
Android	

History	
•  Andy	Rubin	

–  worked	for	Apple,	WebTV,	Danger	Inc.	
–  in	2003,	start	a	company	Android,	Inc.	
–  Google	acquired	Android	in	2005	

•  in	2007,	Google	announced	(by	Andy) 		
–  Open	source	project	
–  Formed	Open	Handset	Alliance	

•  in	2008	
–  Android	developer	challenge	($1M)	
–  Android	market	launched	
–  AOSP	(Android	Open	Source	Project)	launched	
–  T-Mobile	G1	phone		

Android	versions	

Versions	on	Market	

InstallaUon	Overview	

•  Install	JDK	
– Set	JAVA_HOME	

•  Install	Android	Studio	
– Run	SDK	manager	to	install		

•  Install	GenymoUon	
–  Install	VirtualBox	

Create	the	First	App:	Hello	World	

•  Create	a	new	Android	project	with	empty	
AcUvity	
– App	name:	Hello	World	
•  Shown	in	Play	Store	

– App	domain:	mp2016f.mju.ac.kr	
– Package	Name:	kr.ac.mju.mp2016f.helloworld	
•  Reverse	domain	name	+	app	name	
•  Follows	Java’s	package	name	convenUon	
• Why	reverse	order?	

Project	Structure	
•  App/src	
–  Source	files	

•  App/src/main/java	
–  AcUvity	codes	

•  App/src/main/res	(resources)	
–  /Drawable:	images	for	layouts	
–  /Layout:	user	interface	defined	in	
XML	

–  /Values:	various	global	values	
defined	in	XML	

•  App/build.gradle	
–  Building	informaUon	

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image
and then insert it again.

Binding	between	Layout	&	Value	

•  app/src/main/res/layout/acUvity_main.xml	
– <TextView	….	android:text=“@string/app_name”	/
>	

•  app/src/main/res/values/strings.xml	
– <string	name=“app_name”>Hello	World</string>	

Binding	between	AcUvity	&	Layout	

•  AcUvity	calls	sets	content	view	to	a	layout	
–  setContentView(R.layout.<layout_name>)	
à sets	the	layout	of	this	acUvity	to	layout/<layout_name>.xml	

•  public	class	MainAcUvity	extends	AppCompatAcUvity	{	
				@Override	
				protected	void	onCreate(Bundle	savedInstanceState)	{	
								super.onCreate(savedInstanceState);	
								setContentView(R.layout.ac#vity_main);	
				}	
}	

@Override	
•  Java	annotaUon,	providing	meta	data	for	code	

–  Tells	compiler	about	class,	interface,	method,	fields,	local	variables,	…	
•  Built-in	Java	annotaUons	

–  Disappear	in	compiled	java	code	
–  @Deprecated	
–  @Override	
–  @SuppressWarnings	

•  Custom	Java	annotaUons	
–  Defined	by	user	
–  Used	for	Java	ReflecUon	

•  Why	@Override	is	useful?	
–  If	used,	compiler	checks	if	it	actually	overrides	
–  Gets	error	if	the	overriding	method	signature	doesn’t	match	any	superclass	

method	
–  Easy	to	understand	the	code

Manifest	file	
•  app/src/main/res/

AndroidManifest.xml	
•  Summary	of	the	App	

–  User	permissions	
–  Declare	AcUviUes,	Services,	

Content	Provider,	Broadcast	
Receiver,	…	

–  API	Level	
–  HW/SW	components	to	be	

used		

•  <?xml	version="1.0"	encoding="u9-8"?>	
<manifest	xmlns:android="h?p://
schemas.android.com/apk/res/android"	
				package="kr.ac.mju.mp2016f.helloworld">	
	
				<applicaFon	
								android:allowBackup="true"	
								android:icon="@mipmap/ic_launcher"	
								android:label="@string/app_name"	
								android:supportsRtl="true"	
								android:theme="@style/AppTheme">	
								<acFvity	android:name=".MainAcFvity">	
												<intent-filter>	
																<acFon	
android:name="android.intent.acFon.MAIN"	/>	
	
