

Activity Recognition 6

Classification

Mobile Computing

Minho Shin

2012. 11.

REVIEW: NAÏVE BAYESIEN CLASSIFIER

Bayesian Theorem

- Probability model:

$$P(G|H) = \frac{P(G)P(H|G)}{P(H)}$$

$$\text{Posterior} = \frac{\text{Prior} \times \text{Likelihood}}{\text{Evidence}}$$

Naïve Bayesian Classification

- Given evidences, we want to choose gender g that maximizes

$$\begin{aligned} P(G = g|H) &= \frac{P(G = g)P(H|G = g)}{P(H)} \\ &\propto P(G = g)P(H|G = g) \end{aligned}$$

Posterior \propto Prior \times Likelihood

- Maximum A Posteriori (MAP) classification

Sequential Classifier

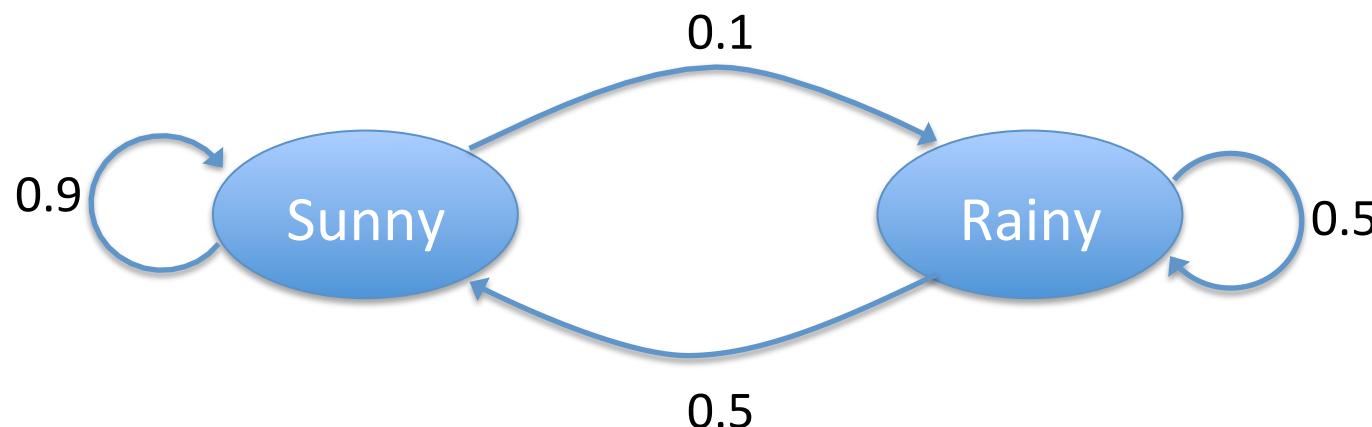
- Classify the current frame based on the classification results of previous frames
- Markov Chain
- Hidden Markov Model (HMM)

Markov Chain

- Random variable $x(t)$ changes over time with discrete time $t=1, 2, 3, \dots$
 - $x(1), x(2), x(3), \dots, x(t), \dots$
- Each $x(t)$ takes a value in state space
$$Q = \{s_1, s_2, \dots, s_n\}$$
- Transition probability
 - Probability of observing s_j depends on the previous value s_i , *and only the previous value*
 - $P_{ij} = P(x(t+1) = S_j \mid x(t) = S_i)$

Weather Model by MC

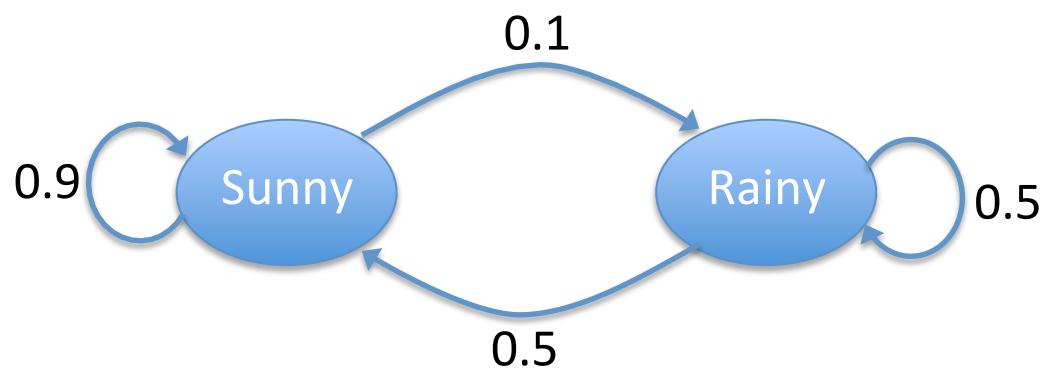
- Weather = {sunny, rainy}
- If sunny today, then sunny tomorrow with 90%
- If sunny today, then rain tomorrow with 10%
- If rain today, then either sunny or rain with 50%



