Another way to
define a class

Inheritance..!!

Why Inheritance ?

Inheritance 1s a mechanism for
* building class types from existing class types

* defining new class types to be a
—specialization
—augmentation

of existing types

Inheritance Concept

class Rectangle{

Polygon private:
int width, length;
public:
void set(int w, int |);
Rectangle _
Triangle int area();
}
class Polygon class Triangle{
{ private:
private: int width, length;
int width, length; public:
public: void set(int w, int 1);
void set(int w, int 1); int area();

Inheritance Concept

class Polygon

Polygon {
protected:
/ int width, length;
public:
‘ void set(int w, int |);
Triangle }

class Rectangle{

protected:
class Rectangle : public Polygon int width, length;
{ blic:
. @ publc
public: int area(); void set(int w, int |);
J int area();

Inheritance Concept

class Polygon
Polygon {
protected:
/ \ int width, length;

public:

el void set(int w, int |);
Triangle }

class Triangle{

protected:
class Triangle : public Polygon int width, length;
{ &) public:

public: int area(); void set(int w, int |);

} int area();

Inheritance Concept

class Point

e

Point {
y

/ \ protected:
intx,y;

Circle 3D-Point

public:
X X void set(int a, int b);
y y
r z }
class Circle : public Point class 3D-Point: public Point
{ {
private: private:
double r; int z;

Inheritance Concept

* Augmenting the original class

P

* Specializing the original class

[ComplexNumber J real
N AL 1mag

[RealNumber } [ImaginaryNumber} imag

real

Define a Class Hierarchy

* Syntax:

class DerivedClassName : access-level BaseClassName

where
— access-level specifies the type of derivation

* private by default, or
* public
* Any class can serve as a base class
— Thus a derived class can also be a base class

Class Derivation

Point class Point{
protected:
int x,y;
3D-Point public:
‘ void set(int a, int b);
}
Sphere
class 3D-Point : public Point{ class Sphere : public 3D-Point{
private: double z; private: double r;
} }

Point 1s the base class of 3D-Point, while 3D-Point 1s the base class of Sphere

What to inherit?

* In principle, every member of a base class 1s
inherited by a derived class

— just with different access permission

10

Access Control Over the Members

 Two levels of access control

base class/ superclass/ over class members

parent class — class definition

— 1nheritance type

class Point{
protected: int x, y;

members goes to

public: void set(int a, int b);

derived class/ subclass/ }

child class

class Circle : public Point{

11

Access Rights of Derived Classes

Type of Inheritance

-5 private protected public
= é private private private private
% 5 protected | private protected | protected
3 é public private protected public

The type of inheritance defines the minimum access level for the
members of derived classthat are inherited from the base class

With public inheritance, the derived class follow the same access
permission as in the base class

With protected inheritance, the public and the protected members
inherited from the base class can be accessed in the derived class as
protected members

With private inheritance, none of the members of base class is accessible
by the derived class

12

Class Derivation

class daughter : public mother{

mother private:
/ double a; %
public: \\\
daughter son void foo () \\
} \
class mother{ \'
protected: void daughter :: foo (){ II
iNtX,Y, «==—=—===—======"- x =y =20; //
public: - set(5, 10); !
void set(int a, intb); « ~~ - cout<<“value of a "<<a<<endl;
private: z=100; // error, a private
member

int z;

daughter can access 3 of the 4 inherited mempbers

Class Derivation

class son : protected mother{

mother private:
/ \ double b; x
public: N
daughter son vt T L AN
) \
class mother{ II
protected: void son :: foo (){ K
int x, y; x =y =20; K
public: - set(5, 10); //it becomes a protect member
void set(int a, int b); « ~ 1 cout<<“value of b "<<b<<endl;
orivate: z=100; // error, not a public member

int z; }

14

What to inherit?

* In principle, every member of a base class 1s
inherited by a derived class

— just with different access permission

* However, there are exceptions for
— constructor and destructor
— operator=() member

— friends

Since all these functions are class-specific

15

Constructor Rules for Derived Classes

The default constructor and the destructor of the
base class are always called when a new object
of a derived class 1s created or destroyed.

class A { class B : public A
public: {
Al) public:
{cout<< “A:default”<<endl;} B (int a)
A (int a) {cout<<“B”<<endl;}
{cout<<“A:parameter”’<<endl;} }
}

output:
B test(1);
16

Constructor Rules for Derived Classes

You can also specify an constructor of the
base class other than the default constructor

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass

args)
{ DerivedClass constructor body }

class A { class C : public A
public: {
Al() public:
{cout<< “A:default’<<endl;} C (int a) : A(a)
A (int a) {cout<<“C”<<endl;}
{cout<<“A:parameter”’<<endl;} }
}

output:
C test(1);
17

Define its Own Members

The derived class can also define
its own members, in addition to

.) lass Point
the members inherited from the Bless By
base class protected:

intx,y;
Point ;‘, public:
/ void set(int a, int b);
X }
y | Circle
r protected:
class Circle : public Point{ intx,y;
private: private:
double r; double r;
public: public:

void set_r(double c); void set(int a, int b);

) void set_r(double c); 3

Even more ...