																<category	
android:name="android.intent.category.LAUNCHE
R"	/>	
												</intent-filter>	
								</acFvity>	
				</applicaFon>	
	
</manifest>	

UI:	Overview	
•  All	UI	elements	are	either	

–  View	
•  Base	class	for	widgets:	Buton,	TextView,	EditText,	CheckBox,	RadioButon	

–  ViewGroup	
•  Subclass	of	View	
•  Invisible	container	of	Views	or	VieGroups	

•  Layouts	
–  Subclasses	of	ViewGroup	
–  Linear	Layout	
–  RelaUve	Layout	
–  Frame	Layout	
–  List	View	
–  Grid	View	
–  Table	Layout	

Linear	Layout	
•  Puts	child	views	one	auer	another,	verUcally	or	horizontally	

–  <LinearLayout	android:orientaUon="horizontal"|"verUcal">	
	<*view-1*…/>	
	…	
	<*view-N*…/>	

			</LinearLayout>	
•  Nested	LinearLayouts	for	complex	a	layout	

•  <LinearLayout	*verUcal*>	
	<TextView	…	/>	
	<LinearLayout	*horizontal*>	
	 	<EditText	…	/>	
	 	<Buton	…/>	
	</LinearLayout>	

					</LinearLayout>	
	

	

View-1	

View-2	

View-3	

View-4	

Vi
ew

-1
	

Vi
ew

-2
	

Vi
ew

-3
	

TextView	

EditText	 Buton	

Controlling	View(Group)	Size	
•  <*viewname*		

	 	android:layout_width=*size*	
	 	android:layout_height=*size*	
	 	android:layout_weight=*weight*	/>	

•  *size*=	match_parent				 	(fill	up	the	parent’s	area)	
	 	|	wrap_content	 	 	(only	as	much	as	needed	for	the	content)	
	 	|	#	px 	 	 	 	(#	pixels)	
	 	|	#	dp 	 	 	 	(#	density-independent	pixel	(dip)	
	 	 	 	 	 	 			1	dp	=	1	px	for	160	dpi,		
	 	 	 	 	 	 				thus	160	dp=1	inch	for	any	screen	density)	
	

wid=match_p	
hei=match_p	

Hello	

wid=wrap_c	
Hei=wrap_c	

Hello	

wid=match_p	
Hei=wrap_c	

Hello	

wid=wrap_c	
Hei=match_p	

Hello	

ProporUonal	View(Group)	Size	
•  *weight*:	number	defining	the	proporUon	of	the	

view	relaUve	to	sibling	views'	weights	
•  If	view1's	weight=2,	view2's	weight=1	

then	view1:view2	=	2:1,	thus	view1	is	2/3	wide	of	the	
parent	size	

•  <LinearLayout	..orientaUon=verUcal>	
	 	<*view1*	..height=wrap_cont/>	
	 	<*view2*	..height=wrap_cont/>	
</LInearLayout>	
	 		

View1:	hei=wrap	
View2:	hei=wrap	

Hello	 Hello	

view1	

view2	

2	

1	

World	

Hello	

View1:	weight=2	
View2:	weight=1	

View1:	weight=1	
View2:	[weight=0]	

Hello	

Hello	

2	

1	

LogCat	&	Log	class	
•  LogCat	

–  Command	line	tool	to	print	system	&	app	log	messages	
–  App	can	output	log	messages	to	LogCat	via	Log	class	

•  LogCat	window	in	Android	Studio	
–  Shows	logcat	output	to	a	dedicated	window	

•  Log	class	
–  Log.v	(…) 	Less	priority	
–  Log.d	(...)	
–  Log.i	(...)	
–  Log.w	(...)	
–  Log.e	(...) 	Higher	priority	

•  Output	format	
–  Call	Log.<priority>(<tag>,	<message>)	outputs:	

	<date>	<Ume>	<PID>-<TID>/<package>	<priority>/<tag>:	<message>	

