
1

Another way to
define a class

Inheritance..!!	

2

Why Inheritance ?

Inheritance is a mechanism for

•  building class types from existing class types

•  defining new class types to be a
– specialization
– augmentation

 of existing types

3

Inheritance Concept

Rectangle	

Triangle	

Polygon	

	
 class	
 Polygon	

	
 {	

	
 	
 private:	

	
 	
 	
 	
 	
 int	
 width,	
 length;	

	
 	
 public:	

	
 	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

	
 }	

	
 class	
 Rectangle{	

	
 	
 private:	

	
 	
 	
 	
 	
 int	
 width,	
 length;	

	
 	
 public:	

	
 	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

	
 	
 	
 	
 	
 int	
 area();	

	
 }	

	
 class	
 Triangle{	

	
 	
 private:	

	
 	
 	
 	
 	
 int	
 width,	
 length;	

	
 	
 public:	

	
 	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

	
 	
 	
 	
 	
 int	
 area();	

	
 }	

4

Rectangle	

Triangle	

Polygon	

class	
 Polygon	

{	

	
 protected:	

	
 	
 	
 	
 int	
 width,	
 length;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

}	

	

class	
 Rectangle	
 :	
 public	
 Polygon	

{	

	
 public:	
 int	
 area();	

}	

class	
 Rectangle{	

	
 protected:	

	
 	
 	
 	
 int	
 width,	
 length;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

	
 	
 	
 	
 int	
 area();	

}	

Inheritance Concept

5

Rectangle	

Triangle	

Polygon	

class	
 Polygon	

{	

	
 protected:	

	
 	
 	
 	
 int	
 width,	
 length;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

}	

	

class	
 Triangle	
 :	
 public	
 Polygon	

{	

	
 public:	
 int	
 area();	

}	

class	
 Triangle{	

	
 protected:	

	
 	
 	
 	
 int	
 width,	
 length;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 w,	
 int	
 l);	

	
 	
 	
 	
 int	
 area();	

}	

Inheritance Concept

6

Inheritance Concept

Point

Circle 3D-Point

class	
 Point	

{	

	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b);	

}	

class	
 Circle	
 :	
 public	
 Point	

{	

	
 private:	
 	

	
 	
 double	
 r;	

}	

class	
 3D-­‐Point:	
 public	
 Point	

{	

	
 private:	
 	

	
 	
 int	
 z;	

}	

x
y

x
y
r

x
y
z

7

•  Augmenting the original class

•  Specializing the original class

Inheritance Concept

RealNumber

ComplexNumber

ImaginaryNumber

Rectangle	
 Triangle	

Polygon	
 Point

Circle

real
imag

real imag

3D-Point

8

Define a Class Hierarchy

•  Syntax:
 class DerivedClassName : access-level BaseClassName

 where
–  access-level specifies the type of derivation
•  private by default, or
•  public

•  Any class can serve as a base class
–  Thus a derived class can also be a base class

9

Class Derivation

Point

3D-Point

class	
 Point{	

	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b);	

}	

class	
 3D-­‐Point	
 :	
 public	
 Point{	

	
 private:	
 	
 double	
 z;	

	
 …	
 …	

}	

class	
 Sphere	
 :	
 public	
 3D-­‐Point{	

	
 private:	
 	
 double	
 r;	

	
 …	
 …	

}	

Sphere

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere

10

What to inherit?

•  In principle, every member of a base class is
inherited by a derived class
–  just with different access permission

11

Access Control Over the Members
•  Two levels of access control

over class members
–  class definition
–  inheritance type

base class/ superclass/
parent class

derived class/ subclass/
child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class	
 Point{	

	
 protected:	
 int	
 x,	
 y;	

	
 public:	
 void	
 set(int	
 a,	
 int	
 b);	

}	

class	
 Circle	
 :	
 public	
 Point{	

	
 …	
 …	

}	

12

•  The type of inheritance defines the minimum access level for the
members of derived class that are inherited from the base class

•  With public inheritance, the derived class follow the same access
permission as in the base class

•  With protected inheritance, the public and the protected members
inherited from the base class can be accessed in the derived class as
protected members

•  With private inheritance, none of the members of base class is accessible
by the derived class

Access Rights of Derived Classes

private protected public
private private private private

protected private protected protected
public private protected public

Type of Inheritance

A
ccess C

ontrol
for M

em
bers

13

Class Derivation

mother

daughter son

class	
 mother{	

	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b);	

	
 private:	

	
 	
 	
 	
 int	
 z;	

}	

class	
 daughter	
 :	
 public	
 mother{	

	
 private:	
 	

	
 	
 double	
 a;	

	
 public:	

	
 	
 void	
 foo	
 (
);	