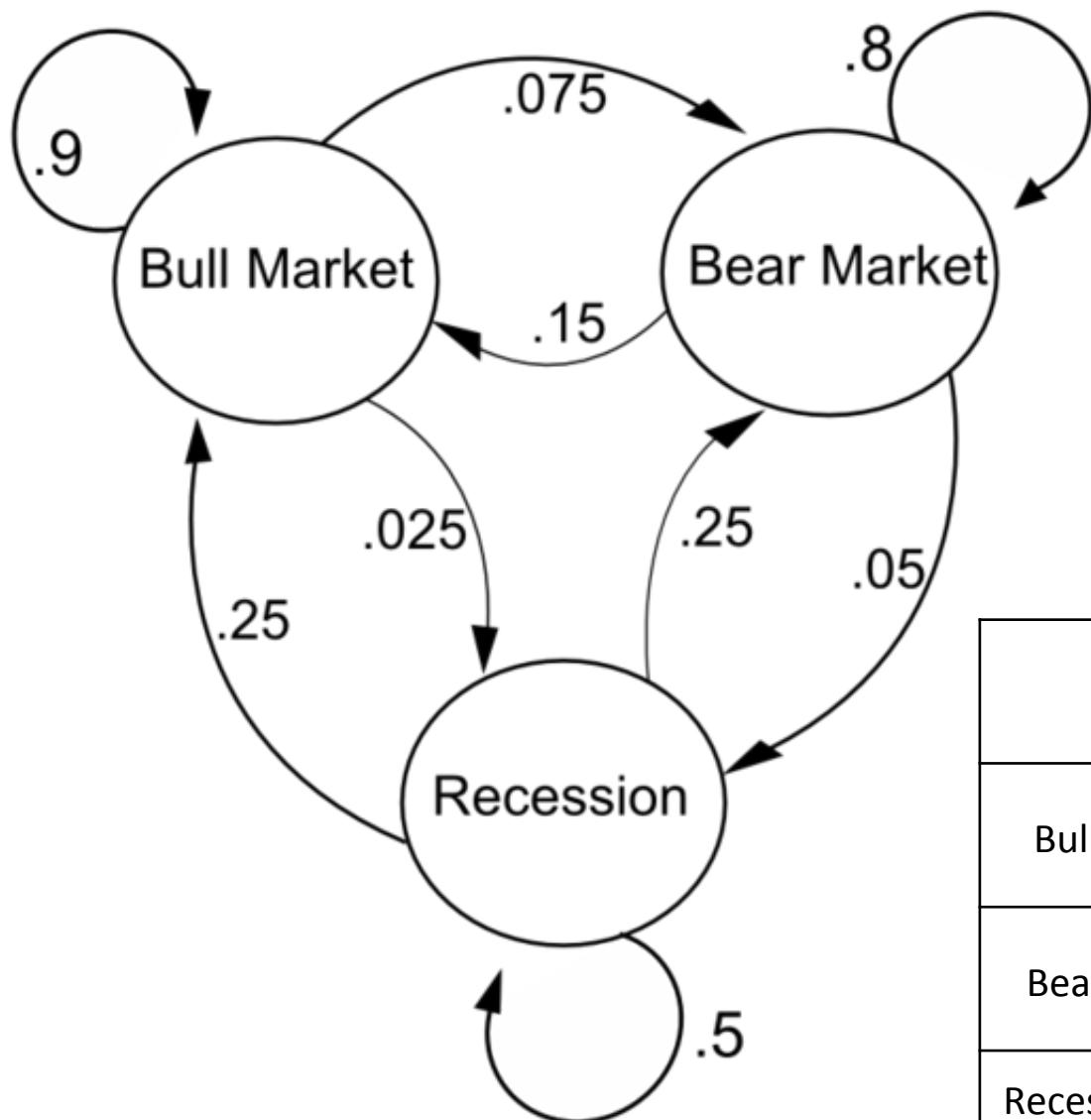
- Stationary probability: $(\text{sunny}, \text{rainy}) = (0.833, 0.167)$

Transition Matrix

- Transition Matrix
 - Describes the transition probabilities between states in a matrix whose (i,j) element is P_{ij}



$$\begin{bmatrix} & \text{(Sunny)} & \text{(Rainy)} \\ \text{(Sunny)} & 0.9 & 0.1 \\ \text{(Rainy)} & 0.5 & 0.5 \end{bmatrix}$$



Transition Matrix

	Bull	Bear	Recessi on
Bull	0.9	0.75	0.25
Bear	0.15	0.8	0.05
Recessi on	0.25	0.25	0.5

How human knows weather?

