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REVIEW: FEATURES
FREQUENCY-DOMAIN
FOURIER TRANSFORM



First step: Feature

Raw data is not appropriate for analysis
Feature: (statistical) characteristic of data
Best feature-set depends on the problem

Examples
— Average
— Variance
— Energy
— Entropy

— Correlation



Features

* Signal average
— (ax*/ ay*/ az*)/

— the orientation w.r.t. gravity direction
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Features

* Variance:
— Deviation from the average
_ (Vx/ Vy/ Vi

— Level of instability
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Features

* Signal energy (in signal processing)
— Area between the signal and the time axis

— Integrate square of f




Time domain representation is a projection of the signal (in time-freg-

amp space) onto the time plane

Amplitude

A_

Y N

T

Frequency domain rep. is a projection of the signal (only positive
amplitude part) onto the frequency plane
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Fourier Transform
Fourier Series



Quiz

* Provide definition, how to compute, and
interpretation of the following accelerometer
features

— Signal average, variance, energy, entropy,

correlation, ...



Quiz

* Describe time-domain representation and

frequency-domain representation of a signal



Quiz

* Explain how Fourier Transform can convert a
signal representation from time-domain to

frequency-domain



Entropy

* Original concept from Thermodynamics

— Level of Randomness or disorder, having tendency

* Definition in Information Theory

— measure of the amount of (new) information contained in a

message
— H(M)
* Proposed by Claude Shannon

— “Father of Information Theory”

— Proved perfect secrecy of One-time Pad




Shannon'’s Entropy

 CommunicationTheory

m

Alice channel Bob

— How much information can be delivered at most?

* Channel capacity

— How well a coding scheme can deliver information?

— How much information can be delivered with noise?



Shannon'’s Entropy

* Cryptography

Bob

Alice P Encryption E() } C=E(P)

— H(P): Information contained in the plaintext P

— H(P|C): Information contained in P when ciphertext Cis

known

— Perfect secrecy: No additional information is given about
P even if a ciphertext Cis given to the adversary
* H(P)=H(P|C) forOne-time Pad



Amount of Information

* Which one has more information?
—"l'am a boy”
—"“l'am a boy in Korea”

— "l am a boy in Korea, who goes to MJU”

* Length?



Amount of Information

* Which one has more information?
— "“lam a human”
— “lam a boy”

— "“lam John”

* Information # message size

— We can assume all message has the same length

\\

— lam a boy”



Amount of Information

What is the probability of a college student to say

— “lam a boy?”

What is the probability of a college student to say

— “lam John?”
Information("l am John”) > Information(*l am a boy")

Rare message implies more information



Speaker Model

* What s speaking?
— Pick a message from the message database

— Each message has a probability to be chosen

* A speaker whose words are difficult to expect says more

information




Message Distribution

* Speakers have different message distribution

7 \

— There are 4 messages possible: “hi”, “hey”, “bye”, “ciao”

— Alice always says “hi”

— Bob says only “hi” or “"bye” with same probability

— Cathy says “bye” half the time, and “hi” and “hey” half the
time with equal probability

7\

— David says “hi”, “hey”, “bye”, “ciao” with equal probability



Message Distribution
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Entropy: Formula

* The entropy (in bits) of a discrete random variable M:

* Interpretation

— Average # of bits to express each message

e Maximized when uniform

— p,, is the same for all messages



Entropy of A, B, C, D
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Features (revisited)

Frequency-domain entropy

— Differentiate between walking and cycling
What is frequency domain?
What is Entropy?

What is frequency-domain entropy?



Frequency-domain Entropy

* Given asignal in time-domain, convert to frequency-

domain, normalize it, then compute entropy
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Correlation

» Degree of dependency between two signals

WTI Crude vs. US Dollar
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The Amazing Dollar - Gold Correlation

Source: Yahoo! finance
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Correlation Coefficient

* Giventwo random variables X, Y, corr-coef is

* Given two series of n measurements x; and y;

* Interpretation
— +1: perfect dependency
— 0: no dependency

— -1: opposite dependency



