

Activity Recognition

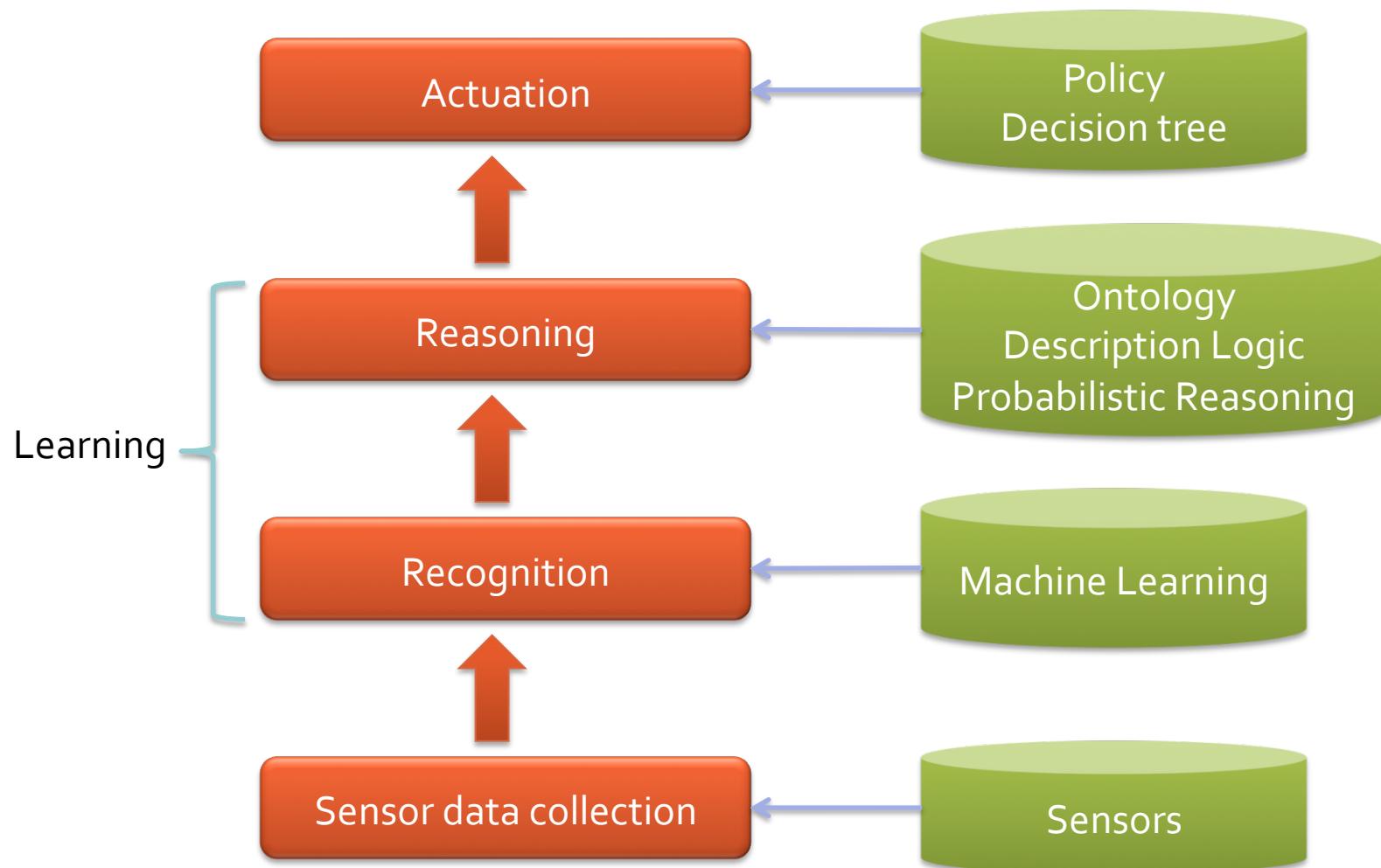
Enterprise Computing

Minho Shin

2011. 10. 5

REVIEW: MOBILE SENSING & ACCELEROMETER

Data processing of HMC



Supervised Learning

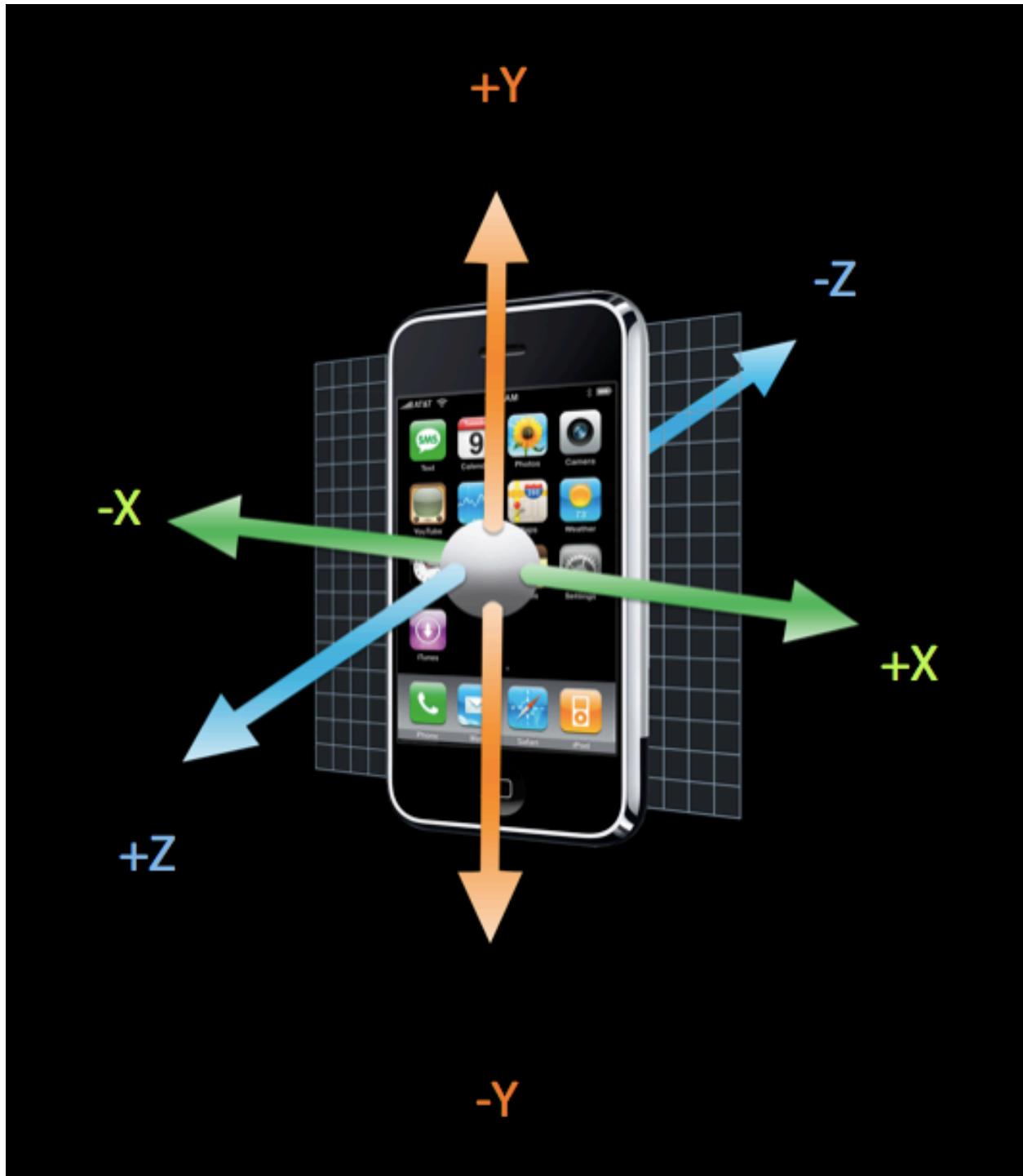
- Modeling → Training → Testing
- Modeling: decide a statistical model
- Training: Learn model parameters from training data
- Testing: Apply this model to the real data
- Data labeling
 - Supervised: all data is labeled
 - Semi-supervised: some data is labeled
 - Unsupervised: no data is labeled

Challenges: Sensing

- Continuous Sensing
 - Require multitasking and background processing
 - e.g., continuous accelerometer sampling
 - Heavy computation load
 - Interpreting audio data
 - Energy consuming
 - GPS reading requires a lot of energy (20 hrs down to 6 hrs)
 - Cloud-helped sensing
 - Duty cycling
 - Special processor architecture for continuous sensing (by Microsoft)

What is accelerometer?