Look at the sky...

It's Sunny dude!

A photograph of a two-lane road in a snowy, wooded area. The road is covered in a thin layer of snow. In the distance, a small car is driving away from the viewer. The sides of the road are lined with snow-covered trees and bushes. The sky is overcast and grey.

It's Snowing, watch out!

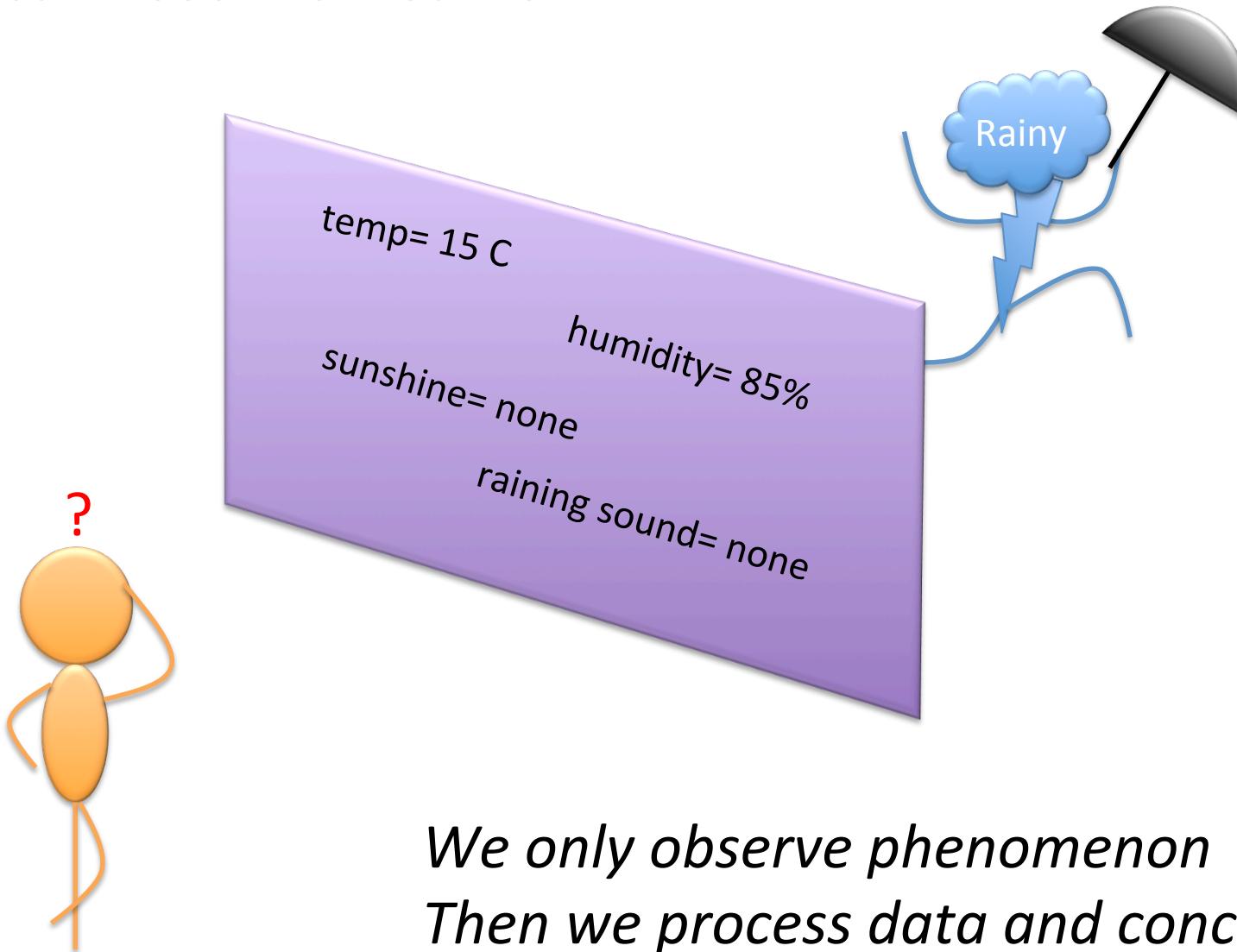
How human knows weather?

- We can't *see* weather directly
- We *collect* evidences and *infer* the best-fit weather
 - Sun, sunshine, water drops, sound, temperature, humidity, snow, ...
- But sometimes we are not sure...

