P
l'l
Android

— 7

CdN>=0ID

Widgets

TextView

— getText(), setText()
Button

— Event handling
EditText

— getText(), setText()
Seekbar

— setOnSeekBarChangelistener()
Progressbar

— setMax(), setProgress()
ToggleButton

— setOnCheckedChangelistener()
WebView

— loadUrl(), reload(), goBack(), goForward(), canGoBack(), canGoForward()

— <use-permission android:name="android.permission.INTERNET” />
— setWebViewClient(new WebViewClient);

Starting Activity with Data Passing

e Start activity without data passing

— startActivity(new Intent(this, <class>)); Who' Who's
. . . President? President?
 Start activity with data sent intent
— Caller O el —
* Intent intent = new Intent(this, <class>); -

* Intent.putExtra(<key>, <data>)
* startActivity(intent);
— Callee
» getintent().getStringExtra(<key>);

e Start activity with data back

— Caller
* startActivityForResult(<intent>, <request code>)
* onActivityResult(<request code>, <result-code>, <intent>)
— <intent>.getStringExtra(<key>)
— Callee
* Intent.putExtra(<key>, <data>)
* setResult(<result-code>, <intent>)
* Finish()

Sending Implicit Intents

* Sending implicit intents * Openamap

— <intent>=new Intent(Intent.<action>); — <action>=ACTION_VIEW
<intent>.setData(Uri.parse(<uri>); — <uri>="geo:<lat><lon>"
<intent>.putExtra(...) e Opena URLin Webrowser
<intent>.setType(...) — <action>=ACTION_VIEW
startActivity(<intent>) — <uri>="http://<url>”

— Chooser * Open an App Store
— startActivity(Intent.createChooser(<int>, <title>)); — <uri>="market://details?id=<id>"

— If App store is not available, try to catch
ActivityNotFoundException, and do in
browser

Send an email
— <action>=ACTION_SENDTO
— <uri>=“mailto:”

— <intent>.putExtra(
Intent.EXTRA_{EMAIL|SUBJECT|TEXT},
<data>)

— <intent>.setType(“text/plain”)
Sending a text

— Use Intent. ACTION_SEND,
Messaging Intent.EXTRA_TEXT

P 0o ® 1336

Services

* Service
— Perform long-running background operations
— No user interface
— Other application component can run it
— Continue to run when Activity stops
— Component can interact with it via IPC

* Service Types (by starting method)

— Started
* A component (eg. Activity) calls startService()
* No return. When finished, stop itself

— Bound
* A component calls bindService()

* Perform interactions in a sense of client-server concept
* Exists only if there is a bound component

* Note:
— A service can be both started (onStartCommand()) and bound (onBind())
— Whether started or bound, any component can use the service via Intent

* Unless declared private
— To avoid ANR (App Not Responding) error, use new thread for CPU-intensive work

Service Lifecycle

No need to call superclass
methods

onCreate

— initialization. eg, create thread for

music play

onDestroy

— release resources
onStartCommand

— start the job, until stopService()
onBind

— return IBinder for interface.
Continue until unbindService()
from all clients

Call to
startService()

7

onCreate()

.

onStartCommand()

v

Service
running

|

The service is stopped

by itself or a client

onDestroy()

v

Service
shut down

Unbounded
service

Call to
bindService()

y

onCreate()

.

onBind()

v

Clients are
bound to
service

|

All clients unbind by calling

unbindService()

onUnbind()

:

onDestroy()

v

Service
shut down

Bounded
service

Declaring a service

e AndroidManifest.xml

<manifest ... >

<application ... >
<service android:name=".ExampleService" />

</application>

</manifest>
* Private
— android;exported=“false”
° Eg

— <service android:name=".myService” android:exported=“false” />

Implementing Started Service

e (Client

— Start the service
* <intent> = new Intent(<context>, <service class>);
<intent>.putExtra(<key>, <value>);
startService(<intent>);
— Stop the service

» stopService(new Intent(this, <service class>));

* Service
— Create a service (by Android Studio)

e Declare in manifest
* Create a class that extends Service class

— Implement onStartCommand()
* <intent>.getStringExtra(<key>)

e Return <result_code>

— START_STICKY: when killed, recreate/restart with pending or null intent. Media services
— START_NOT_STICKY: when killed, recreate/restart with pending intent, otherwise not.
— START_REDELIVER_INTENT: when killed, recreate/restart with last intent, then pending.

Service with Threads

Service is done in the same process with hosting App

CPU-intensive or |I0-intensive job can affect the
performance of the App

Therefore, if needed, do the job in a thread

Solutions

— Extend IntentService class
* Creates a thread, and handle requests one after another
— Create your own threads

* If need multiple threads to handle requests simultaneously

e Covered later

Extending IntentService class

 IntentService does

Craete a worker thread to handle intents received by onStartCommand()
Create a work queue handled by onHandlelntent()

Stop service if queue is empty

Default onStartCommand() that enqueues intents

Default onBind() that returns null

* Youdo

Extend IntentService class

Implement constructor, calling super constructor with thread name as a
parameter

Implement onHandlelntent(<intent>)

Optionally, implement onCreate(), onStartCommand(), onDestroy()
* But call super class methods (eg., return super.onStartCommand())

MediaPlayer

https://developer.android.com/reference/android/media/
MediaPlayer.html

Play a media file such as mp3

Methods
— MediaPlayer.create(<context>, R.raw.<id>)

— setLoopling(<boolean>)

— start(), pause(), stop(), release(), isPlaying()
getDuration(), getCurrentPosition()

Listener

— setOnCompletionListener()
* OnCompletionListener.onCompleteion(MediaPlayer m)

