual Functions

* Aclass is made abstract by declaring one or
more of its virtual functions to be “pure”

— l.e., by placing "= 0" in its declaration

* Example

virtual void draw() const = 0O;

— "= 0" is known as a pure specifier.
— Tells compiler that there is no implementation.

© 2007 Pearson Ed -All rights reserved.

Pure virtual Functions (continued)

* Every concrete derived class must override all
base-class pure virtual functions

— with concrete implementations

* |f even one pure virtual function is not
overridden, the derived-class will also be
abstract

— Compiler will refuse to create any objects of the
class

— Cannot call a constructor

© 2007 Pearson Ed -All rights reserved.

Purpose

e When it does not make sense for base class to
have an implementation of a function

e Software design requires all concrete derived
classes to implement the function

* Themselves

Why Do we Want to do This?

* To define a common public interface for the
various classes in a class hierarchy

— Create framework for abstractions defined in our
software system

* The heart of object-oriented programming

* Simplifies a lot of big software systems

* Enables code re-use in a major way
* Readable, maintainable, adaptable gede

2007 Pearson Ed -All rights reserved.

Abstract Classes and Pure virtual Functions

Abstract base class can be used to declare pointers

and references referring to objects of any derived
concrete class

Pointers and references used to manipulate
derived-class objects polymorphically

Polymorphism is particularly effective for

implementing layered software systems — e.g.,
1. Reading or writing data from and to devices.
2. Iterator classes to traverse all the objects in a container.

© 2007 Pearson Ed -All rights reserved.

Example — Graphical User Interfaces

* All objects on the screen are represented by derived
classes from an abstract base class

e Common windowing functions
* Redraw or refresh
* Highlight
* Respond to mouse entry, mouse clicks, user actions, etc.

* Every object has its own implementation of these
functions
* Invoked polymorphically by windowing system