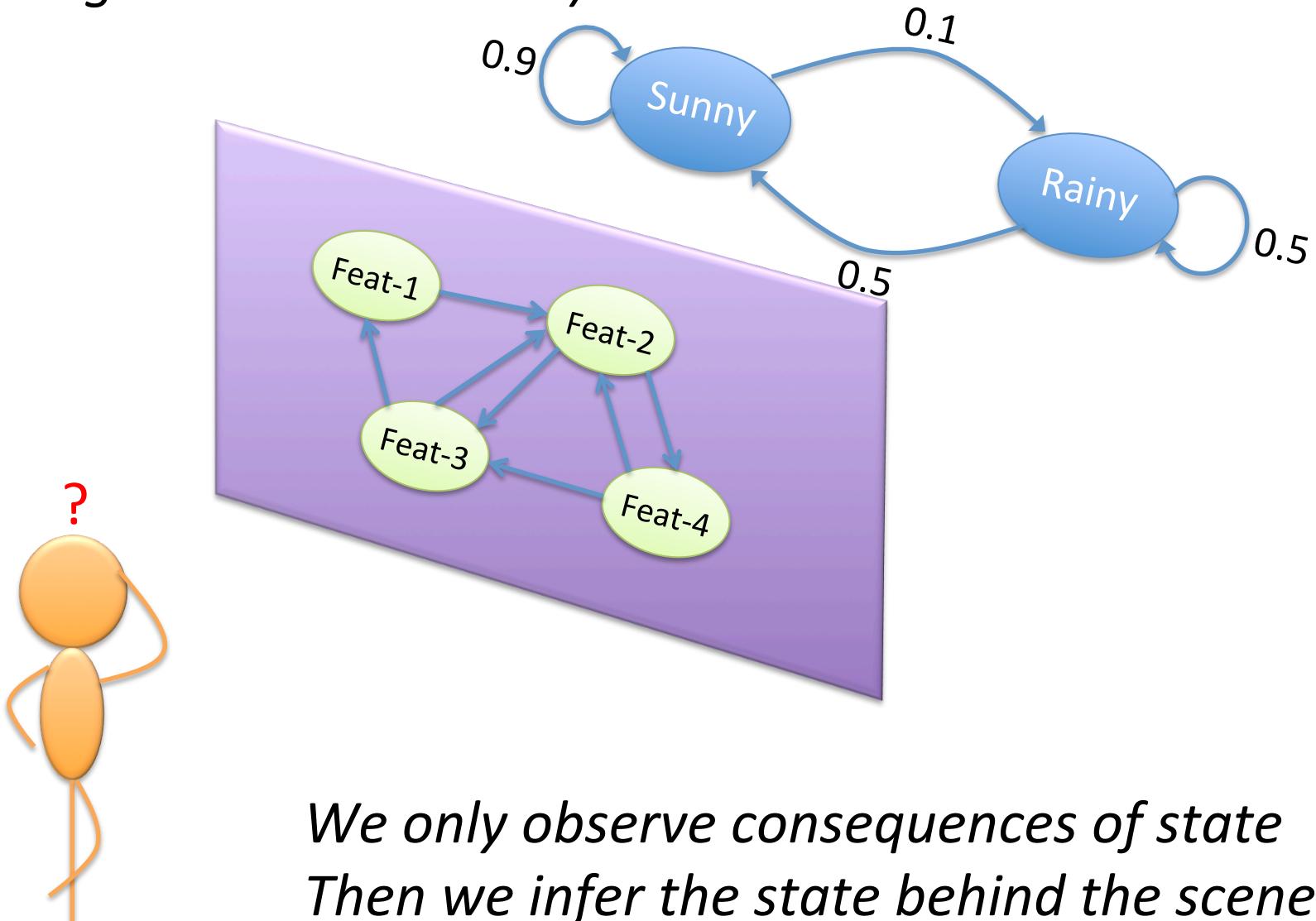
A landscape photograph of a road at sunset. The sky is filled with warm, orange and yellow hues. In the foreground, a road sign is mounted on a pole, featuring a black arrow pointing upwards and to the right. Below the sign is a yellow diamond-shaped sign. In the distance, a campfire is visible, with a small orange glow. Bare trees stand on the right side of the road. The overall atmosphere is peaceful and slightly melancholic.

It's... uh... eh... ππ...