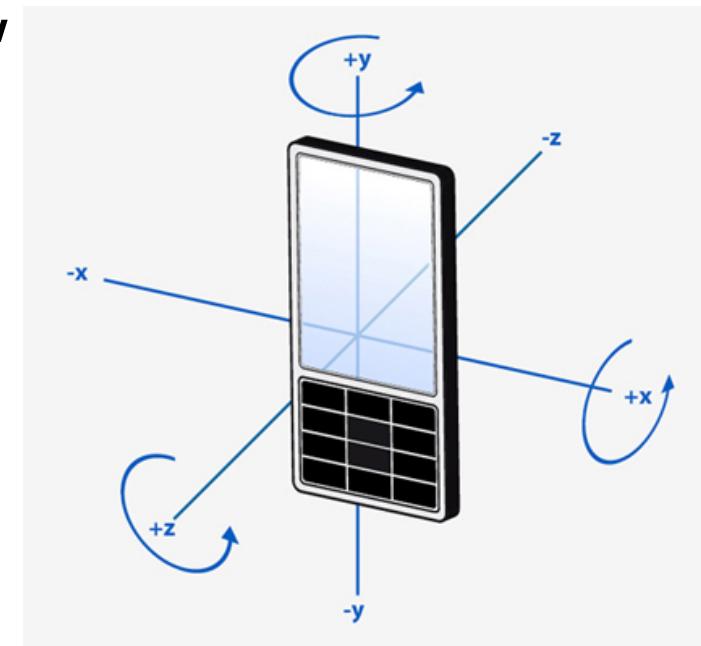
- An electromechanical device that measures acceleration
 - Static: gravity
 - Dynamic: moving, shaking, vibrating...
- Used for
 - Tilt: check the direction of the gravity
 - Acceleration to a particular direction
 - IBM/Apple use accelerometer to protect hard disk from scratch when falling
 - Launch an air bag in a car



gyrometer

What is Gyroscopic sensor?

- Measures the rotational movement around the three axes
- Combined with accelerometer, it senses detailed orientation
- [Accel. vs Gyroscope](#)
- [Gyroscope & iPhone](#)



What can we do with accelerometer?

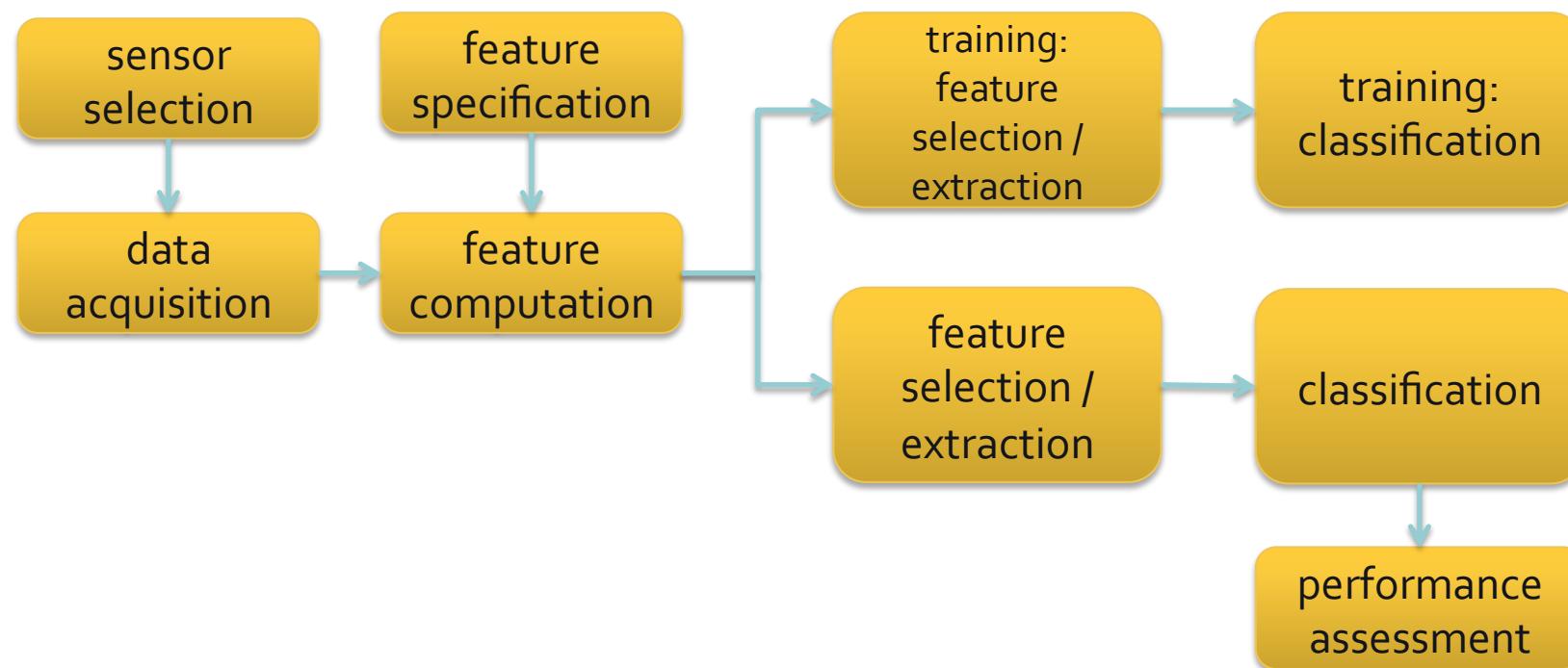
- Activity recognition
- Transportation recognition

Activity Recognition

- Physical activity
 - static posture: standing, sitting, lying
 - dynamic motions: walking, running, stair climbing, cycling
- Useful for
 - Bio-medical
 - metabolic energy expenditure
 - rehabilitation engineering: walking aid
 - Contextual knowledge
 - Human-computer interaction
 - Behavior prediction

Classification with supervised learning

- Classification: determine the type of activity

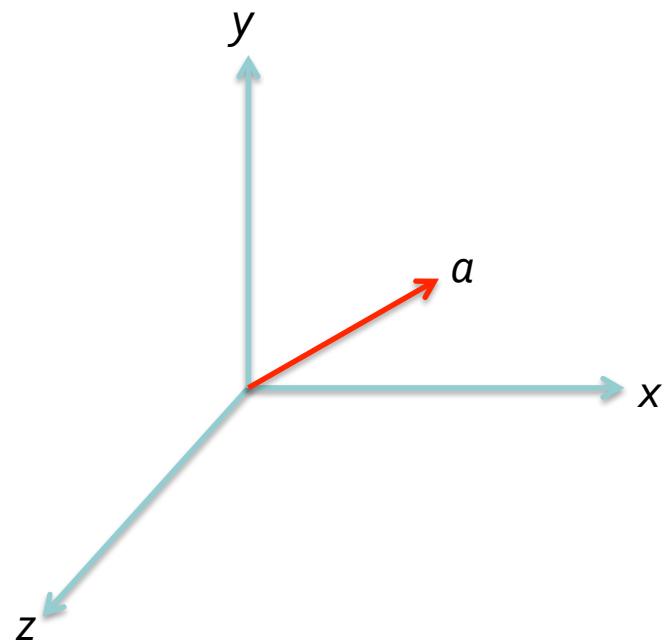


First step: Feature

- Raw data is not appropriate for analysis
- Feature: (statistical) characteristic of data
 - average, variance, ...
- Best feature-set depends on the problem

