P
l'l
Android

— 7

CdN>=0ID

Ul: Overview

All Ul elements are either
— View
* Base class for widgets: Button, TextView, EditText, CheckBox, RadioButton

— ViewGroup
* Subclass of View
* Invisible container of Views or VieGroups

Layouts

— Subclasses of ViewGroup
— Linear Layout

— Relative Layout

— Frame Layout

— List View

— Grid View

— Table Layout

Linear Layout

Puts child views one after another, vertically or horizontally

— <LinearLayout android:orientation="horizontal" | "vertical">

<*view-1*.../>

<*view-N*.../>

</LinearlLayout>

Nested LinearLayouts for complex a layout
* <LinearlLayout *vertical*>

<TextView ... /> TextView
. .]
<LinearlLayout *horizontal*> EditText Button

<EditText ... />
<Button .../>

</LinearLayout>
</LinearLayout>

Controlling View(Group) Size

e <*yijewname*

android:layout_width=*size*
android:layout_height=*size*
android:layout_weight=*weight* />

(fill up the parent’s area)
(only as much as needed for the content)

* *size*=match_parent
| wrap_content

| # px
| #dp

(# pixels)

(# density-independent pixel (dip)
1 dp =1 px for 160 dpi,
thus 160 dp=1 inch for any screen density)

Hello

Hello

wid=match _p
hei=match_p

Hello

wid=wrap_c wid=match_p
Hei=wrap_c Hei=wrap_c

Hello

wid=wrap_c
Hei=match_p

Proportional View(Group) Size

* *weight™: number defining the proportion of the
view relative to sibling views' weights
e Ifviewl's weight=2, view2's weight=1
then viewl:view2 = 2:1, thus view1 is 2/3 wide of the
parent size
e <LlinearlLayout ..orientation=vertical>
<*viewl* ..height=wrap_cont/>
<*view2* ..height=wrap_cont/>
</LInearLayout>

Hello Hello Hello
World 5
Hello 1
Hello
Viewl: hei=wrap Viewl: weight=2 Viewl: weight=1

View2: hei=wrap View2: weight=1 View2: [weight=0]

LogCat & Log class

LogCat
— Command line tool to print system & app log messages
— App can output log messages to LogCat via Log class

LogCat window in Android Studio
— Shows logcat output to a dedicated window

Log class

Log.v(...) Less priority
Log.d (...)

Log.i(...)

Log.w (...)

Log.e (...) Higher priority

Output format
— Call Log.<priority>(<tag>, <message>) outputs:

<date> <time> <PID>-<TID>/<package> <priority>/<tag>: <message>

Button Click Handling

1. Implement OnClickListener in MainActivity
2. Inner-class OnClickListener in MainActivity
3. Through XML layout

<View ... android:id="@+id/*view_id*>
- Create an “ID” resource with id=*view_id*
- 4+ means: If doesn’t exist already, create

Event Handling by Listener Interface

* Make MainActivity class a View.OnClickListener
— Implement interface View.OnClickListner

* Implement (override) onClick method
— Call Log.d()

 Add MainActivity to the onClickListener of the button
— Get button object using findViewByld()

public class MainActivity extends AppCompatActivity implements OnClickListener {
@Override
protected void onCreate(...) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);

findViewByld(R.id.<id>).setOnClickListener(this);

}
@Override

public void onClick(View v) {...} // for multiple buttons, distinguish views by v.getld()
}

Event Handling by Inner-Class Listener

e Use inner-class listener (anonymous class
instance) to handle button click event

public class MainActivity extends AppCompatActivity {
@OQOverride
protected void onCreate(...) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);

findViewByld(R.id.<id>).setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {...}

Event Handling by XML & Handler

* Inlayout XML file, indicate handler of a view
— <Button ... android:onClick=“clickHandler” />

* In activity class, define handler method

public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(...) {
super.onCreate(savedIlnstanceState);
setContentView(R.layout.activity_main);

}
@Override

public void clickHandler(View v) {

}

Android Application Components

Broadca® Y
Receiver

Activity Navigation via Intent

* Activity represents a single screen with Ul

Navigate by Intent

>

Resume

Services

T .493% 01316

B a C k g rO U n d CO m p O n e n t < Running servic... SHOW CACHED PROCESSES

No user interface

B system 2.3 GB of RAM
« o B Apps 472 MB of RAM
Can be started by an activity

Examples

Settings 134 MB

- Z
T o
c®w
o
;s
g«a
s e
Q.
N
1723
(1]
°
=
(2]
(1
(7]

— Play music s
— Fetch data over the internet SSSSSS
- Alertthe user foranevent | Zo..
- .. ricni BN s

7= Remote Controls 1.4 MB
X . . =

Broadcast Receiver

 |ntent-based Publish-Subscribe Mechanism
e System events are broadcast to interested Apps

* App can broadcast, too

A) Battery low

Register for
Intent

Connect to a plug socket to
charge device and exit unused
applications in Task manager
Continued usage while
charging may prevent efficient
charging

Application

Broadcast
Receiver

Android

System
Application

broadcast S ,

OK Battery use

System broadcast

B.R. example: Call Recorder

72 Jll ™ 17:49

airtel Incoming Call

Receiver

Trump
1-999-999-9999

Start Recording
[Intent]

Service

Decline

' very intent
O C3MPINg:

Intent

An abstract description of an operation to be performed
Uses
— Launch an activity: startActivity(*)
— Send to broadcast receivers: sendBroadcast(*)
— Use Services: startService(*), bindService(*)
Explicit intent
— Specify target component with full class name
— Used to interact with same-app components
Implicit intent
— Specify the action to be performed
— Any component from any App can handle it IF intent filter matches
— Intent filter: condition on intents to receive
— Multiple matches = user decides

Create new Activity

* Right click on App—=> New—>Activity—=>Empty Activity
* |In Configure Activity, set Activity Name

— Create class <ActivityName>.java with onCreate()
- Create layout file activity @#S.xml

<?xml version="1.0" encoding="utf-8" ?>
<RelativeLayout xmlIns:android="_.."
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity_second"
android:layout_width="match_parent"
android:layout_height="match_parent” .. >
</Relativelayout>

- Add <activity> element in AndroidManifest.xml

<activity android:name=".SecondActivity"></activity>

Start an Activity (within an App)

java.lang.Object

L android.content.Context

¢ U Se EXpI IC It I nte nt & android.content.ContextWrapper
.. L android.view.ContextThemeWrapper
— New Intent(<Context>, <Activity class>) . android.app.Activity
. . . b android.support.v4.app.FragmentActivity
¢ ACtIVIty IS a SUbCIaSS Of ConteXt Class & android.support.v7.app.AppCompatActivity

* <Context>: this, <ActivityClass>.this

— Call startActivity(<intent>)

Intent intent = new Intent(this, SecondActivity.class);
startActivity(intent);

OR
startActivity(new Intent(this, SecondActivity.class);

* Adding a button click event (XML method)
— <Button ... android:onClick="*handler_name*">

Starting Activity: Three Methods

e (1%%) Start by class —
— startActivity(new Intent(this, <ActivityName>.class);

e (2") Start by class name <activity android:name="...">

— Intenti = new Intent(); </activity>

i.setClassName(<pkg_name>, <full class name>);
startActivity(i);

e (3rd) Start by Action Name
— startActivity(new Intent(<action_name>));

— In AndroidManifest.xml

* <activity android:name="*ActivityName*">
<intent-filter>
<action android:name="*action_name*" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>

— Tip: Set action name as <package _name>.<activity_name>

Drill: Start an Activity by 3 methods

MainActivity SecondActivity

By Class

By Class
Name

By Action
Name

Activity Lifecycle

,,
Leave
M—\

onResume() onPause()
onStart() onStop()

onCreateO onDeitroyO

IQ S—

Activity Lifecycle with Two Activities

Resumed

[> (visible) l

I

onResume() onPause()
<< a Started { Paused
> (visible) - _ (partially visible) ~
S onStart() onStop()
5
U P STV P R T
< —>| Created ¢——onRestart() —v ?r:old%:\?
onCreate()) E— N onDestroy()
lal Destroyed
\ Resumed
\g (visible) ./
onResume() onPause()
Started g Paused ‘
= [" (visble) " (partially visible) I
S onStart() onStop()
)
2 I S
| v Created j4—on Resxaﬂc)—{ ?IEI%%'::)’
onCreate() | S —— N/ onDestroy()
Destroyed

Showing Toast Message

* Toast
— A floating small message disappearing soon
— Toast t=Toast.makeText(<Context>, <msg>, <duration>)
— t.show();

Toast.makeText(this, "Hello World", Toast.LENGTH_SHORT).show();

* Toast Positioning
— t.setGravity(<location>, <x-offset>, <y-offset>)
— <location> = Gravity.{TOP|BOTTOM | CENTER}
[| Gravity.{LEFT|RIGHT}]

t.setGravity(Gravity.CENTER, O, 0)
t.setGravity(Gravity.TOP | Gravity.RIGHT, 0, 0)
t.setGravity(Gravity.CENTER, 100, 200)

Screen Orientation Handling

* Orientation
— Default: both Portrait and Landscape

— Fix to portrait or landscape: in AndroidManifes.xml
* <activity android:screenOrientation="portrait|landscape”>

* QOrientation Callback
— In AndroidManifest.xml

e <activity ... android:configChanges="orientation">
— InJava

* public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);
if(newConfig.orientation == Configuration.ORIENTATION_PORTRAIT)

{.}

Re-orientation & Internal states

e Re-orientation problem
— Destroy current Activity = Re-create it

= All internal states will be reset

* All changes after onResume()
* All variables’ values will be reset
* All Views’ values may be reset (true for old versions)

— Drill: define variable, change it, toast it
e Solution
— Save it before destroy: onSavelnstanceState()
— and Restore it after resume: onRestorelnstanceState()
— using class Bundle, for saving (key, value) pairs

Activity Lifecycle on Re-orientation

: Resumed
((visible) > \
onResume() onPause()
| on%avelnstanceState() |

)4 onRestart()

onSEan()

| onRestorelnstanceState() |
|

onCreate()

Re-orientation /roestroyed

I

Saving and Restoring States

* |n onSavelnstanceState(Bundle outState)
— outState.put<type>(<key>, <value>)
— Eg. putString(“name”, name)
— Eg. putParcelable(), putSerializable(), ...

* |n onRestorelnstanceState(Bundle savedState)
— savedState.get<type>(<key>)
— Eg. getString(“name”

* Drill

— Make an activity with an EditText, integer var. score, Button for
increasing score, Button for toasting score

— Implement on{Save | Restore}InstanceState() for saving
EditText’s text and score

— EditText: getText().toString(), setText(<string>)