We can't see the weather

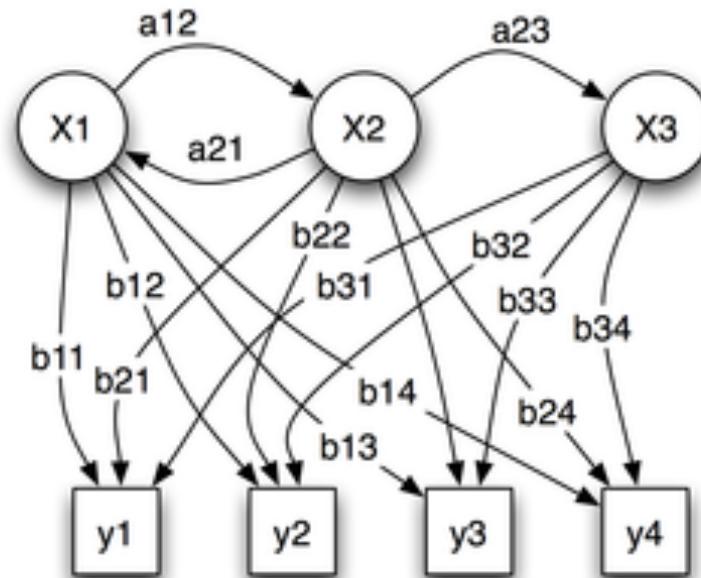


*We can't see the state
(following a Markov Process)*



Hidden Markov Model

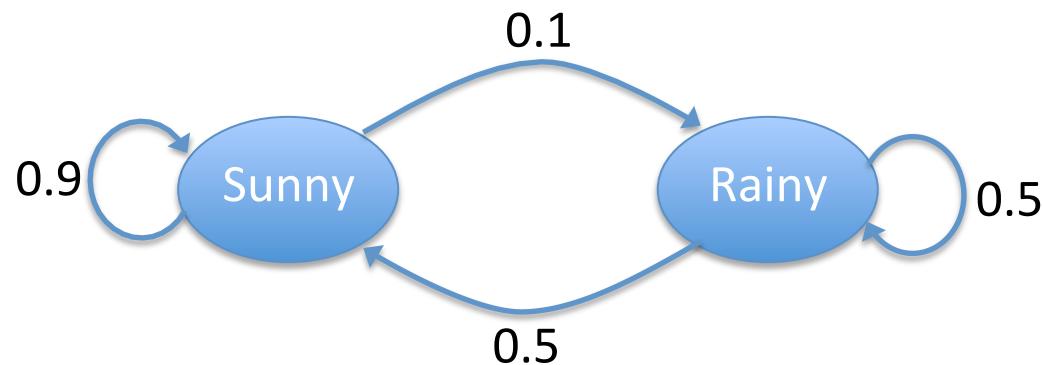
- Hidden states $X_1, X_2, \dots X_n$ of a Markov Chain with transition probability a_{ij}
- Observed states y_1, y_2, \dots, y_n
- Output probability $\{b_{ij}\}$
- From observed states, infer the hidden states and their transition probabilities



