
Android	

UI:	Overview	
•  All	UI	elements	are	either	

–  View	
•  Base	class	for	widgets:	Bu;on,	TextView,	EditText,	CheckBox,	RadioBu;on	

–  ViewGroup	
•  Subclass	of	View	
•  Invisible	container	of	Views	or	VieGroups	

•  Layouts	
–  Subclasses	of	ViewGroup	
–  Linear	Layout	
–  RelaIve	Layout	
–  Frame	Layout	
–  List	View	
–  Grid	View	
–  Table	Layout	

Linear	Layout	
•  Puts	child	views	one	aLer	another,	verIcally	or	horizontally	

–  <LinearLayout	android:orientaIon="horizontal"|"verIcal">	
	<*view-1*…/>	
	…	
	<*view-N*…/>	

			</LinearLayout>	
•  Nested	LinearLayouts	for	complex	a	layout	

•  <LinearLayout	*verIcal*>	
	<TextView	…	/>	
	<LinearLayout	*horizontal*>	
	 	<EditText	…	/>	
	 	<Bu;on	…/>	
	</LinearLayout>	

					</LinearLayout>	
	

	

View-1	

View-2	

View-3	

View-4	

Vi
ew

-1
	

Vi
ew

-2
	

Vi
ew

-3
	

TextView	

EditText	 Bu;on	

Controlling	View(Group)	Size	
•  <*viewname*		

	 	android:layout_width=*size*	
	 	android:layout_height=*size*	
	 	android:layout_weight=*weight*	/>	

•  *size*=	match_parent				 	(fill	up	the	parent’s	area)	
	 	|	wrap_content	 	 	(only	as	much	as	needed	for	the	content)	
	 	|	#	px 	 	 	 	(#	pixels)	
	 	|	#	dp 	 	 	 	(#	density-independent	pixel	(dip)	
	 	 	 	 	 	 			1	dp	=	1	px	for	160	dpi,		
	 	 	 	 	 	 				thus	160	dp=1	inch	for	any	screen	density)	
	

wid=match_p	
hei=match_p	

Hello	

wid=wrap_c	
Hei=wrap_c	

Hello	

wid=match_p	
Hei=wrap_c	

Hello	

wid=wrap_c	
Hei=match_p	

Hello	

ProporIonal	View(Group)	Size	
•  *weight*:	number	defining	the	proporIon	of	the	

view	relaIve	to	sibling	views'	weights	
•  If	view1's	weight=2,	view2's	weight=1	

then	view1:view2	=	2:1,	thus	view1	is	2/3	wide	of	the	
parent	size	

•  <LinearLayout	..orientaIon=verIcal>	
	 	<*view1*	..height=wrap_cont/>	
	 	<*view2*	..height=wrap_cont/>	
</LInearLayout>	
	 		

View1:	hei=wrap	
View2:	hei=wrap	

Hello	 Hello	

view1	

view2	

2	

1	

World	

Hello	

View1:	weight=2	
View2:	weight=1	

View1:	weight=1	
View2:	[weight=0]	

Hello	

Hello	

2	

1	

LogCat	&	Log	class	
•  LogCat	

–  Command	line	tool	to	print	system	&	app	log	messages	
–  App	can	output	log	messages	to	LogCat	via	Log	class	

•  LogCat	window	in	Android	Studio	
–  Shows	logcat	output	to	a	dedicated	window	

•  Log	class	
–  Log.v	(…) 	Less	priority	
–  Log.d	(...)	
–  Log.i	(...)	
–  Log.w	(...)	
–  Log.e	(...) 	Higher	priority	

•  Output	format	
–  Call	Log.<priority>(<tag>,	<message>)	outputs:	

	<date>	<Ime>	<PID>-<TID>/<package>	<priority>/<tag>:	<message>	

Bu;on	Click	Handling	

1.  Implement	OnClickListener	in	MainAcIvity	
2.  Inner-class	OnClickListener	in	MainAcIvity	
3.  Through	XML	layout	

<View	… android:id=“@+id/*view_id*>	
-  Create	an	“ID”	resource	with	id=*view_id*	
-  +	means:	If	doesn’t	exist	already,	create	

Event	Handling	by	Listener	Interface	

•  Make	MainAcIvity	class	a	View.OnClickListener	
–  Implement	interface	View.OnClickListner	

•  Implement	(override)	onClick	method	
–  Call	Log.d()	

