
Broadcast	Receivers	
Content	Providers	

Ac2vity	Lifecycle	

Broadcast	Receiver	

1.  A	subclass	of	BroadcastReceiver	
– Need	to	override	onReceive(<context>,	<intent>)	
– Can	be	defined	as	an	anonymous	class,	or	an	inner	
class,	or	a	public	class	

2.  Register	the	receiver	for	interested	broadcast	
using	Intent	Filter	
–  Two	methods	
•  Java	
•  XML	(Manifest	file)	

Define	BroadcastReceiver	
•  Anonymous	class	

–  BroadcastReceiver	r	=	new	BrodcastReceier()	{	
	 	@Override	
	 	public	void	onReceive(Context	c,	Intent	i)	{	
	 	 	<my	work	to	do>	
	 	}	

}	
•  Inner	class	

–  public	class	MainAc2vity	extends	AppCompatAc2vity	{	
	private		MyReceiver	r	=	new	MyReceiver();				
	public	class	MyReceiver	extends	BroadcastRecever	{	
	 	@Override	
	 	public	void	onReceive(..)	{..}		
	} ���
}

•  Public	class	
–  public	class	myReceiver	extends		BroadcastRecever	{	

	 	@Override	
	 	public	void	onReceive(..)	{..}		

}	

Register	Receiver	
•  Java	

–  IntentFilter	f=new	IntentFilter(Intent.<ACTION>);	
–  registerReceiver(<receiver>,	<filter>)	//	onResume	
–  unregisterReceiver(<receiver>)	//	onPause	

•  Manifest	
–  Create	a	public	receiver	class	
–  <receiver	android:name=".<receiver	class>"	android:exported="true">	

				<intent-filter>	
								<ac2on	android:name="android.intent.ac2on.*ac2on*"	/>	
				</intent-filter>	
</receiver>	

Use	broadcast	for	intra-App	
communica2on	

•  Send	a	custom	broadcast	
–  Intent	i=	new	Intent();	
i.setAc2on(<myac2on>);	
i.putExtra(..);	
sendBroadcast(i);	

•  Receive	a	custom	broadcast	
– either	Java	or	Manifest	
– use	<myac2on>	

Ac2ons	
•  <SDK>/pla`orms/data/broadcast_ac2ons.txt	
•  android.intent.ac2on.AIRPLANE_MODE	
•  android.intent.ac2on.BATTERY_LOW	
•  android.intent.ac2on.TIME_TICK	
•  android.intent.ac2on.USER_UNLOCKED	
•  android.hardware.ac2on.NEW_PICTURE	
•  android.hardware.ac2on.NEW_VIDEO	
•  android.intent.ac2on.ACTION_POWER_CONNECTED	
•  android.intent.ac2on.ACTION_POWER_DISCONNECTED	
•  android.intent.ac2on.DATA_SMS_RECEIVED	
•  android.intent.ac2on.NEW_OUTGOING_CALL	
•  android.net.wifi.WIFI_STATE_CHANGED	

Content	Provider	
•  Manages	a	structured	data	set	
•  Provide	interfaces	to	connect	to	data	in	other	process	
•  Client	uses	ContentResolver	object	to	interacts	with	an	
instance	of	ContentProvider	

•  ContentProvider	receive	request,	perform	ac2on,	
returns	the	result	

Default	Content	Providers	

•  Contacts	–	Contact	details		
•  Call	log	–	All	call	history		
•  Media	Store	–	Audio/Video	details		
•  Browser	–	Bookmarks,	history,	etc.		
•  Sejngs	–	All	phone	sejngs	like	Wi-Fi,	
Bluetooth,	Security,	etc.	

Default	Content	Providers	

Accessing	Contacts	&	SMS	
•  Get	Content	Provider	

–  getContentResolver()	
•  Get	Contacts	with	cursor	

–  Cursor	c	=	getContentResolver().query(<uri>,	nullx4)	
–  c.getString(c.getColumnIndex(<col-name>))	

•  Itera2on	
–  if(<cur>)	while	(<cur>.moveToNext())	{..};	

•  Contacts	
–  URI	=	ContactsContract.Contacts.CONTENT_URI,	or		

	 	content://com.android.contacts/contacts	
–  <col-name>:	ContactsContract.PhoneLookup.DISPLAY_NAME	
–  permission:	android.permission.READ_CONTACTS	

•  SMS	
–  URI	=	Telephony.Sms.CONTENT_URI	(content://sms)	
–  <col-name>:	Telephony.Sms.BODY	
–  Only	amer	KITKAT	

•  android.os.Build.VERSION.SDK_INT	>=	android.os.Build.VERSION_CODE.KITKAT	
–  permission:	android.permission.READ_SMS	

Storages	
•  Shared	Preferences	
–  Store	private	primi2ve	data	in	key-value	pairs.	

•  Internal	Storage	
–  Store	private	data	on	the	device	memory.	

•  External	Storage	
–  Store	public	data	on	the	shared	external	storage.	

•  SQLite	Databases	
–  Store	structured	data	in	a	private	database.	

•  Network	Connec2on	
–  Store	data	on	the	web	with	your	own	network	server.	

Shared	Preferences	

•  Used	to	store	simple	state	informa2on	to	keep	across	
runs	
–  ex:	Keep	App	sejngs/preferences,	keep	user	input	values	

•  (key,	value)	
•  Saved	in	XLM	file	
•  Persistent	
•  Stored	in	App’s	sandbox	
•  Not	for	sensi2ve	informa2on	
•  SharedPreference	instance	is	automa2cally	created	in	
every	APp	

SharedPreferences	
•  Get	an	exis2ng	SharedPreference,	or	create	one	
otherwise	
–  SharedPreferences	<pref>	=	
getSharedPreferences(<pref_name>,	<mode>)	
•  <mode>=MODE_{PRIVATE|APPEND|..}	

•  pref.getString(<key>,	<default>)	
–  Get	the	value	for	<key>,	or	get	<default>	if	not	exists	yet	

•  Save	a	key/value	
–  SharedPreferences.Editor	ed	=	<pref>.edit();	
ed.put{String|Int|Bool|..}	(<key>,	<val>)	
ed.commit();	

•  Check	pref	XML	file	(use	Android	Device	Monitor)	
–  /data/data/<pkg>/shared_prefs/<pref_name>.xml	

SQLite	
•  Create	a	database	(or	open	if	exists)	

–  SQLiteDatabase	db	=	openOrCreateDatabase(<db_name>,	<mode>,	<cursor>)	
•  Run	SQL	

–  db.execSQL(<sql>)	
–  hBp://www.w3schools.com/sql/	

•  Run	SQL	with	cursor	
–  Cursor	<cur>	=	db.rawQuery(<SQL>,	null)	
–  <cur>.moveToFirst()	
–  <cur>.getString(<cur>.getColumnIndex(<col-name>))	
–  do	{..}	while(<cur>.moveToNext());	

•  Create	a	table	
–  create	table	if	not	exists	<table-name>	(<colname>	<type>,	..)		

•  Insert	values	
–  insert	into	<table>	values		

•  Close	the	database	
–  db.close	

•  Stored	in	
–  /data/data/<pkg>/databases/<db-name>	

