Broadcast Receivers
Content Providers

Activity Lifecycle

’—’(i))—y

onResume() onPause()

:

| o |
T LS e)ﬁ

onStart() onStop()

' Stopped
— Created >< onRestan()—(idd %
onCreate() (h) onDestroy()
| v

Broadcast Receiver

1. A subclass of BroadcastReceiver
— Need to override onReceive(<context>, <intent>)
— Can be defined as an anonymous class, or an inner
class, or a public class

2. Register the receiver for interested broadcast
using Intent Filter

— Two methods

* Java
e XML (Manifest file)

Define BroadcastReceiver

 Anonymous class
— BroadcastReceiver r = new BrodcastReceier() {
@Override

public void onReceive(Context c, Intent i) {
<my work to do>
}

}
* Inner class
— public class MainActivity extends AppCompatActivity {

private MyReceiver r = new MyReceiver();

public class MyReceiver extends BroadcastRecever {
@Override
public void onReceive(..) {..}

}
}

e Public class

— public class myReceiver extends BroadcastRecever {
@Override
public void onReceive(..) {..}

Register Receliver

* Java
— IntentFilter f=new IntentFilter(Intent.<ACTION>);
— registerReceiver(<receiver>, <filter>) // onResume
— unregisterReceiver(<receiver>) // onPause

* Manifest
— Create a public receiver class

— <receiver android:name=".<receiver class>" android:exported="true">
<intent-filter>
<action android:name="android.intent.action.*action*" />
</intent-filter>
</receiver>

Use broadcast for intra-App
communication

e Send a custom broadcast

— Intent i= new Intent();
i.setAction(<myaction>);
i.putExtra(..);
sendBroadcast(i);

e Receive a custom broadcast
— either Java or Manifest
— use <myaction>

Actions

<SDK>/platforms/data/broadcast_actions.txt
android.intent.action.AIRPLANE_MODE
android.intent.action.BATTERY_LOW
android.intent.action. TIME_TICK
android.intent.action.USER_UNLOCKED
android.hardware.action.NEW_PICTURE
android.hardware.action.NEW_VIDEO
android.intent.action.ACTION_POWER_CONNECTED
android.intent.action.ACTION_POWER_DISCONNECTED
android.intent.action.DATA_SMS_RECEIVED
android.intent.action.NEW_OUTGOING_CALL
android.net.wifi. WIFI_STATE_CHANGED

Content Provider

Manages a structured data set
Provide interfaces to connect to data in other process

Client uses ContentResolver object to interacts with an
instance of ContentProvider

ContentProvider receive request, perform action,
returns the result

Content
Resolver

Provider

delete()

Default Content Providers

Contacts — Contact details

Call log — All call history

Media Store — Audio/Video details
Browser — Bookmarks, history, etc.

Settings — All phone settings like Wi-Fi,
Bluetooth, Security, etc.

Default Content Providers

[Content Provider __[Intended Data

Browser Browser bookmarks, browser history, etc.
CallLog Missed calls, call details, etc.

Contacts Contact details

MediaStore Media files such as audio, video and images
Settings IDevice settings and preferences

Business Layer App App Ap p
A et Aoy Content Provider

Data Layer < lnternet . Files

Accessing Contacts & SMS

Get Content Provider
— getContentResolver()

Get Contacts with cursor
— Cursor c = getContentResolver().query(<uri>, nullx4)
— c.getString(c.getColumnindex(<col-name>))

Ilteration
— if(<cur>) while (<cur>.moveToNext()) {..};

Contacts

— URI = ContactsContract.Contacts.CONTENT _URI, or
content://com.android.contacts/contacts

— <col-name>: ContactsContract.PhoneLookup.DISPLAY _NAME
— permission: android.permission.READ_CONTACTS

SMS
— URI =Telephony.Sms.CONTENT_URI (content://sms)
— <col-name>: Telephony.Sms.BODY

— Only after KITKAT
* android.os.Build.VERSION.SDK_INT >= android.os.Build.VERSION_CODE.KITKAT
— permission: android.permission.READ_SMS

Storages

Shared Preferences

— Store private primitive data in key-value pairs.
Internal Storage

— Store private data on the device memory.
External Storage

— Store public data on the shared external storage.

SQLite Databases
— Store structured data in a private database.

Network Connection
— Store data on the web with your own network server.

Shared Preferences

Used to store simple state information to keep across
runs

— ex: Keep App settings/preferences, keep user input values
(key, value)

Saved in XLM file

Persistent

Stored in App’s sandbox

Not for sensitive information

SharedPreference instance is automatically created in
every APp

SharedPreferences

Get an existing SharedPreference, or create one
otherwise

— SharedPreferences <pref> =
getSharedPreferences(<pref name>, <mode>)
« <mode>=MODE_{PRIVATE|APPEND]|..}

pref.getString(<key>, <default>)
— Get the value for <key>, or get <default> if not exists yet
Save a key/value

— SharedPreferences.Editor ed = <pref>.edit();
ed.put{String|Int|Bool]|..} (<key>, <val>)
ed.commit();

Check pref XML file (use Android Device Monitor)
— /data/data/<pkg>/shared_prefs/<pref name>.xml

SQLite

Create a database (or open if exists)
— SQliteDatabase db = openOrCreateDatabase(<db_name>, <mode>, <cursor>)

Run SQL
— db.execSQL(<sql>)
— http://www.w3schools.com/sql/
Run SQL with cursor
— Cursor <cur> = db.rawQuery(<SQL>, null)
— <cur>.moveToFirst()
— <cur>.getString(<cur>.getColumnindex(<col-name>))
— do{..} while(<cur>.moveToNext()),
Create a table
— create table if not exists <table-name> (<colname> <type>, ..)
Insert values
— insert into <table> values
Close the database
— db.close
Stored in
— /data/data/<pkg>/databases/<db-name>