•  Add	MainAcIvity	to	the	onClickListener	of	the	bu;on	
–  Get	bu;on	object	using	findViewById()	

public	class	MainAcIvity	extends	AppCompatAcIvity	implements	OnClickListener	{	
				@Override	
				protected	void	onCreate(…)	{	
								super.onCreate(savedInstanceState);	
								setContentView(R.layout.ac#vity_main);												
								findViewById(R.id.<id>).setOnClickListener(this);	
				}	
				@Override	
				public	void	onClick(View	v)	{…}				//	for	mulIple	bu;ons,	disInguish	views	by	v.getId()	
	}	

Event	Handling	by	Inner-Class	Listener	

•  Use	inner-class	listener	(anonymous	class	
instance)	to	handle	bu;on	click	event	

public	class	MainAcIvity	extends	AppCompatAcIvity	{	
				@Override	
				protected	void	onCreate(…)	{	
									super.onCreate(savedInstanceState);	
									setContentView(R.layout.ac#vity_main);												
									findViewById(R.id.<id>).setOnClickListener(new	OnClickListener()	{	

	 	@Override	
				 	 	public	void	onClick(View	v)	{…}		

	}	
			}		
}	

Event	Handling	by	XML	&	Handler	

•  In	layout	XML	file,	indicate	handler	of	a	view	
–  <Bu;on	… android:onClick=“clickHandler”/>	

•  In	acIvity	class,	define	handler	method	

public	class	MainAcIvity	extends	AppCompatAcIvity	{	
				@Override	
				protected	void	onCreate(…)	{	
								 	super.onCreate(savedInstanceState);	
								 	setContentView(R.layout.ac#vity_main);	
				}	
				@Override	
				public	void	clickHandler(View	v)	{	
				}	
}	

Android	ApplicaIon	Components	

AcIvity	NavigaIon	via	Intent	

click	 Navigate	by	Intent	

click	Resume	

•  AcIvity	represents	a	single	screen	with	UI	

Services	

•  Background	component	
•  No	user	interface	
•  Can	be	started	by	an	acIvity	
•  Examples	
– Play	music	
– Fetch	data	over	the	internet	
– Alert	the	user	for	an	event	
– …	

Broadcast	Receiver	

•  Intent-based	Publish-Subscribe	Mechanism	
•  System	events	are	broadcast	to	interested	Apps	
•  App	can	broadcast,	too	

B.R.	example:	Call	Recorder	

Trump	

	
	
																Start	Recording	
																											[Intent]	

Broadcast	
Receiver	

Recording	
Service	

Incoming	Call	[intent]	

Intent	
•  An	abstract	descripIon	of	an	operaIon	to	be	performed	
•  Uses	

–  Launch	an	acIvity:	startAcIvity(*)	
–  Send	to	broadcast	receivers:	sendBroadcast(*)	
–  Use	Services:	startService(*),	bindService(*)	

•  Explicit	intent	
–  Specify	target	component	with	full	class	name	
–  Used	to	interact	with	same-app	components		

•  Implicit	intent	
–  Specify	the	acIon	to	be	performed	
–  Any	component	from	any	App	can	handle	it	IF	intent	filter	matches	
–  Intent	filter:	condiIon	on	intents	to	receive	
–  MulIple	matches	à	user	decides	

Create	new	AcIvity	

•  Right	click	on	AppàNewàAcIvityàEmpty	AcIvity	
•  In	Configure	AcIvity,	set	AcIvity	Name	

à Create	class	<AcIvityName>.java	with	onCreate()	
à Create	layout	file	acIvity_@#$.xml	

<?xml	version="1.0"	encoding="u>-8"?>	
<RelaBveLayout	xmlns:android=”…"	
				xmlns:tools="h;p://schemas.android.com/tools"	
				android:id="@+id/acIvity_second"	
				android:layout_width="match_parent"	
				android:layout_height="match_parent”	…>	
</RelaBveLayout>	

à Add	<acIvity>	element	in	AndroidManifest.xml	
<acBvity	android:name=".SecondAcBvity"></acBvity>	

	

	

Start	an	AcIvity	(within	an	App)	
•  Use	Explicit	Intent	

–  New	Intent(<Context>,	<AcIvity	class>)	
•  AcIvity	is	a	subclass	of	Context	class	
•  <Context>:	this,	<AcIvityClass>.this	

–  Call	startAcIvity(<intent>)	

•  Adding	a	bu;on	click	event	(XML	method)	
–  <Bu;on	… android:onClick=“*handler_name*”>	

Intent	intent	=	new	Intent(this,	SecondAcIvity.class);	
startAcIvity(intent);	