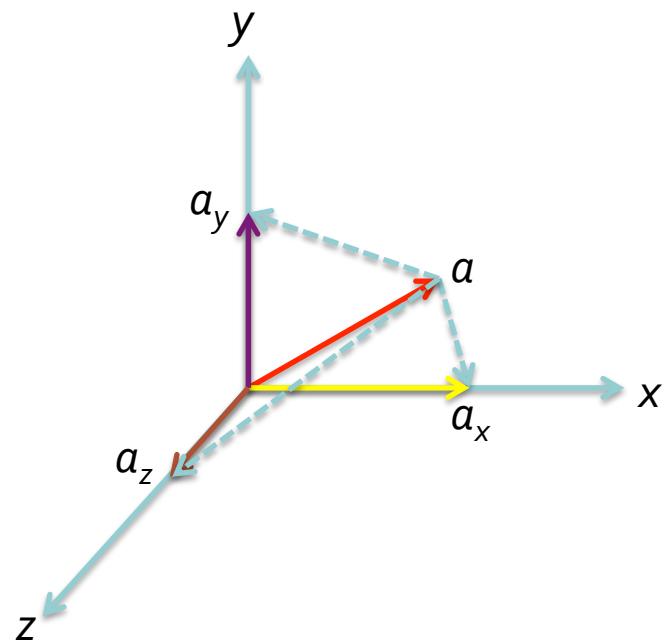
Accelerometer

- Measures an acceleration a



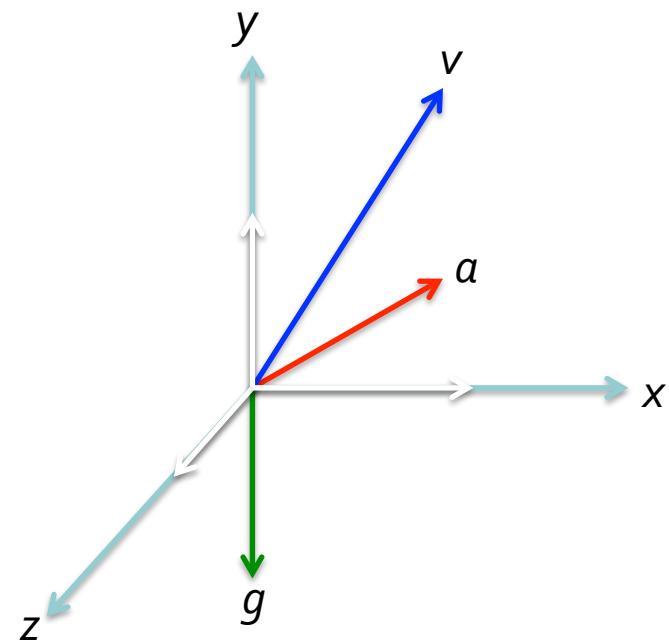
Accelerometer

- Measures an acceleration a
- Measures by the projections onto three axes a_x , a_y , a_z



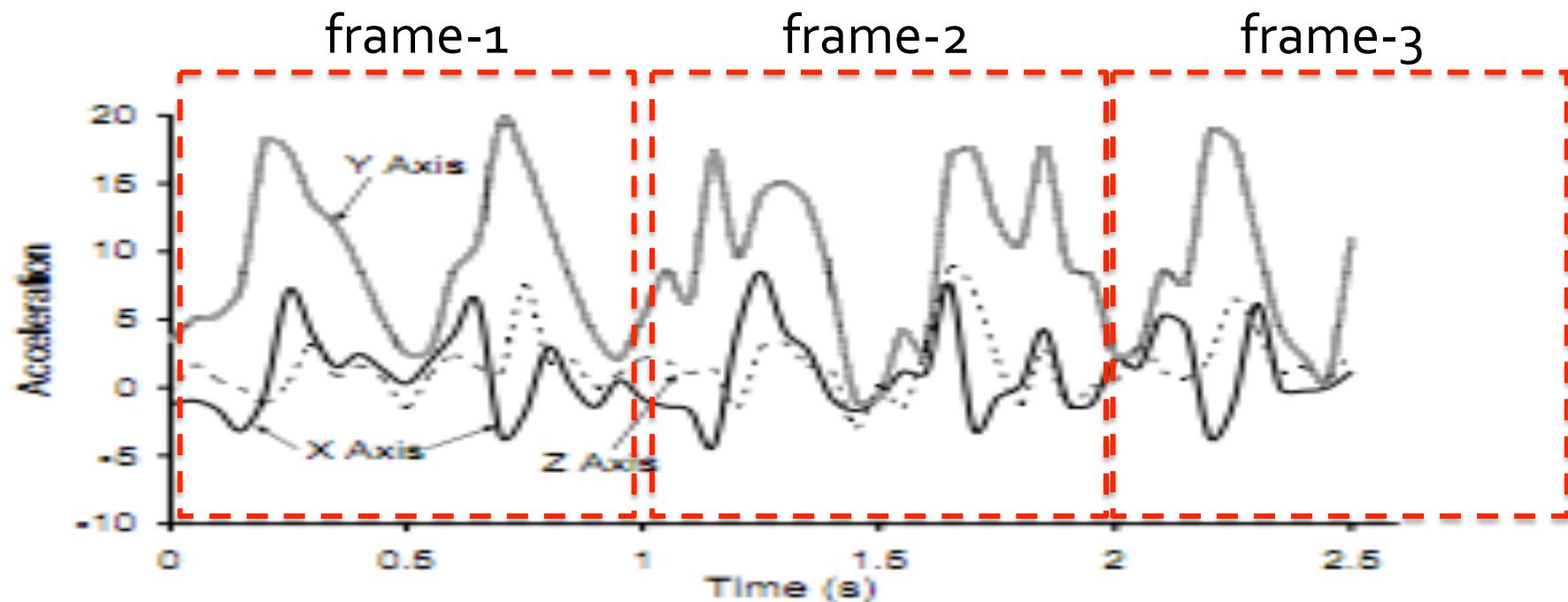
Accelerometer

- Measures an acceleration a
- Measures by the projections onto three axes a_x , a_y , a_z
- Acceleration is composed of (sum of)
 - Gravity (g)
 - constant force
 - low-frequency (DC component)
 - Movement (v)
 - temporary force
 - high-frequency (AC component)



Data frame

- Features are evaluated within sliding windows with finite and constant width

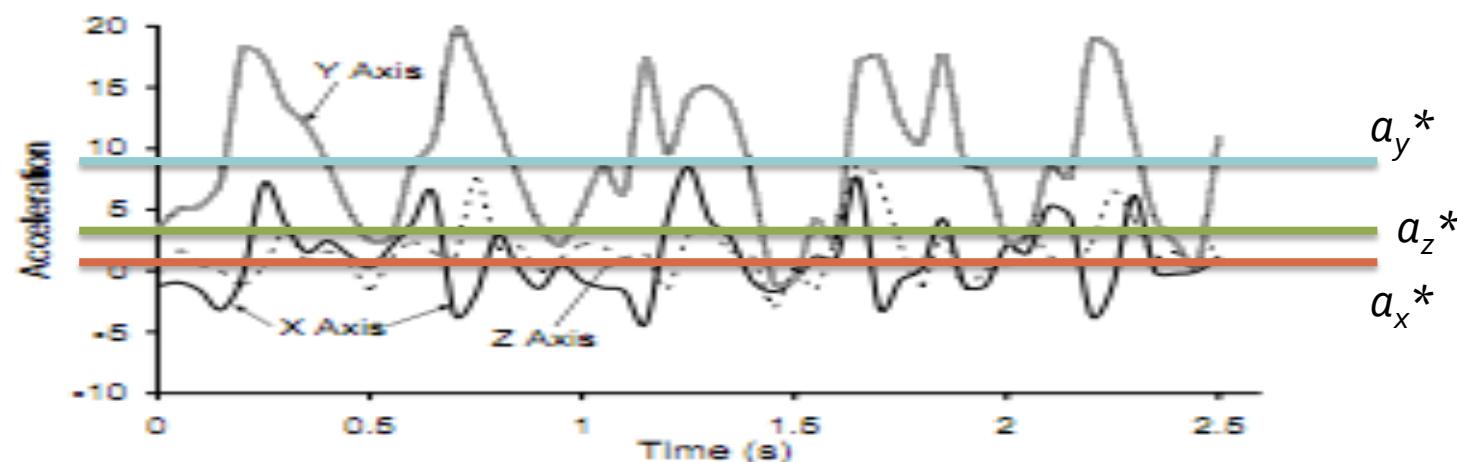


Features

- Signal average

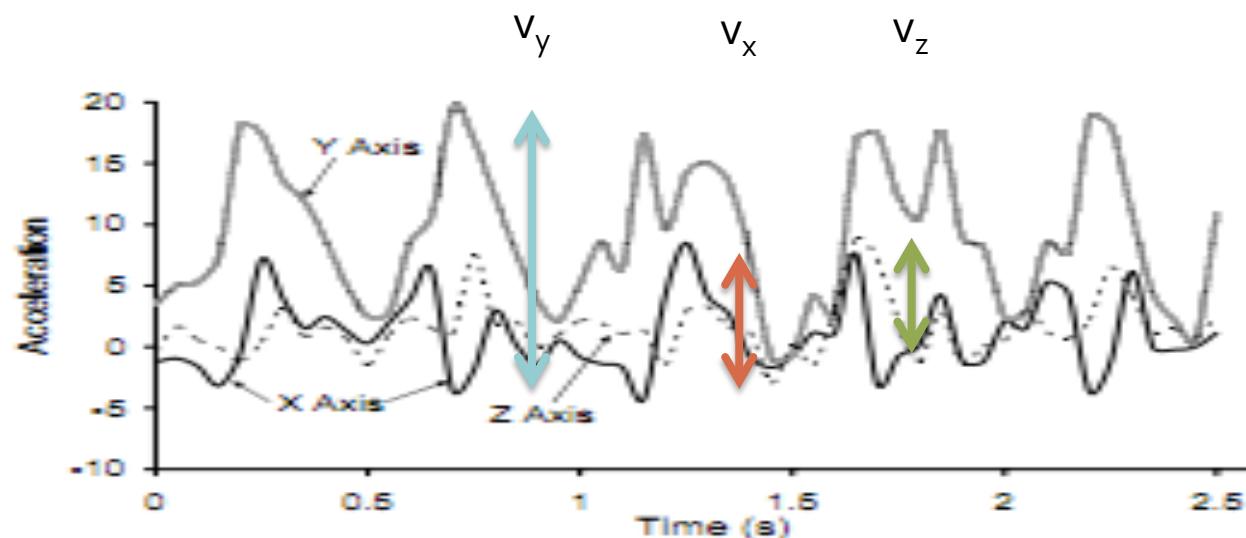
- $(a_x^*, a_y^*, a_z^*), a_x^* = \frac{a_1 + a_2 + \dots + a_n}{n}$