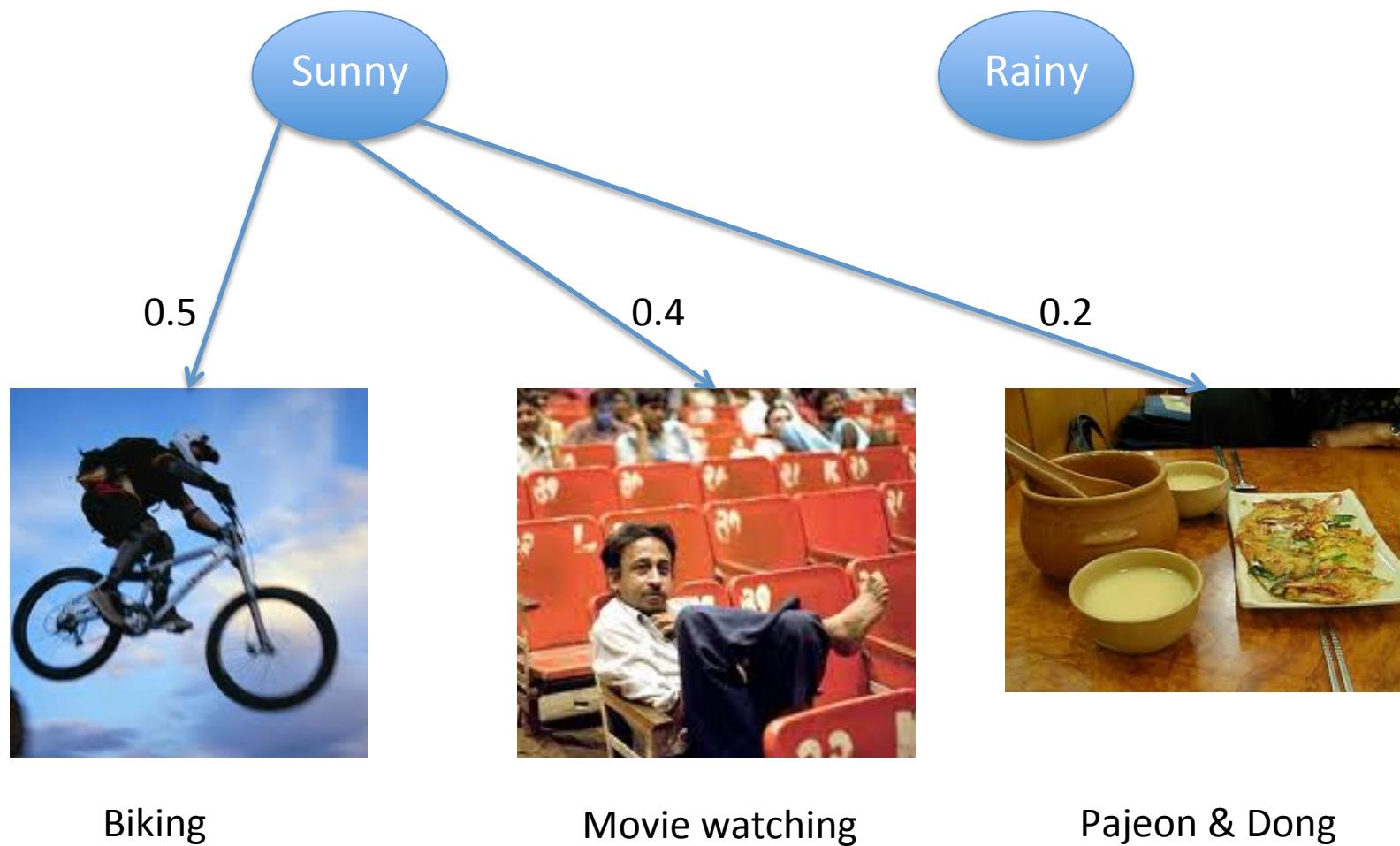
Weather Analogy

- Alice talks with Bob on the phone
- Alice has a general idea about the weather in Bob's city, but doesn't know current weather
- Alice asks Bob what he did
- Alice infers the weather based on Bob's activity

