
Android	

Widgets	
•  TextView	

–  getText(),	setText()	
•  Bu6on	

–  Event	handling	
•  EditText	

–  getText(),	setText()	
•  Seekbar	

–  setOnSeekBarChangeListener()	
•  Progressbar	

–  setMax(),	setProgress()	
•  ToggleBu6on	

–  setOnCheckedChangeListener()	
•  WebView	

–  loadUrl(),	reload(),	goBack(),	goForward(),	canGoBack(),	canGoForward()	
–  <use-permission	android:name=“android.permission.INTERNET”/>	
–  setWebViewClient(new	WebViewClient);	

StarWng	AcWvity	with	Data	Passing	
•  Start	acWvity	without	data	passing	

–  startAcWvity(new	Intent(this,	<class>));	
•  Start	acWvity	with	data	sent	

–  Caller	
•  Intent	intent	=	new	Intent(this,	<class>);	
•  Intent.putExtra(<key>,	<data>)	
•  startAcWvity(intent);	

–  Callee	
•  getIntent().getStringExtra(<key>);	

•  Start	acWvity	with	data	back	
–  Caller	

•  startAcWvityForResult(<intent>,	<request	code>)	
•  onAcWvityResult(<request	code>,	<result-code>,	<intent>)		

–  <intent>.getStringExtra(<key>)	

–  Callee	
•  Intent.putExtra(<key>,	<data>)	
•  setResult(<result-code>,	<intent>)	
•  Finish()	

Who’s	
President?	
ASK	

Who’s	
President?	

Answer	

Trump	
Trump	

intent	

intent	

Sending	Implicit	Intents	
•  Sending	implicit	intents	
–  <intent>=new	Intent(Intent.<acWon>);	
<intent>.setData(Uri.parse(<uri>);	
<intent>.putExtra(...)	
<intent>.setType(…)	
startAcWvity(<intent>)	

–  Chooser	
–  startAcWvity(Intent.createChooser(<int>,	<Wtle>));	

•  Open	a	map	
–  <acWon>=ACTION_VIEW	
–  <uri>=“geo:<lat>,<lon>”	
•  Open	a	URL	in	Webrowser	
–  <acWon>=ACTION_VIEW	
–  <uri>=“h6p://<url>”	
•  Open	an	App	Store	
–  <uri>=“market://details?id=<id>”	
–  If	App	store	is	not	available,	try	to	catch	

AcWvityNotFoundExcepWon,	and	do	in	
browser	

•  Send	an	email	
–  <acWon>=ACTION_SENDTO	
–  <uri>=“mailto:”	
–  <intent>.putExtra(

Intent.EXTRA_{EMAIL|SUBJECT|TEXT},	
<data>)	

–  <intent>.setType(“text/plain”)		
•  Sending	a	text	
–  Use	Intent.ACTION_SEND,	

Intent.EXTRA_TEXT	

Services	
•  Service	

–  Perform	long-running	background	operaWons	
–  No	user	interface	
–  Other	applicaWon	component	can	run	it	
–  ConWnue	to	run	when	AcWvity	stops	
–  Component	can	interact	with	it	via	IPC	

•  Service	Types	(by	starWng	method)	
–  Started	

•  A	component	(eg.	AcWvity)	calls	startService()	
•  No	return.	When	finished,	stop	itself	

–  Bound	
•  A	component	calls		bindService()	
•  Perform	interacWons	in	a	sense	of	client-server	concept	
•  Exists	only	if	there	is	a	bound	component	

•  Note:	
–  A	service	can	be	both	started	(onStartCommand())	and	bound	(onBind())	
–  Whether	started	or	bound,	any	component	can	use	the	service	via	Intent	

•  Unless	declared	private	
–  To	avoid	ANR	(App	Not	Responding)	error,	use	new	thread	for	CPU-intensive	work	

Service	Lifecycle	

•  No	need	to	call	superclass	
methods	

•  onCreate	
–  iniWalizaWon.	eg,	create	thread	for	

music	play	
•  onDestroy	

–  release	resources	
•  onStartCommand	

–  start	the	job,	unWl	stopService()	
•  onBind	

–  return	IBinder	for	interface.	
ConWnue	unWl	unbindService()	
from	all	clients	

Declaring	a	service	

•  AndroidManifest.xml	

•  Private	
–  android;exported=“false”	

•  Eg	
–  <service	android:name=“.myService”	android:exported=“false”	/>	

ImplemenWng	Started	Service	
•  Client	

–  Start	the	service	
•  <intent>	=	new	Intent(<context>,	<service	class>);	

<intent>.putExtra(<key>,	<value>);	
startService(<intent>);	

–  Stop	the	service	
•  stopService(new	Intent(this,	<service	class>));	

•  Service	
–  Create	a	service	(by	Android	Studio)	

•  Declare	in	manifest	
•  Create	a	class	that	extends	Service	class	

–  Implement	onStartCommand()	
•  <intent>.getStringExtra(<key>)	
•  Return	<result_code>	

–  START_STICKY:	when	killed,	recreate/restart	with	pending	or	null	intent.	Media	services	
–  START_NOT_STICKY:	when	killed,	recreate/restart	with	pending	intent,	otherwise	not.	
–  START_REDELIVER_INTENT:	when	killed,	recreate/restart	with	last	intent,	then	pending.		

	

Service	with	Threads	

•  Service	is	done	in	the	same	process	with	hosWng	App	
•  CPU-intensive	or	IO-intensive	job	can	affect	the	
performance	of	the	App	

•  Therefore,	if	needed,	do	the	job	in	a	thread	
•  SoluWons	
–  Extend	IntentService	class	

•  Creates	a	thread,	and	handle	requests	one	ajer	another	

–  Create	your	own	threads	
•  If	need	mulWple	threads	to	handle	requests	simultaneously	
•  Covered	later	

Extending	IntentService	class	
•  IntentService	does	

–  Craete	a	worker	thread	to	handle	intents	received	by	onStartCommand()	
–  Create	a	work	queue	handled	by	onHandleIntent()	
–  Stop	service	if	queue	is	empty	
–  Default	onStartCommand()	that	enqueues	intents	
–  Default	onBind()	that	returns	null	

•  You	do	
–  Extend	IntentService	class	
–  Implement	constructor,	calling	super	constructor	with	thread	name	as	a	

parameter	
–  Implement	onHandleIntent(<intent>)	
–  OpWonally,	implement	onCreate(),	onStartCommand(),	onDestroy()	

•  But	call	super	class	methods	(eg.,	return	super.onStartCommand())	

MediaPlayer	
•  h6ps://developer.android.com/reference/android/media/

MediaPlayer.html	
•  Play	a	media	file	such	as	mp3	
•  Methods	

–  MediaPlayer.create(<context>,	R.raw.<id>)	
–  setLoopling(<boolean>)	
–  start(),	pause(),	stop(),	release(),	isPlaying()	

getDuraWon(),	getCurrentPosiWon()	

•  Listener	
–  setOnCompleWonListener()	

•  OnCompleWonListener.onCompleteion(MediaPlayer	m)	