- the orientation w.r.t. gravity direction



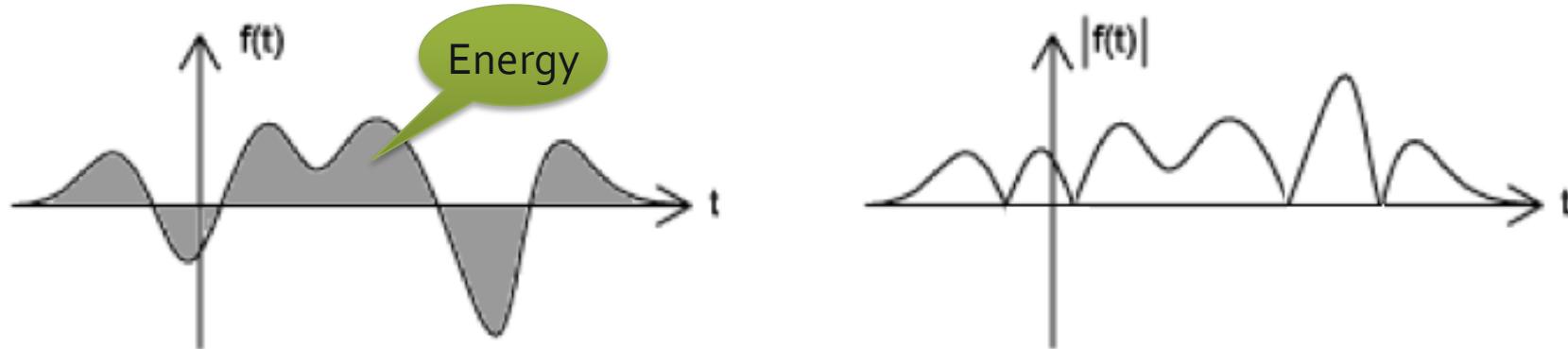
Features

- Variance:
 - Deviation from the average
 - (v_x, v_y, v_z) ,
 - Level of instability



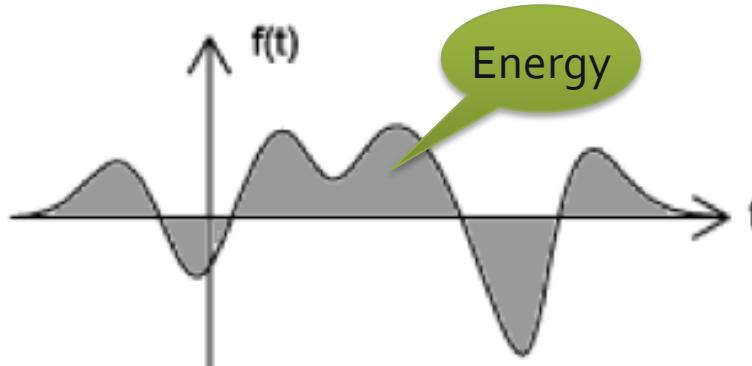
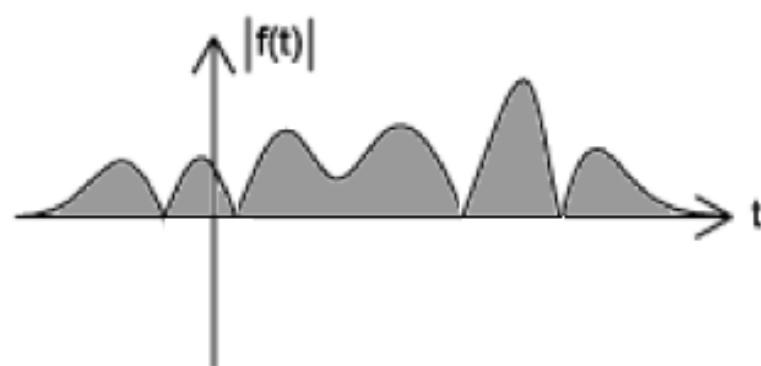
Features

- Signal energy (in signal processing)
 - Area between the signal and the time axis
 - Negative integration reduce total energy!



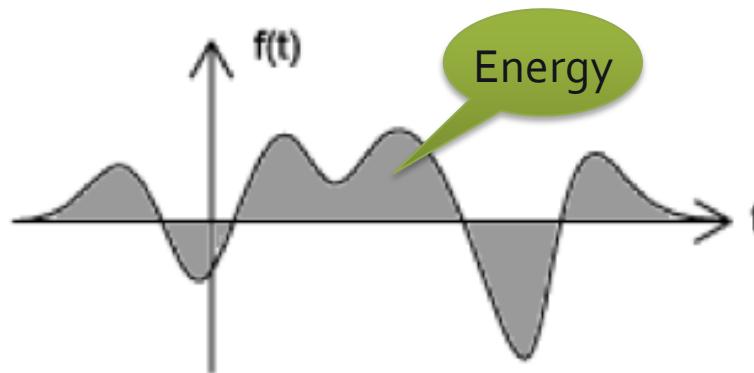
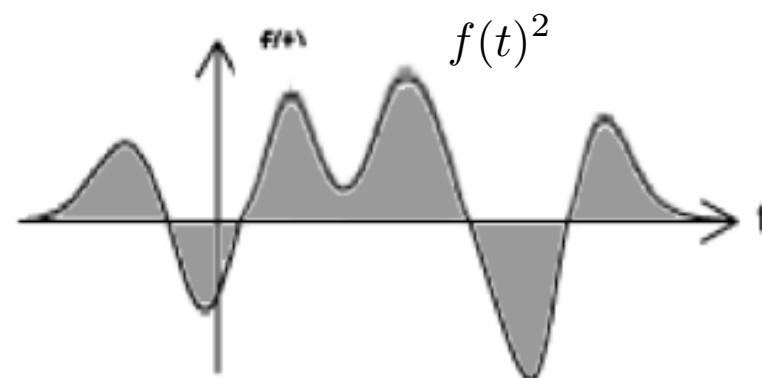
Features

- Signal energy (in signal processing)
 - Area between the signal and the time axis
 - Integrate absolute value of f
 - Difficult to handle



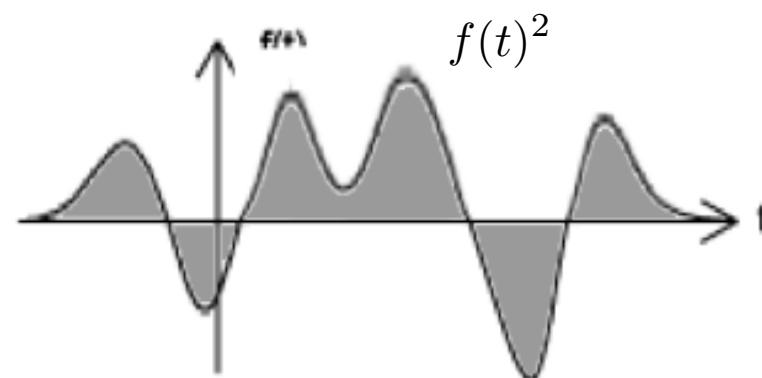
Features

- Signal energy (in signal processing)
 - Area between the signal and the time axis
 - Integrate square of f
 -



