Bound Services
& BroadcastReceivers

Activity Lifecycle

Resumed
‘ (visible)
onResume() onPause()
- ' Started " Paused
| k (V's‘_bb) (partially visible) \
onStart() onStop()

) Stopped
Created)4 onHestan()—(idd)ﬁ
onCreate() (h) onDestroy(]
|

Service Connection

MainActivity

ServiceConnection

mConnection

MyBoundService

mConnection

bindService() onBind()
IBinder
onServiceConnected() (Interface)
T MyBoundService
Call Back o
Method Call to Public Methods § Public Methods
l Clients Done

onServiceDisconnected()

unbindService()

No More
Bind

onDestroy()

! Call Back
Method

Bound Service

e Bound Service
— extends Service

— implements onBind()
* returns IBinder object
* called only once, by the first client

e Client

— call bindService()

* pass ServiceConnection instance
— with onServiceConnection(): gets IBinder object

* Only works if service and client belongs to the same

App
— Otherwise, use Messenger or AIDL

public class MyService extends Service {
private final IBinder myBinder= new MyBinder();

public class MyBinder extends Binder {
MyService getService() {
return MyService.this;
}
}

@Override

public IBinder onBind(Intent intent) {
return myBinder;

}

public f() {}
public g() {}

public class MyActivity extends Activity {
MyService myService;

@Override
protected void onStart() {
super.onStart();
Intent intent = new Intent(this, MyService.class);
bindService(intent, myCon, Context.BIND_AUTO_CREATE);
}
@Override
protected void onStop() {
super.onStop();
unbindService(myCon); }

private ServiceConnection mConnection = new ServiceConnection() {
@Override
public void onServiceConnected(ComponentName className, IBinder service) {
MyBinder binder = (MyBinder) service;
myService = binder.getService();
}
@Override
public void onServiceDisconnected(ComponentName arg0) {};

}

Broadcast Receiver

e Receiver
— Create an intent filter

* new IntentFilter(intent.<action>)

— Create a BroadcastReceiver (inner class)
* implement onReceive

— Register the receiver (in onResume())

* registerReceiver(<receiver>, <filter>)

— Unregister the receiver in onPause()

* unregisterReceiver(<receiver>)

Broadcast Receiver by Manifest

* Create a receiver class extending BroadcastReceiver
— implement onReceive

e <receiver android:name=".<receiver class>" android:exported="true">
<intent-filter>
<action android:name="android.intent.action.*action*" />
</intent-filter>
</receiver>

Send a Broadcast

Create a class

— new Intent()

Set action
— setAction(<action name>)

Add extra information
— putExtr()

sendBroadcast(<intent>)

Implicit Intent vs Broadcast Receiver

* Implicit Intent
— Sent by App
— Only received by one App/Service
— Wants a specific action to be performed
— Cause an Activity or Service to react

* Broadcast Receiver
— Sent by App or System
— Received by any interested Apps/Services
— Not asking a specific action to be performed
— Just notifying the events
— Cause minor state updates