* A derived class can override methods defined 1n its parent

class. With overriding,

— the method in the subclass has the identical signature to the method
in the base class.

— a subclass implements its own version of a base class method.

class A {
protected: class B : public A
int x,y; {
public: 2B
void print () —=========="="" void print ()

<< V<< -
{cout<<“From A”<<endl;} {cout<<“From B"<<end|;}

19

Access a Method

class Point

{

protected:
intx,y;

public:
void set(int a, int b)
{x=a; y=b;}
void foo ();
void print();

}

Point A;
A.set(30,50); //from base class Point
A.print(); // from base class Point

class Circle : public Point{
private: doubler;
public:
void set (int a, int b, double c) {

Point :: set(a, b); //same name function call

r=c;

}
void print(); }

Putting Them Together

* Time 1s the base class

 ExtTime 1s the derived class with
public inheritance

 The derived class can

inherit all members from the base
class, except the constructor

access all public and protected
members of the base class

define its private data member
provide its own constructor
define its public member functions

override functions inherited from
the base class

21

class Time Specification

// SPECIFICATION FILE (time.h)

class Time

1
public :

void Set(inth,intm,ints)

void Increment () ;

void Write () const;

Time (intinitH, int initM, int initS) ; // constructor
Time (); // default constructor

protected :

int hrs ;
int mins ;
int secs ;

}s

22

Class Interface Diagram

Time class

Protected data:

v [

o [
-

23

Derived Class ExtTime

/l SPECIFICATION FILE (exttime.h)

#include “time.h”
enum ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT } ;

class ExtTime : public Time
// Time is the base class and use public inheritance

{
public :
void Set (int h, int m, int s, ZoneType timeZone) ;
void Write () const; //overridden

ExtTime (int initH, int initM, int initS, ZoneType initZone) ;
ExtTime (); // default constructor

private :
ZoneType zone ; // added data member

¥ s

N

N

Class Interface Diagram
ExtTime class

Protected data:

s [
s [
ExtTime

s [

Private data:
zone

25

Implementation of ExtTime

Default Constructor

ExtTime :: ExtTime ()

{
zone = EST ;

The default constructor of
base class, Time(), 1s
automatically called, when an
ExtTime object is created.

ExtTime etl;

etl
hrs =0
mins =0
secs=0
zone = EST

26

Implementation of ExtTime

Another Constructor

ExtTime :: ExtTime (int initH, int initM, int initS, ZoneType initZone)

: Time (initH, initM, initS)
// constructor initializer

zone = initZone ;

ExtTime *et2 =
new ExtTime(8,30,0,EST);

et2 go00
5000

5000

hrs =8
mins = 30
secs=0
zone = EST

27

Implementation of ExtTime

void ExtTime :: Set (int h, int m, int s, ZoneType timeZone)

d

Time :: Set (hours, minutes, seconds); // same name function call

zone = timeZone ;

void ExtTime :: Write () const //function overriding

{

string zoneString[8] =

{HESTI}’ IICST)I’ MSTH’ IIPST)I’ ”EDT”, IICDTII’ IIIVI DTII’ ”PDT”};
Time :: Write () ;
cout <<’ ‘<<zoneString[zone]<<end];

}

28

Working with ExtTime

#include “exttime.h”

int main()

{
ExtTime thisTime (8, 35,0, PST) ;
ExtTime thatTime ; // default constructor called
thatTime.Write() ; // outputs 00:00:00 EST
thatTime.Set (16, 49, 23, CDT) ;
thatTime.Write() ; // outputs 16:49:23 CDT

thisTime.Increment () ;
thisTime.Increment () ;
thisTime.Write () ; // outputs 08:35:02 PST

Take Home Message

* Inheritance 1s a mechanism for defining new
class types to be a specialization or an
augmentation of existing types.

* In principle, every member of a base class 1s
inherited by a derived class with different
access permissions, except for the constructors

30

