
Ac#vity	
  Recogni#on	
  5	
  
Classifica#on	
  

Enterprise	
  Compu#ng	
  
Minho	
  Shin	
  
2012.	
  10	
  



Condi#onal	
  Probability	
  

•  Condi#onal	
  probability	
  

•  A:	
  >=	
  4	
  
•  B:	
  even	
  (2,	
  4,	
  6)	
  
•  P(A)	
  =	
  ½	
  
•  P(B)	
  =	
  ½	
  
•  P(A,B)	
  =	
  1/3	
  
•  P(A|B)	
  =	
  2/3	
  

P (A|B) =
P (A,B)
P (B)
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Bayesian	
  Theorem	
  

•  Thomas	
  Bayes	
  (1701-­‐1761)	
  
•  Bayesian	
  Theorem	
  

P (S|E) =
P (S, E)
P (E)

=
P (S)P (E|S)

P (E)

P (A|B) =
P (A,B)
P (B)

P (A,B) = P (A|B)P (B)



Example:	
  Gender	
  classifica#on	
  	
  

•  G:	
  Gender	
  {male,	
  female},	
  as	
  statement	
  
•  H:	
  height,	
  as	
  evidence	
  
•  Want	
  to	
  know:	
  
– P(G|H):	
  Guess	
  gender	
  given	
  evidence	
  of	
  height	
  
– P(G=m|H=165cm)	
  =	
  ?	
  

•  Classifica#on	
  
– Given	
  feature	
  set	
  {height},	
  classify	
  gender	
  

?	
  



Prior	
  probability	
  

•  P(G):	
  prob.	
  of	
  gender	
  (gender	
  distribu#on)	
  
•  P(G=m)	
  =	
  
•  P(G=f)	
  =	
  

•  Probability	
  of	
  gender	
  before	
  any	
  evidence	
  is	
  
given	
  
– Prior	
  probability	
  

0	
  

P(G)	
  

male	
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.5	
  



Evidence	
  

•  P(H):	
  Probability	
  of	
  height	
  (Height	
  distribu#on)	
  
•  P(H=165)=?	
  

•  Probability	
  of	
  the	
  evidence	
  
– evidence	
  probability	
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Likelihood	
  
•  P(H|G):	
  prob.	
  of	
  height	
  given	
  gender	
  G	
  
•  P(H=182	
  |	
  G=f)?	
  and	
  P(H=182	
  |	
  G=m)?	
  

•  How	
  much	
  likely	
  to	
  observe	
  an	
  evidence	
  when	
  
the	
  gender	
  was	
  g?	
  
–  Likelihood	
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Bayesian	
  Theorem	
  

•  Probability	
  model:	
  

Posterior =
Prior� Likelihood

Evidence

P (G|H) =
P (G)P (H|G)

P (H)



Naïve	
  Bayesian	
  Classificaiton	
  

•  Given	
  evidences,	
  we	
  want	
  to	
  choose	
  gender	
  g	
  
that	
  maximizes	
  	
  

•  Maximum	
  A	
  Posteriori	
  (MAP)	
  classifica#on	
  

P (G = g|H) =
P (G = g)P (H|G = g)

P (H)
� P (G = g)P (H|G = g)

Posterior � Prior� Likelihood



Example	
  Naïve	
  Bayesian	
  Class’ion	
  
•  Goal:	
  Find	
  gender	
  g	
  maximizing	
  posterior	
  	
  

•  P(G=m)	
  =	
  P(G=f)	
  =	
  0.5	
  
•  P(H|G=m),	
  P(H|G=f)	
  is	
  given	
  by	
  (obtained	
  from	
  training)	
  

•  Classifica#on	
  when	
  H=173:	
  
–  Posterior	
  of	
  male	
  =	
  0.5	
  *	
  M	
  
–  Posterior	
  of	
  female	
  =	
  0.5	
  *	
  F	
  
–  Posterior	
  of	
  male	
  >	
  female,	
  therefore,	
  it’s	
  a	
  male!	
  