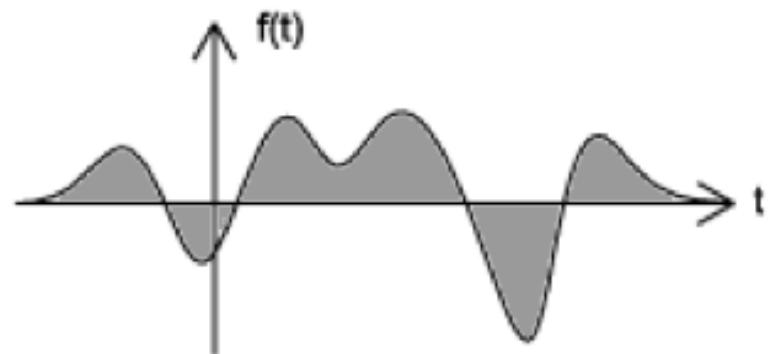
Features

- Signal energy (in signal processing)
 - Area between the signal and the time axis
 - Integrate square of f
 -



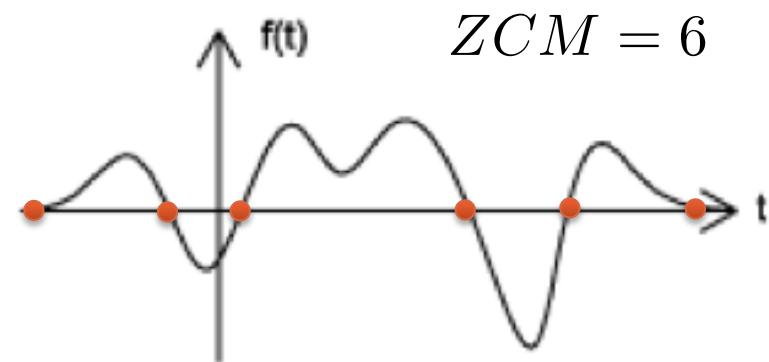
Actigraphy

- Activity level: Actigraphy
 - Measures activity level of a person
 - Used for diagnosing sleep disorder
 - [Fitbit Tracker](#)
 - [WakeMate for iPhone](#)
 - Three methods: ZCM, PIM, TAT
 - Proportional Integral Mode (PIM)

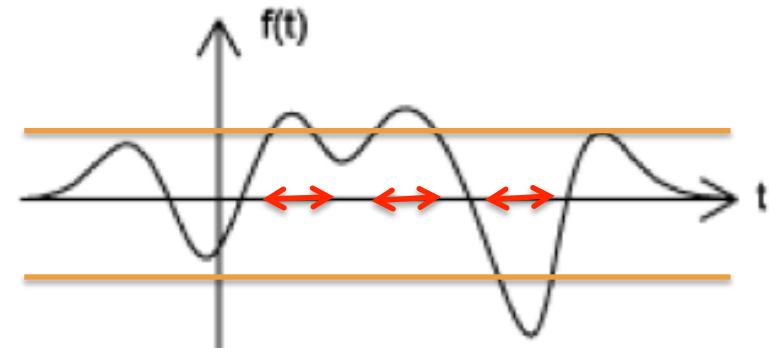


Actigraphy

- Zero Crossing Mode (ZCM)



- Time Above Threshold (TAT)

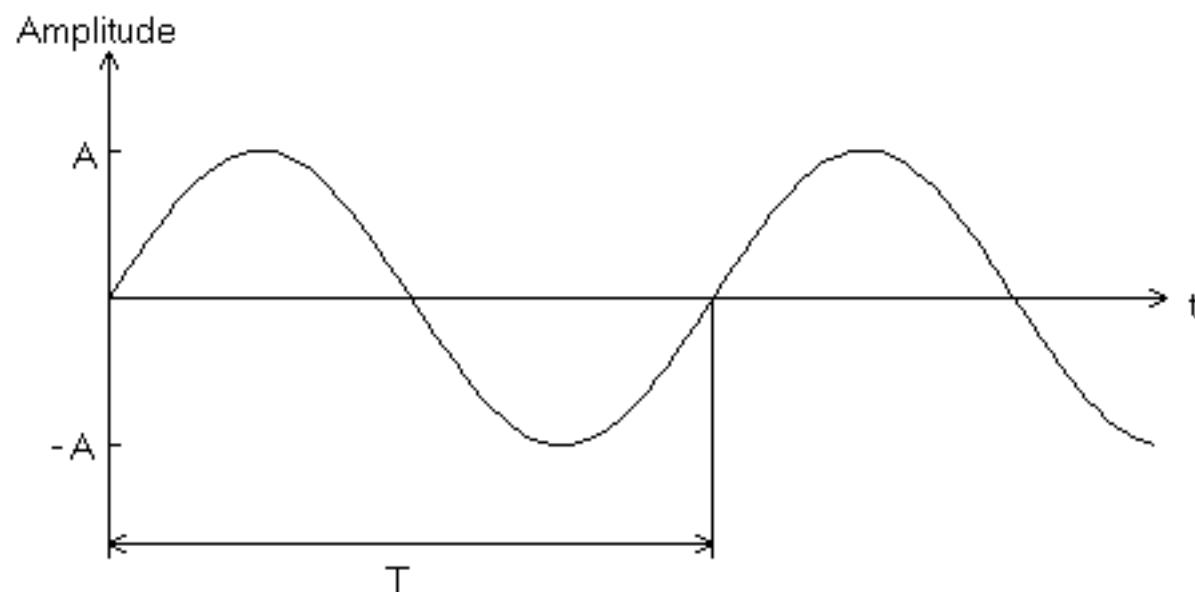


Features

- Frequency-domain entropy
 - Differentiate between walking and cycling
- What is *frequency domain*?

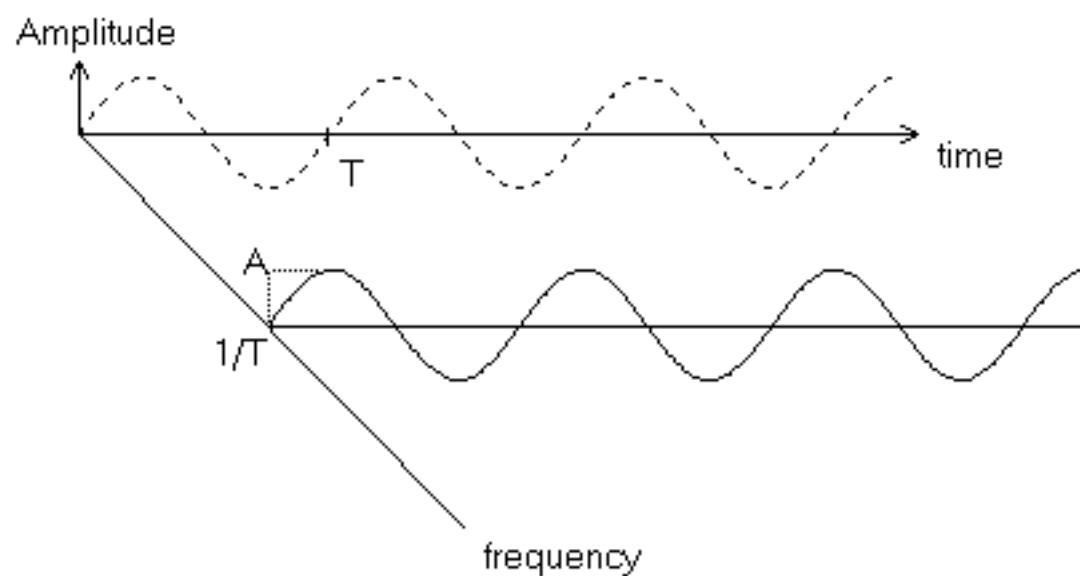
Representation of Signal

- Most common representation of signals and waveforms is in the *time domain*
- *Time plane*: a plane defined by *time* and *amplitude*

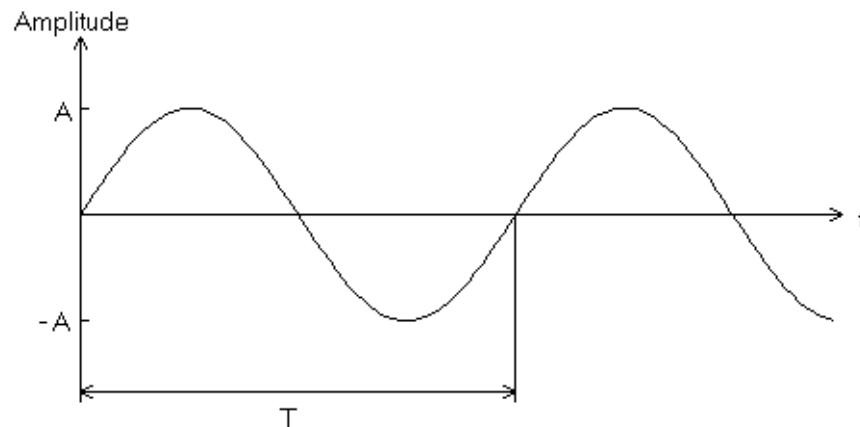


Frequency Axis

- We can add *frequency* axis to the time plane
- frequency & amplitude defines *frequency plane*