OR	
startAcIvity(new	Intent(this,	SecondAcIvity.class);	

StarIng	AcIvity:	Three	Methods	
•  (1st)	Start	by	class	

–  startAcIvity(new	Intent(this,	<AcIvityName>.class);	
•  (2nd)	Start	by	class	name	

–  Intent	i	=	new	Intent();	
i.setClassName(<pkg_name>,	<full	class	name>);	
startAcIvity(i);	

•  (3rd)	Start	by	AcIon	Name	
–  startAcIvity(new	Intent(<acIon_name>));	
–  In	AndroidManifest.xml	

•  <acIvity	android:name=”*AcIvityName*">	
				<intent-filter>	
								<acIon	android:name=”*acIon_name*"	/>	
								<category	android:name="android.intent.category.DEFAULT"	/>	
				</intent-filter>								
</acIvity>	

–  Tip:	Set	acIon	name	as	<package_name>.<acIvity_name>		

<acBvity	android:name=“…">	
</acBvity>	

Drill:	Start	an	AcIvity	by	3	methods	

MainAcIvity	 SecondAcIvity	

By	Class	

By	Class	
Name	

By	AcIon	
Name	

AcIvity	Lifecycle	

Launch	

ParIal	
Leave	

Full	
Leave	

Ac
Iv
ity

	A
	

Ac
Iv
ity

	B
	

AcIvity	Lifecycle	with	Two	AcIviIes	

Showing	Toast	Message	
•  Toast	
–  A	floaIng	small	message	disappearing	soon	
–  Toast	t=Toast.makeText(<Context>,	<msg>,	<duraIon>)	
–  t.show();	

	
•  Toast	PosiIoning	

–  t.setGravity(<locaIon>,	<x-offset>,	<y-offset>)	
–  <locaIon>	=	Gravity.{TOP|BOTTOM|CENTER}	

	 	 	 	[|	Gravity.{LEFT|RIGHT}]	

Toast.makeText(this,	"Hello	World",	Toast.LENGTH_SHORT).show();	

t.setGravity(Gravity.CENTER,	0,	0)	
t.setGravity(Gravity.TOP	|	Gravity.RIGHT,	0,	0)	
t.setGravity(Gravity.CENTER,	100,	200)	

Screen	OrientaIon	Handling	
•  OrientaIon	

–  Default:	both	Portrait	and	Landscape	
–  Fix	to	portrait	or	landscape:	in	AndroidManifes.xml	

•  <acIvity	android:screenOrientaIon=“portrait|landscape”>	

•  OrientaIon	Callback	
–  In	AndroidManifest.xml	

•  <acIvity	… android:configChanges="orientaIon">	
–  In	Java	

•  public	void	onConfiguraIonChanged(ConfiguraIon	newConfig)	{	
				super.onConfiguraIonChanged(newConfig);	
				if(newConfig.orientaBon	==	ConfiguraIon.ORIENTATION_PORTRAIT)	
	 	{…}	

}	

Re-orientaIon	&	Internal	states	
•  Re-orientaIon	problem	
– Destroy	current	AcIvity	à	Re-create	it	
à All	internal	states	will	be	reset	

•  All	changes	aLer	onResume()	
•  All	variables’	values	will	be	reset	
•  All	Views’	values	may	be	reset	(true	for	old	versions)	

– Drill:	define	variable,	change	it,	toast	it	
•  SoluIon	
–  Save	it	before	destroy:	onSaveInstanceState()	
–  and	Restore	it	aLer	resume:	onRestoreInstanceState()	
–  using	class	Bundle,	for	saving	(key,	value)	pairs	

AcIvity	Lifecycle	on	Re-orientaIon		

Re-orienta#on	

onSaveInstanceState()	

onRestoreInstanceState()	

Saving	and	Restoring	States	
•  In	onSaveInstanceState(Bundle	outState)	

–  outState.put<type>(<key>,	<value>)	
–  Eg.	putString(“name”,	name)	
–  Eg.	putParcelable(),	putSerializable(),	…	

•  In	onRestoreInstanceState(Bundle	savedState)	
–  savedState.get<type>(<key>)	
–  Eg.	getString(“name”)	

•  Drill	
–  Make	an	acIvity	with	an	EditText,	integer	var.	score,	Bu;on	for	
increasing	score,	Bu;on	for	toasIng	score	

–  Implement	on{Save|Restore}InstanceState()	for	saving	
EditText’s	text	and	score	

–  EditText:	getText().toString(),	setText(<string>)	