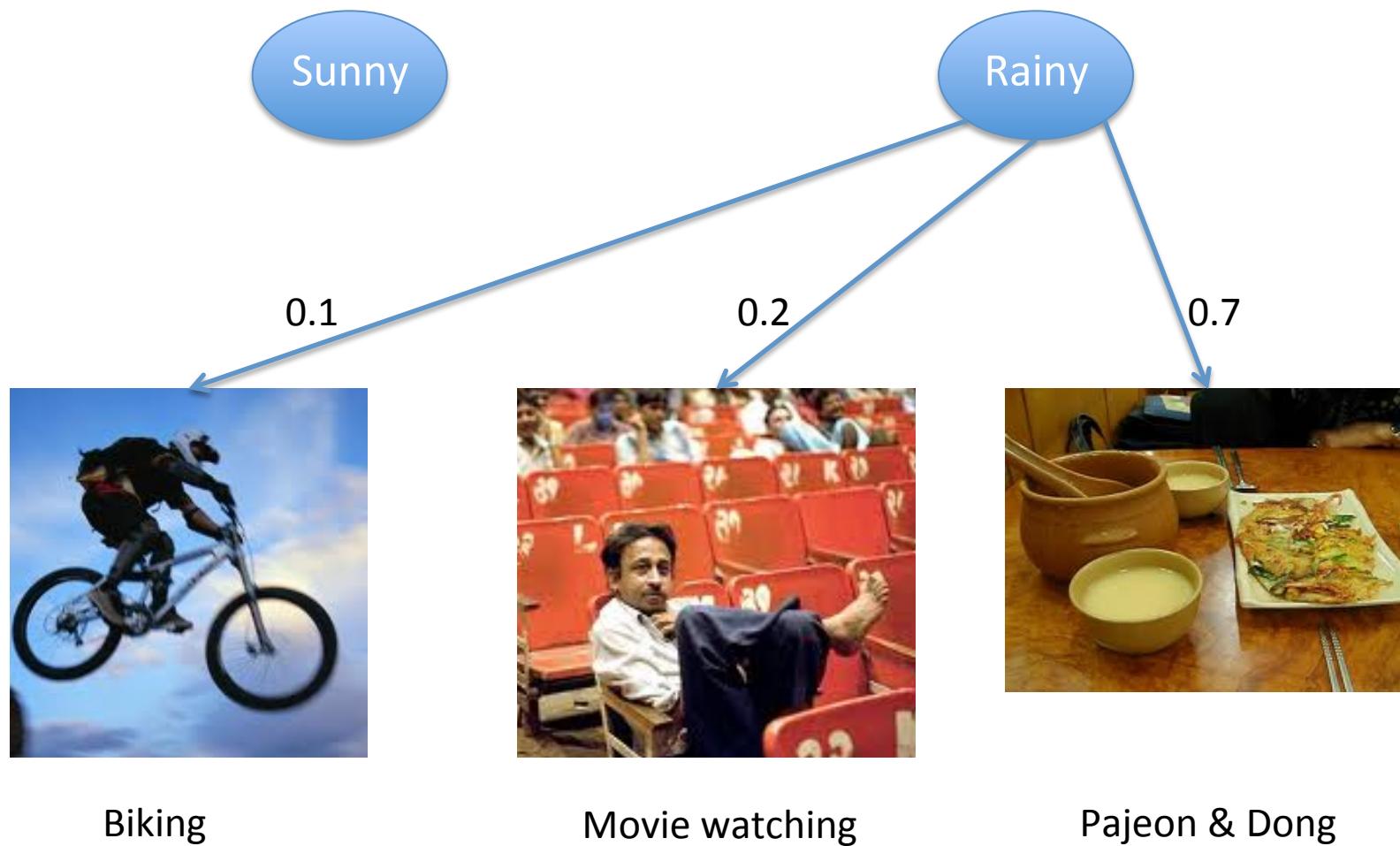
Weather as Markov Chain



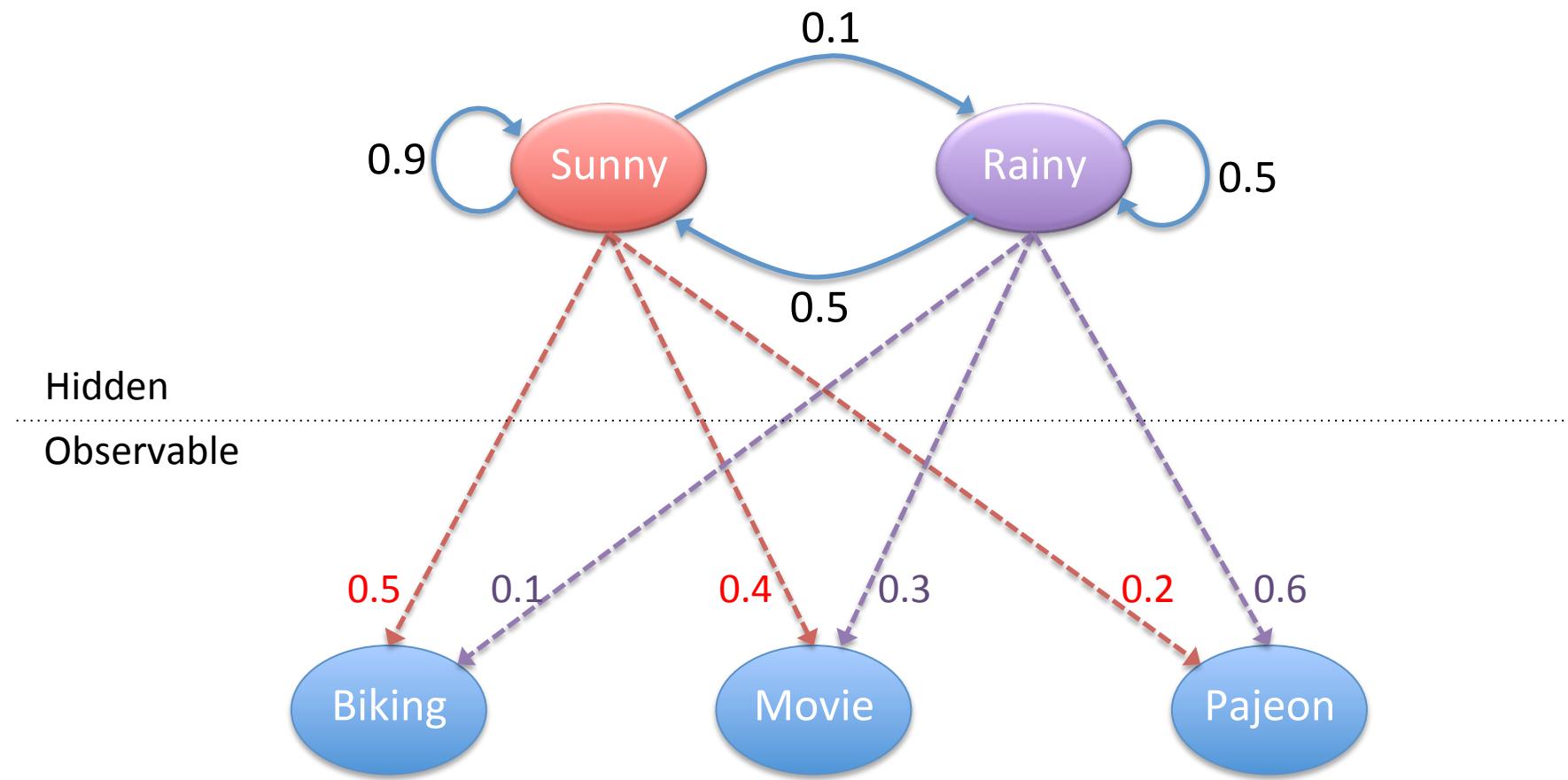
Activity per Weather



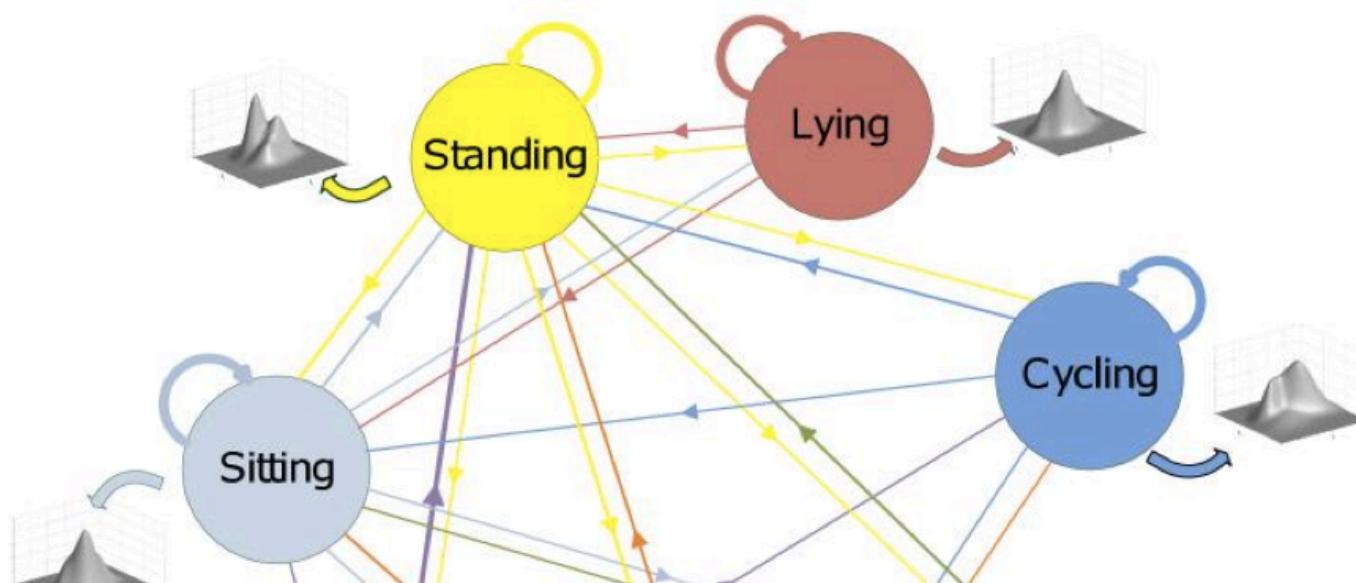
Activity per Weather



Hidden Markov Model for Weather



Activity Recognition by HMM



Activity	lying	cycling	climbing	walking	running	sitting	standing
lying	0.9500	0.0000	0.0000	0.0000	0.0000	0.0100	0.0400
cycling	0.0001	0.8999	0.0000	0.0400	0.0000	0.0100	0.0500
climbing	0.0001	0.0000	0.6199	0.2500	0.0100	0.0200	0.1000
walking	0.0001	0.0100	0.0300	0.7999	0.0200	0.0700	0.0700
running	0.0001	0.0100	0.0100	0.3500	0.3999	0.0100	0.2200
sitting	0.0200	0.0000	0.0100	0.0400	0.0000	0.8500	0.0900
standing	0.0100	0.0300	0.0100	0.1800	0.0300	0.1200	0.6200

Classification Results

- Single-frame

Classifiers	Classification accuracy, [%]
NB	97.4
GMM	92.2
Logistic	94.0
Parzen	92.7
SVM	97.8
NM	98.5
k-NN	98.3
ANN	96.1
C4.5	93.0

- HMM
 - 99.1 %