- Time domain representation is a projection of the signal (in time-freq-amp space) onto the time plane



- Frequency domain rep. is a projection of the signal (only positive amplitude part) onto the frequency plane



Frequency domain

- Frequency domain representation is just another way to represent a signal
- But it loses some information, i.e., phases
 - So, time domain representation has more information than freq. domain
- Fortunately, freq. domain provides useful information: Frequency Domain Analysis

Fourier Transform

- How can we represent a general signal in frequency domain?
 - Fourier Transformation
- Fourier found that *any* signal can be represented by the sum of infinite number of *periodic* waveforms (or approximated by finite such waveforms)

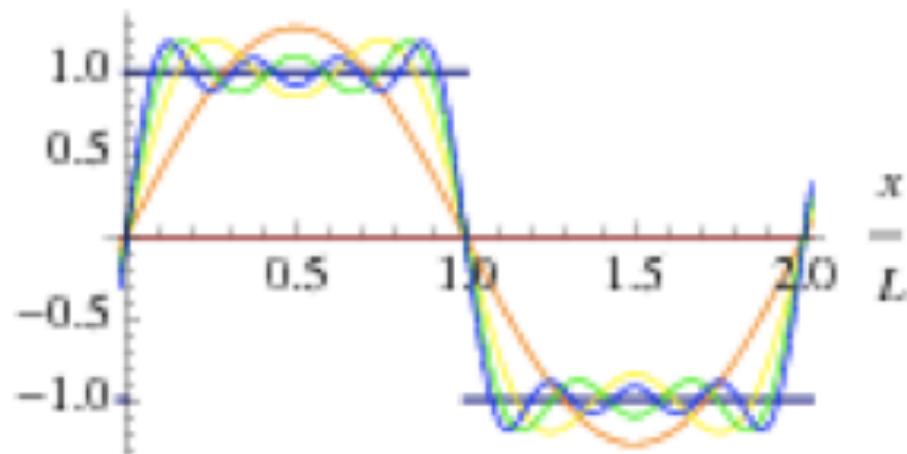
Fourier Series

- Joseph Fourier submitted a paper in 1807 to Academy of Sciences of Paris, describing Fourier Series, but rejected for lack of mathematical rigor. Later honored to him

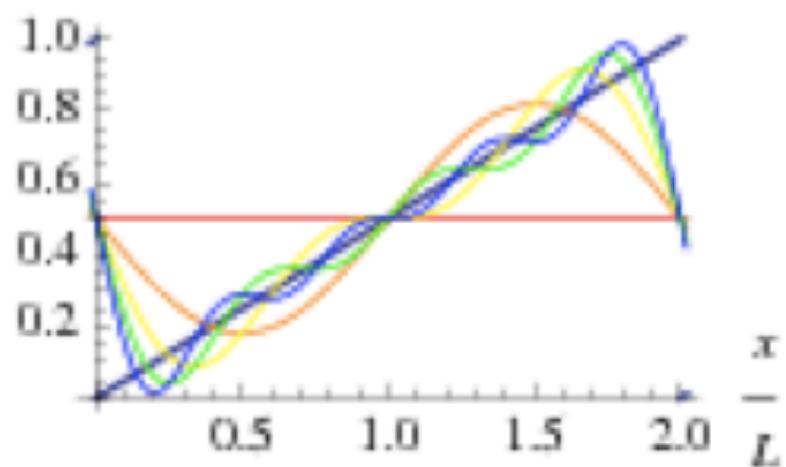
$$F(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega_T t + b_n \sin \omega_T t)$$

- Using only a finite series (say the first k terms), we can approximate any signals with a finite sum of sin/cos waves