}	

void	
 daughter	
 ::	
 foo	
 (
){	

	
 x	
 =	
 y	
 =	
 20;	

	
 set(5,	
 10);	
 	

	
 cout<<“value	
 of	
 a	
 ”<<a<<endl;	
 	

	
 z	
 =	
 100;	
 	
 	
 	
 //	
 error,	
 a	
 private	

member	

}	

daughter can access 3 of the 4 inherited members

14

Class Derivation

mother

daughter son

class	
 mother{	

	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b);	

	
 private:	

	
 	
 	
 	
 int	
 z;	

}	

class	
 son	
 :	
 protected	
 mother{	

	
 private:	
 	

	
 	
 double	
 b;	

	
 public:	

	
 	
 void	
 foo	
 (
);	

}	

void	
 son	
 ::	
 foo	
 (
){	

	
 x	
 =	
 y	
 =	
 20;	
 	
 	

	
 set(5,	
 10);	
 //it	
 becomes	
 a	
 protect	
 member	

	
 cout<<“value	
 of	
 b	
 ”<<b<<endl;	
 	

	
 z	
 =	
 100;	
 	
 	
 	
 //	
 error,	
 not	
 a	
 public	
 member	

}	

	

15

What to inherit?

•  In principle, every member of a base class is
inherited by a derived class
–  just with different access permission

•  However, there are exceptions for
– constructor and destructor
– operator=() member
–  friends

 Since all these functions are class-specific

16

Constructor Rules for Derived Classes
 The default constructor and the destructor of the
base class are always called when a new object
of a derived class is created or destroyed.

class	
 A	
 {	

	
 	
 	
 public:	

	
 A	
 (
)	

	
 	
 	
 {cout<<	
 “A:default”<<endl;}	

	
 A	
 (int	
 a)	

	
 	
 	
 {cout<<“A:parameter”<<endl;}	

}	

class	
 B	
 :	
 public	
 A	
 	

{	

	
 	
 	
 public:	
 	

	
 B	
 (int	
 a)	

	
 	
 	
 	
 	
 {cout<<“B”<<endl;}	

}	

B test(1);
A:default
B

output:

17

Constructor Rules for Derived Classes
 You can also specify an constructor of the
base class other than the default constructor

class	
 A	
 {	

	
 	
 	
 public:	

	
 A	
 (
)	

	
 	
 	
 {cout<<	
 “A:default”<<endl;}	

	
 A	
 (int	
 a)	

	
 	
 	
 {cout<<“A:parameter”<<endl;}	

}	

class	
 C	
 :	
 public	
 A	
 	

{	

	
 	
 	
 public:	
 	

	
 C	
 (int	
 a)	
 :	
 A(a)	

	
 	
 	
 	
 	
 {cout<<“C”<<endl;}	

}	

C test(1);
A:parameter
C

output:

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass
args)

 { DerivedClass constructor body }

18

Define its Own Members

Point

Circle

class	
 Point{	

	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b);	

}	

class	
 Circle	
 :	
 public	
 Point{	

	
 private:	
 	

	
 	
 double	
 r;	

	
 public:	

	
 	
 void	
 set_r(double	
 c);	

}	

x
y

x
y
r 	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 private:	

	
 	
 	
 	
 double	
 r;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b);	

	
 	
 	
 	
 void	
 set_r(double	
 c);	

The derived class can also define
its own members, in addition to
the members inherited from the
base class

19

Even more …

•  A derived class can override methods defined in its parent
class. With overriding,
–  the method in the subclass has the identical signature to the method

in the base class.
–  a subclass implements its own version of a base class method.

class	
 A	
 {	

	
 	
 protected:	

	
 int	
 x,	
 y;	

	
 	
 	
 public:	

	
 void	
 print	
 ()	

	
 	
 {cout<<“From	
 A”<<endl;}	

}	

class	
 B	
 :	
 public	
 A	
 	

{	

	
 	
 	
 public:	
 	

	
 void	
 print	
 ()	

	
 	
 	
 	
 	
 {cout<<“From	
 B”<<endl;}	

}	

20

class	
 Point	

{	

	
 protected:	

	
 	
 	
 	
 int	
 x,	
 y;	

	
 public:	

	
 	
 	
 	
 void	
 set(int	
 a,	
 int	
 b)	

	
 	
 {x=a;	
 y=b;}	

	
 	
 	
 	
 void	
 foo	
 ();	

	
 	
 	
 	
 void	
 print();	

}	

class	
 Circle	
 :	
 public	
 Point{	

	
 	
 private:	
 	
 double	
 r;	

	
 	
 public:	

	
 void	
 set	
 (int	
 a,	
 int	
 b,	
 double	
 c)	
 {	

	
 	
 	
 	
 	
 	
 Point	
 ::	
 set(a,	
 b);	
 //same	
 name	
 funcYon	
 call	

	
 	
 	
 	
 	
 	
 r	
 =	
 c;	