Posterior = P (G|H) � P (G)P (H|G)
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Naïve	
  Bayesian	
  w/	
  mul#ple	
  features	
  

•  G:	
  Gender	
  {male,	
  female},	
  as	
  classes	
  
•  H:	
  height,	
  as	
  an	
  evidence	
  
•  W:	
  weight,	
  as	
  an	
  evidence	
  
•  F:	
  foot	
  size,	
  as	
  an	
  evidence	
  
•  Classifica#on	
  
– Given	
  feature	
  set	
  {height,	
  weight,	
  foot-­‐size},	
  
predict	
  the	
  gender	
  



Naïve	
  Bayesian	
  w/	
  mul#ple	
  features	
  

•  Posterior:	
  probability	
  of	
  gender	
  given	
  height,	
  
weight,	
  and	
  foot	
  size	
  

•  By	
  Bayesian	
  theorem,	
  

•  Feature	
  independence	
  assumpMon!	
  

P (G|H,W,F )

P (G|H,W, F ) � P (G)P (H,W, F |G)
� P (G)P (H|G)P (W,F |G, H)
� P (G)P (H|G)P (W |G, H)P (F |G, H,W )
� P (G)P (H|G)P (W |G)P (F |G)



Naïve	
  Bayesian	
  Assump#on	
  

•  Features	
  are	
  independent	
  
•  Not	
  always	
  true,	
  and	
  mostly	
  not	
  true	
  
•  But	
  this	
  simplifica#on	
  works	
  well	
  in	
  many	
  
cases	
  
– Defeats	
  curse	
  of	
  dimensionality	
  
– What	
  maeers	
  is	
  the	
  rela#ve	
  comparison	
  between	
  
posteriors	
  of	
  classes,	
  and	
  feature	
  independence	
  
simplifica#on	
  keeps	
  the	
  comparison	
  



Spam	
  Filter	
  

Posterior =
Prior� Likelihood

Evidence

C = S or � S

E is non-spam if P (� S|E) > P (S|E)
E is spam if P (� S|E) < P (S|E)

P (C|E) =
P (C)P (E|C)

P (E)



Prior	
  

•  P(S):	
  probability	
  of	
  an	
  email	
  being	
  spam	
  

	
  
	
  
•  P(~S):	
  probability	
  of	
  an	
  email	
  being	
  non-­‐spam	
  

P (S) =
number of spam emails
number of all emails

P (� S) =
number of non-spam emails

number of all emails



Spam	
  Filter:	
  Likelihood	
  Model	
  

0	
  

P~S(W)	
  
=P(W|~S)	
  

W	
  

Normal	
  emails	
  (~S)	
  

0	
  

PS(W)	
  
=P(W|S)	
  

W	
  

Spam	
  emails	
  (S)	
  



Likelihood	
  of	
  E	
  given	
  non-­‐spam	
  

Subj:	
  Replica	
  Watches	
  
	
  
High	
  quality	
  replica	
  
watches	
  
Visit	
  website	
  XXX	
  

E	
  

0	
  

P~S(W)	
  

W	
  

P(E|~S)	
  =	
  P~S(“Subj”	
  and	
  “Replica”	
  and	
  …	
  “XXX”)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  P~S(“Subj”)	
  x	
  P~s(“Replica”)	
  x	
  …	
  x	
  P~s(	
  “XXX”)	
  

E	
  =	
  {“Subj”,	
  “Replica”,	
  …,	
  “XXX”}	
  

P (E = {w1, . . . , wn}|S = non-spam) = P�S(w1, ..., wn)

=
�

i

P�S(wi)

Independence	
  	
  
Assump#on	
  



Likelihood	
  of	
  E	
  given	
  spam	
  

Subj:	
  Replica	
  Watches	
  
	
  
High	
  quality	
  replica	
  
watches	
  
Visit	
  website	
  XXX	
  

E	
  

P(E|S)	
  =	
  PS(“Subj”	
  and	
  “Replica”	
  and	
  …	
  “XXX”)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  PS(“Subj”)	
  x	
  Ps(“Replica”)	
  x	
  …	
  x	
  Ps(	
  “XXX”)	
  

0	
  

PS(W)	
  
=P(W|S)	
  

W	
  

P (E = {w1, . . . , wn}|S = spam) = PS(w1, ..., wn)

=
�

i

PS(wi)



Classifica#on	
  
Posterior � Prior� Likelihood

Posteriorspam = P (S|E)
� P (S)P (E|S)

= P (S)
�

w�E

PS(w)

Posteriornon-spam = P (� S|E)
� P (� S)P (E| � S)

= P (� S)
�

w�E

P�S(w)