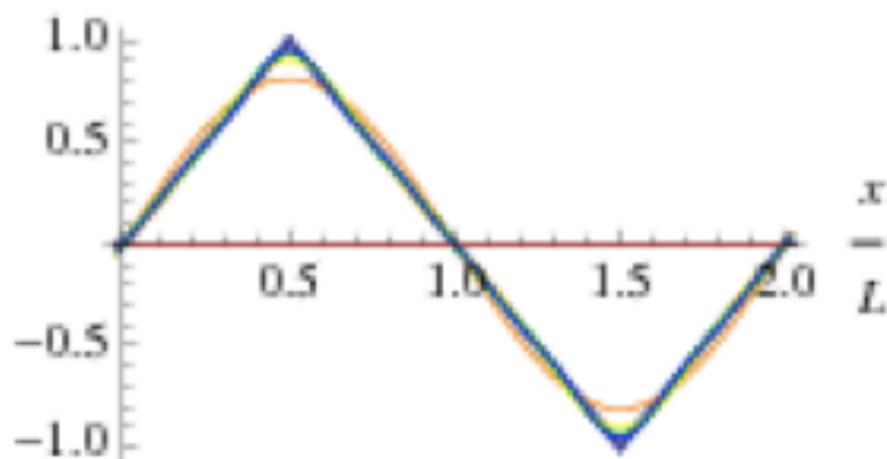
square wave



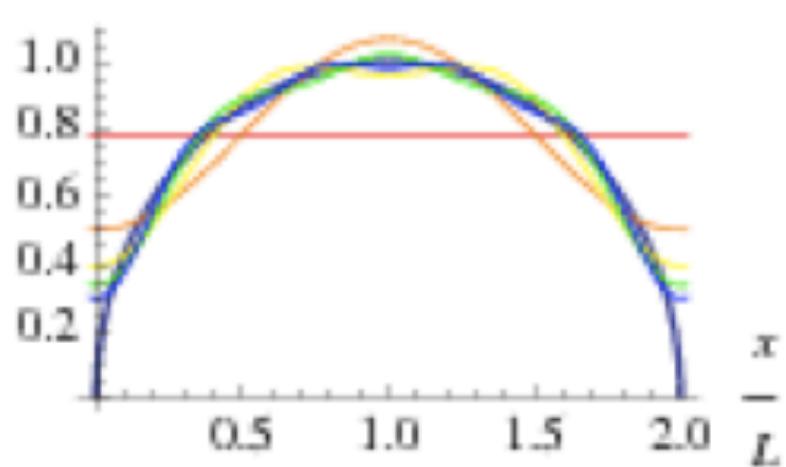
sawtooth wave

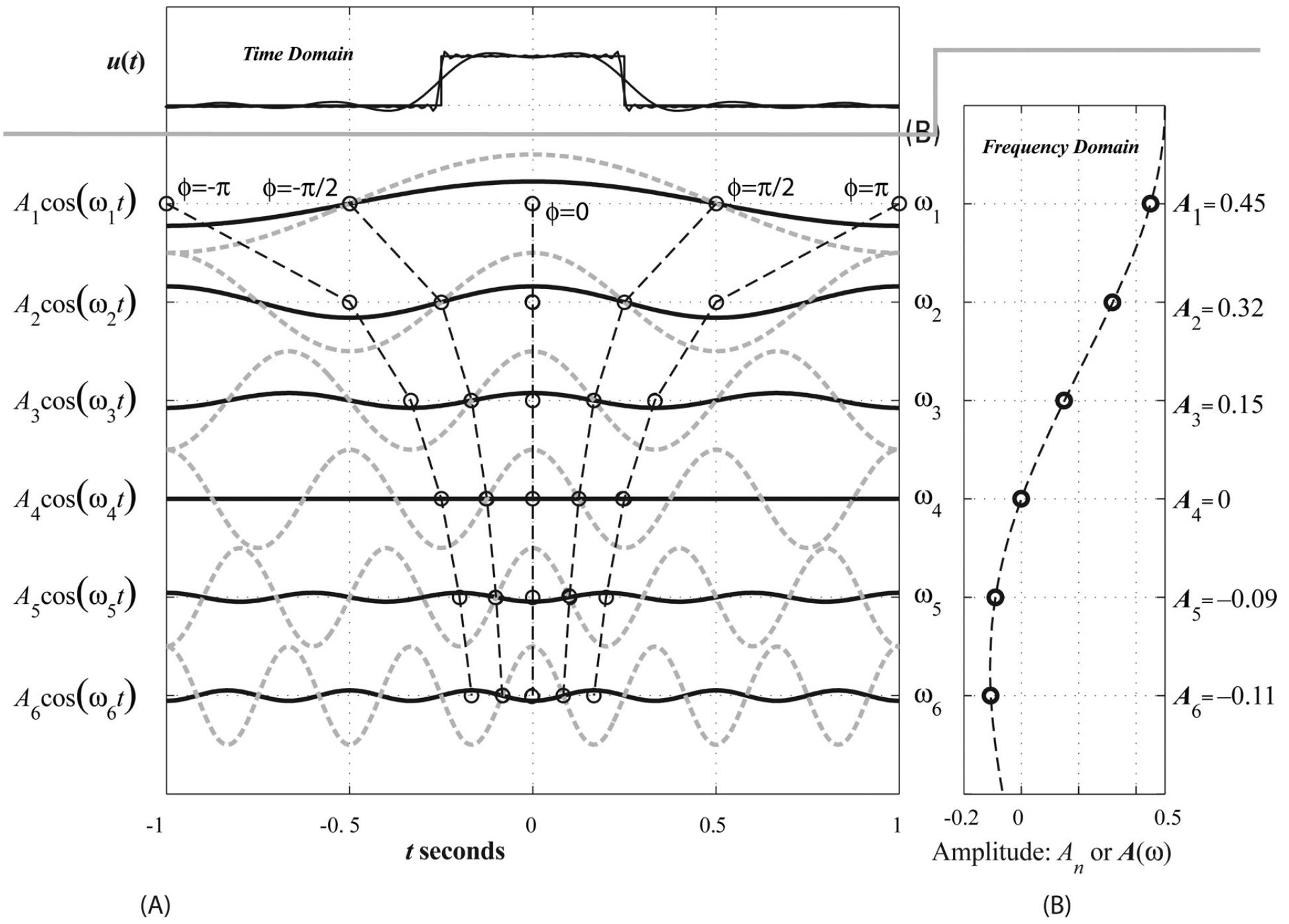


triangle wave

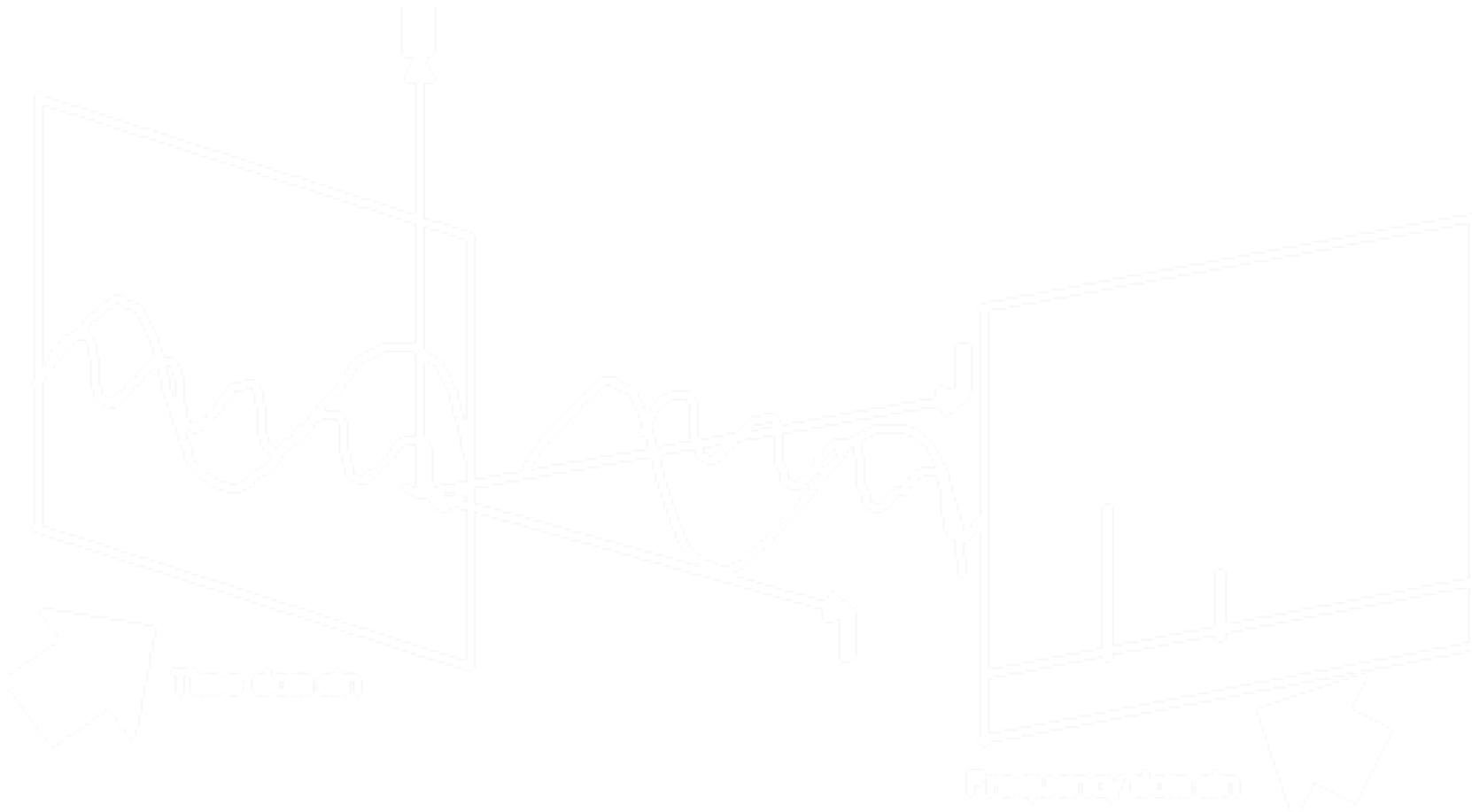


semicircle

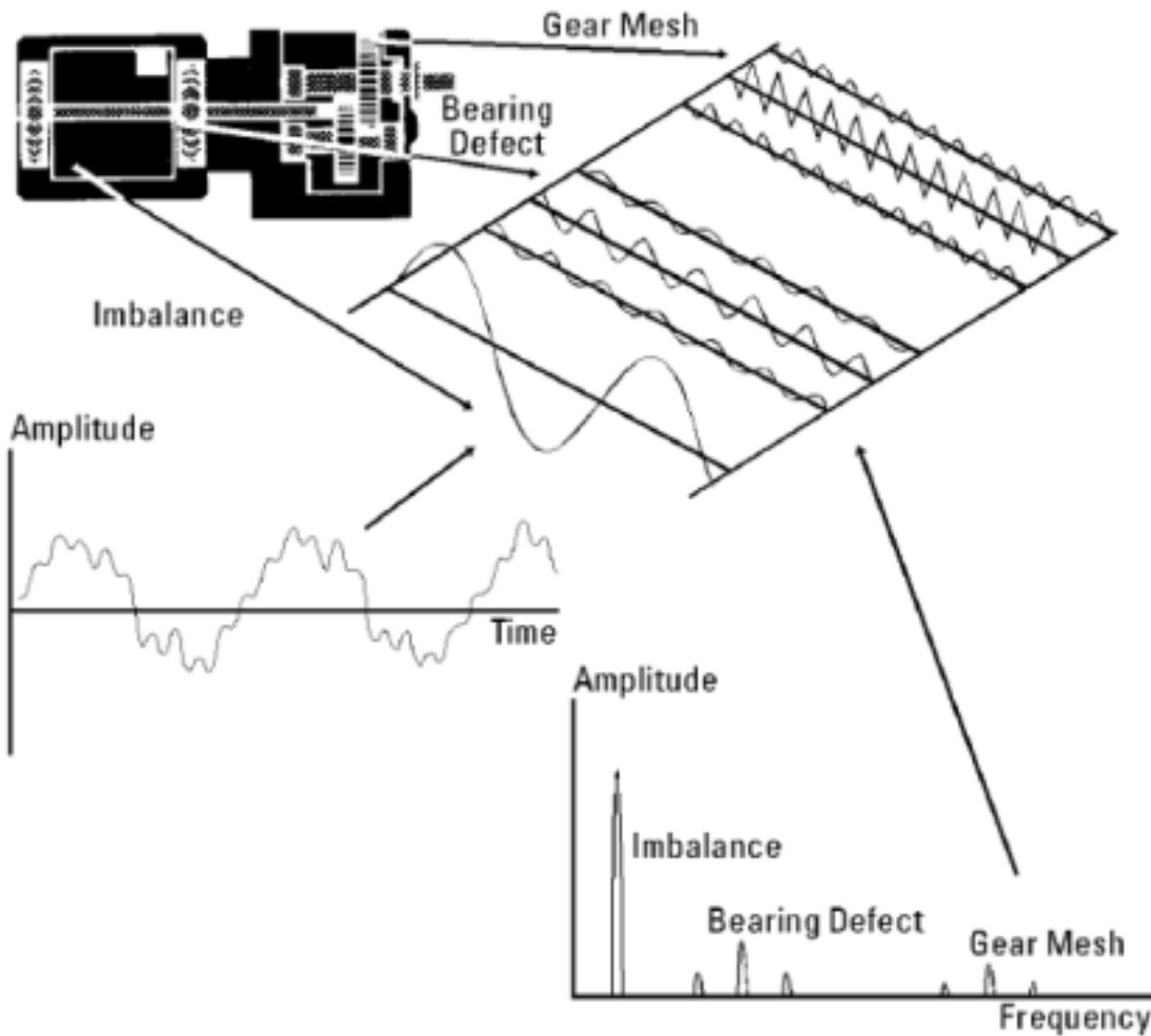




Build Frequency Domain Rep. from Fourier Series

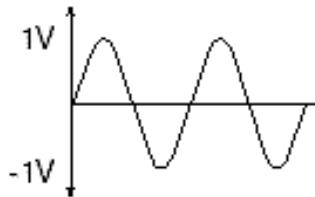


Build Frequency Domain Rep. from Fourier Series



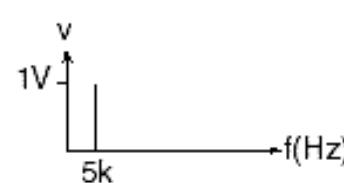
Description

A pure 5kHz sine wave measuring 1 volt peak

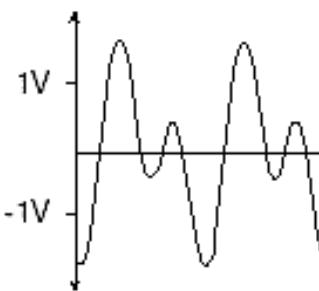
Time SeriesFourier Expansion

$$v(t) = 1 \sin(\omega_1 t)$$

$$\omega_1 = 2\pi(5\text{kHz})$$

Power Spectrum

A pure 5kHz and 10kHz sine wave, each measuring 1 volt peak, added together

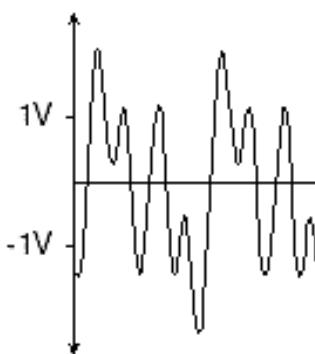


$$v(t) = 1 \sin(\omega_1 t) + 1 \sin(\omega_2 t)$$

$$\omega_1 = 2\pi(5\text{kHz})$$

$$\omega_2 = 2\pi(10\text{kHz})$$

A pure 5kHz, 10kHz, and 20kHz sine wave, each measuring 1 volt peak, added together



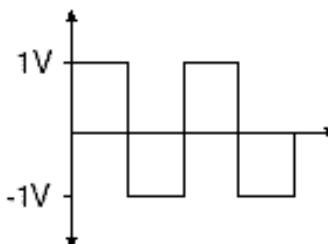
$$v(t) = 1 \sin(\omega_1 t) + 1 \sin(\omega_2 t) + 1 \sin(\omega_3 t)$$

$$\omega_1 = 2\pi(5\text{kHz})$$

$$\omega_2 = 2\pi(10\text{kHz})$$

$$\omega_3 = 2\pi(20\text{kHz})$$

A pure 5kHz square wave measuring 1 volt

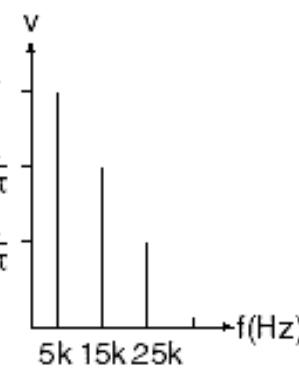


$$v(t) = \frac{4}{\pi} \sin(\omega_1 t) + \frac{4}{3\pi} \sin(\omega_2 t) + \frac{4}{5\pi} \sin(\omega_3 t) \dots$$

$$\omega_1 = 2\pi(5\text{kHz})$$

$$\omega_2 = 2\pi(15\text{kHz})$$

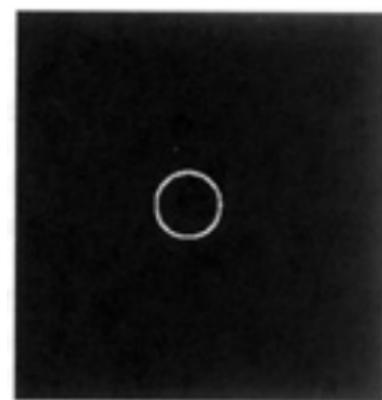
$$\omega_3 = 2\pi(25\text{kHz}) \dots$$



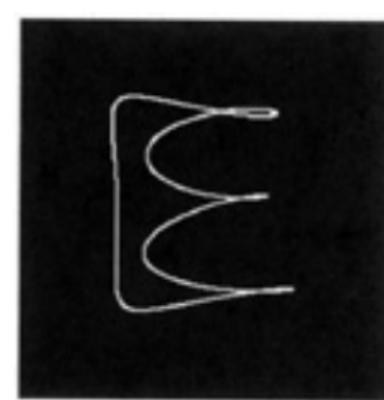
Application of FT

Original

$k=3$



$k=21$



$k=61$

$k=201$

$k=401$

Feature selection/extraction

- Curse of dimensionality
 - If dimension of features is high, classification becomes difficult
- Solution
 - Reduce the dimension of features
 - Feature selection
 - Feature extraction

Feature selection

- Given a feature set F , get a subset G of F
- Discarding features that are little helpful for classification
- But, finding the subset is exponentially expensive
 - For example, if $F=\{f_1, f_2, \dots, f_d\}$ (d is F 's dimension), for $m=1, 2, \dots, d$, the we have to check all subsets of F of size m
 - So, we use sub-optimal search algorithm instead of optimal, which is an exhaustive search
 - Branch-and-bound search
 - Sequential forward/backward search (SFS-SBS)
 - Sequential forward/backward floating search (SFFS-SBFS)

