Storage/ SQLite

Layouts with Dynamic Data

* use AdaptorView when data is dynamic

— Layout is dynamically determined by the data

— Adaptor fills the AdaptorView with data

— AdaptorView subclasses: ListView, GridView

— Data: array, cursor from content providers, DB
* Types

— ArrayAdaptor: from an array

— SimpleCursorAdaptor: from a cursor

ListView

TextV|ew Data

Adaptor

a a
Source

ArrayAdaptor

* For each item of an array, call toString(), insert a TextView
* Usage
— Create an Adaptor
* new ArrayAdaptor<T>(<context>, <layout>, <array>)
— <layout>: layout for each row, containing a TextView
* Android’s default row layouts: R.simple_list_*
— http://developer.android.com/reference/android/R.layout.html

— https://github.com/android/platform frameworks base/tree/master/core/res/res/layout
— <SDK>/platforms/android-*/data/res/layout/

— Register the adaptor
* <list view>.setAdaptor(<adaptor>)

— When data changed
* <adaptor>.notifyDataSetChanged();
* Customization
— Look: Define your own row layout
— Data representation: Override toString() of the element
— Different View type (e.g., ImageView): extend ArrayAdaptor and override getView()

 Example
— ArrayAdapter<String> ad = new ArrayAdapter<String>(this, R.layout.simple_list_item_1,

myArray);
((ListView) findViewByld(R.id.listview)).setAdapter(ad);

SimpleCursorAdaptor

Data from a cursor (from ContentProvider, SQLite, ..)
Bind each column to each view in row layout

— Define a string array of column names
e String[] fromColumns = { <col1>, .. }

— Define an integer array of corresponding view ids
* Int[] toViews = {R.id.<id1>, .. }

Create an adaptor

— new SimpleCursorAdapter(this, <row layout>, <cursor>, <col-array>, <viewlID-
array>, <flags>);

Register the adaptor
— <list view>.setAdaptor(<adaptor>)
Handling click events

— <list view>.setOnltemClickListener(new OnltemClickListener() {
public void onltemClick(AdapterView parent, View v, int position, long id{..}

1)

Matrix Cursor

 What if a static data with multiple columns?
— Use matrix cursor on array, instead of DB

* How to
— Create a column-name array
 String[] <cols>={ “<col1>”, .. }

— Create a matrix cursor
* MatrixCursor <mc>= new MatrixCursor(<cols>);
« startManagingCursor(<mc>);

— Add data

* <mc>.addRow(new Object[] { <datal>, .. });

— Create SimpleCursorAdaptor and register it

* new SimpleCursorAdapter(<context>, <row layout>, <mc>, <cols>,
<viewlD-array>);

SQLite

Create a database (or open if exists)
— SQliteDatabase db = openOrCreateDatabase(<db_name>, <mode>, <cursor>)

Run SQL
— db.execSQL(<sql>)
— http://www.w3schools.com/sql/
Run SQL with cursor
— Cursor <cur> = db.rawQuery(<SQL>, null)
— <cur>.getString(<cur>.getColumnindex(<col-name>))
— do{..} while(<cur>.moveToNext());
Create a table
— create table if not exists <table-name> (<colname> <type>, ..)
Insert values
— insert into <table> values (<col value>, ..., <col value>)
Get values
— select * from <table>
Close the database
— db.close
Stored in
— /data/data/<pkg>/databases/<db-name>

Database Example

e students table

name age dept
(Text) (Int) (Text)

Data Types
NULL
Obama INT
REAL
2 Trump 22 IC TEXT

BLOB

CREATE TABLE IF NOT EXISTS STUDENTS (

_1id INT PRIMARY KEY NOT NULL,
name TEXT NOT NULL,
age INT NOT NULL,

dept TEXT
)

Caution

e |f use SimpleCursorAdaptor
— Add “_id” integer column in the table
— Include “_id” in select statement