	
 }	

	
 void	
 print();	
 	
 }	

 Access a Method

	
 Circle	
 C;	

	
 C.set(10,10,100);	
 	
 	
 //	
 from	
 class	
 Circle	

	
 C.foo	
 ();	
 	
 //	
 from	
 base	
 class	
 Point	

	
 C.print();	
 //	
 from	
 class	
 Circle	

Point	
 A;	

A.set(30,50);	
 	
 //	
 from	
 base	
 class	
 Point	

A.print();	
 //	
 from	
 base	
 class	
 Point	

21

Putting Them Together
•  Time is the base class
•  ExtTime is the derived class with

public inheritance
•  The derived class can

–  inherit all members from the base
class, except the constructor

–  access all public and protected
members of the base class

–  define its private data member
–  provide its own constructor
–  define its public member functions
–  override functions inherited from

the base class

ExtTime

Time

22

class Time Specification

class Time
{

 public :

 void Set (int h, int m, int s) ;
 void Increment () ;

 void Write () const ;

 Time (int initH, int initM, int initS) ; // constructor
 Time () ; // default constructor

 protected :

 int hrs ;
 int mins ;
 int secs ;

} ;

//	
 SPECIFICATION	
 	
 	
 FILE	
 	
 	
 	
 (
 ;me.h)	

23

 Class	
 Interface	
 Diagram	

Protected	
 data:	

	

hrs	

	

mins	

	

secs	

Set	

Increment	

Write	

	
 	
 	
 Time	

Time	

Time class	

24

Derived Class ExtTime
// SPECIFICATION FILE (exttime.h)

#include “time.h”

enum ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT } ;

class ExtTime : public Time

 // Time is the base class and use public inheritance
{
 public :

 void Set (int h, int m, int s, ZoneType timeZone) ;
 void Write () const; //overridden

 ExtTime (int initH, int initM, int initS, ZoneType initZone) ;
 ExtTime (); // default constructor

private :
 ZoneType zone ; // added data member

} ;

25

 Class	
 Interface	
 Diagram	

Protected	
 data:	

	

hrs	

	

mins	

	

secs	

ExtTime class	

Set	

Increment	

Write	

	
 	
 	
 Time	

Time	

Set	

Increment	

Write	

	
 	
 	
 ExtTime	

ExtTime	

Private	
 data:	

zone	

26

Implementation of ExtTime

Default Constructor

ExtTime :: ExtTime ()
{

 zone = EST ;
}

The default constructor of
base class, Time(), is
automatically called, when an
ExtTime object is created.

	
 	
 ExtTime	
 et1;	

hrs	
 =	
 0	

mins	
 =	
 0	

secs	
 =	
 0	

zone	
 =	
 EST	

et1

27

Implementation of ExtTime
Another Constructor

ExtTime :: ExtTime (int initH, int initM, int initS, ZoneType initZone)
 : Time (initH, initM, initS)
 // constructor initializer

{
 zone = initZone ;
}

ExtTime	
 *et2	
 =	
 	

	
 new	
 ExtTime(8,30,0,EST);	

hrs	
 =	
 8	

mins	
 =	
 30	

secs	
 =	
 0	

zone	
 =	
 EST	

et2

5000

???
6000

5000

28

Implementation of ExtTime
void ExtTime :: Set (int h, int m, int s, ZoneType timeZone)
{
 Time :: Set (hours, minutes, seconds); // same name function call

 zone = timeZone ;
}

void	
 	
 ExtTime	
 ::	
 Write	
 (
)	
 	
 	
 const	
 	
 //	
 funcYon	
 overriding	

{	

	
 	
 	
 string	
 	
 zoneString[8]	
 =	
 	

	
 	
 {“EST”,	
 “CST”,	
 MST”,	
 “PST”,	
 “EDT”,	
 “CDT”,	
 “MDT”,	
 “PDT”}	
 ;	

	

	
 	
 Time	
 ::	
 Write	
 (
)	
 ;	

	
 	
 cout	
 	
 <<‘	
 	
 ‘<<zoneString[zone]<<endl;	

}	

29

Working with ExtTime

 #include “exttime.h”
 … …

 int main()
 {

 ExtTime thisTime (8, 35, 0, PST) ;
 ExtTime thatTime ; // default constructor called

 thatTime.Write() ; // outputs 00:00:00 EST

 thatTime.Set (16, 49, 23, CDT) ;
 thatTime.Write() ; // outputs 16:49:23 CDT

 thisTime.Increment () ;
 thisTime.Increment () ;
 thisTime.Write () ; // outputs 08:35:02 PST
 }

30

Take Home Message

•  Inheritance is a mechanism for defining new
class types to be a specialization or an
augmentation of existing types.

•  In principle, every member of a base class is
inherited by a derived class with different
access permissions, except for the constructors