Feature selection: Suboptimal Algorithms

- Use sub-optimal search algorithm
 - Branch-and-bound search
 - Sequential forward/backward search (SFS-SBS)
 - Sequential forward/backward floating search (SFFS-SBFS)
- Sequential search algorithms
 - Iterative procedure
 - Add or remove some features at each step so that the new set leads to a better classification performance, measured by
 - Inter-class distance / intra-class distance
 - Analyze classifier output

Feature Extraction

- Idea: another data representation can be constructed in a subspace (less dimension) while keeping discriminative capability
- Lose physical meaning
- Example algorithms
 - PCA (Principle Component Analysis): transform features into small number of uncorrelated variables
 - ICA (Independent Component Analysis)
- Feature selection and extractions can be used together

Type of Classifiers

- Supervised & Unsupervised
 - Supervised: class membership of each feature vector is known
 - Unsupervised: Only the number of classes is known
- Single-frame & Sequential
 - Single-frame: Each frame is classified regardless of previous frames
 - Sequential: Each frame is classified in consideration of previous frames

Type of Classifiers

- Probabilistic & Geometric & Template matching
 - Probabilistic: feature vector \mathbf{x} is classified to class C_{i^*} if class-conditional PDF $p(\mathbf{x}|C_i)$ is maximized for $i=1, \dots, C$
 - Optimal Bayesian classifier
 - Since class-conditional pdf is unknown, use suboptimal
 - naïve Bayesian, Logistic, Parzen, Gaussian Mixture Model (GMM)

Type of Classifiers

- Probabilistic & Geometric & Template matching
 - Geometric: Construct decision boundaries that divide feature space into classes
 - Artificial Neural Networks (ANN): iterative tessellation of feature space
 - k-NN/ Nearest Mean (NM): geometrical distance between feature vectors of from different classes
 - Support Vector Machine (SVM): construct boundaries maximizing the margins between nearest features relative to two distinct classes
 - Threshold-based classifier: careful handcrafting of thresholds

Type of Classifiers

- Probabilistic & Geometric & Template matching
 - Template matching: Based on similarity between data and templates obtained by training or defined by the designer
 - Binary classifier: Descend a binary decision tree from the root to leaves as refining the classification