

Activity Recognition 5

Classification

Enterprise Computing

Minho Shin

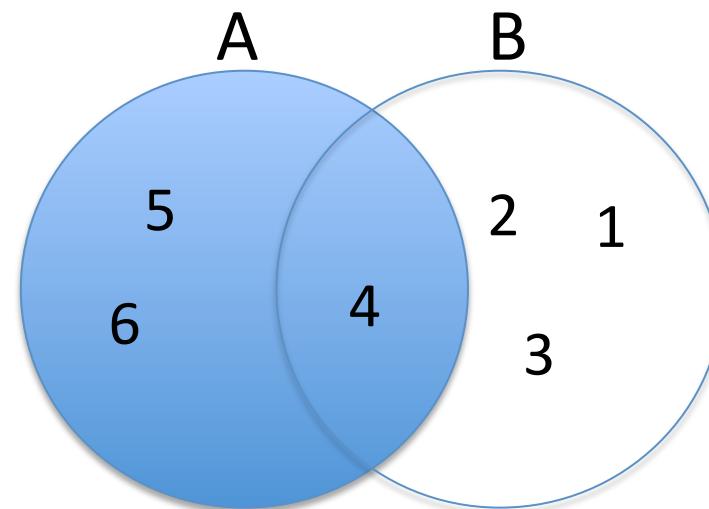
2012. 10

Conditional Probability

- Conditional probability

$$P(A|B) = \frac{P(A, B)}{P(B)}$$

- A: ≥ 4
- B: even (2, 4, 6)
- $P(A) = \frac{1}{2}$
- $P(B) = \frac{1}{2}$
- $P(A, B) = \frac{1}{3}$
- $P(A|B) = \frac{2}{3}$



Bayesian Theorem

- Thomas Bayes (1701-1761)
- Bayesian Theorem

$$P(A|B) = \frac{P(A, B)}{P(B)} \quad P(A, B) = P(A|B)P(B)$$

$$\begin{aligned} P(S|E) &= \frac{P(S, E)}{P(E)} \\ &= \frac{P(S)P(E|S)}{P(E)} \end{aligned}$$

Example: Gender classification

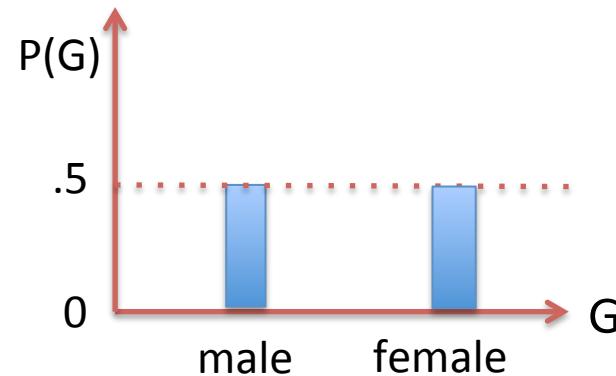
- G: Gender {male, female}, as statement
- H: height, as evidence
- Want to know:
 - $P(G|H)$: Guess gender given evidence of height
 - $P(G=m|H=165cm) = ?$
- Classification
 - Given feature set {height}, classify gender

Prior probability

- $P(G)$: prob. of gender (gender distribution)

- $P(G=m) =$

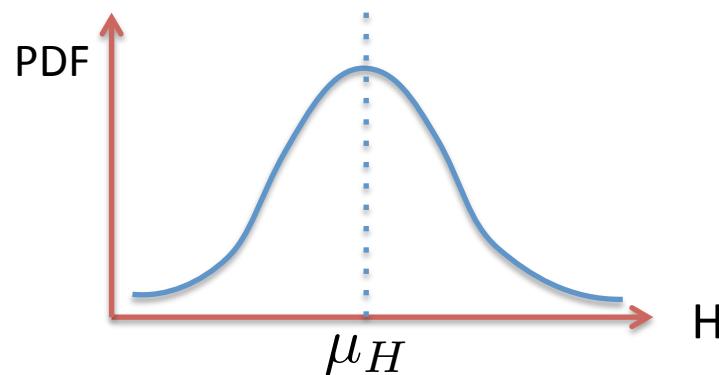
- $P(G=f) =$



- Probability of gender before any evidence is given
 - *Prior probability*

Evidence

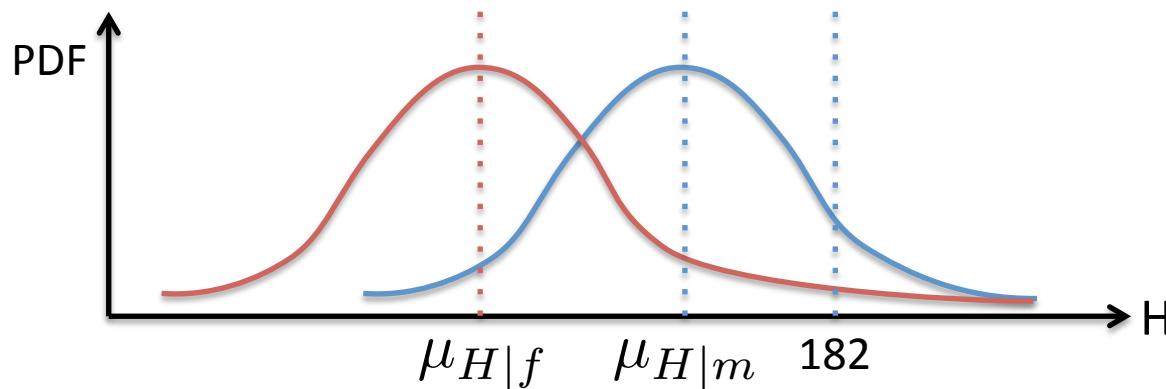
- $P(H)$: Probability of height (Height distribution)
- $P(H=165)=?$



- Probability of the evidence
 - *evidence probability*

Likelihood

- $P(H|G)$: prob. of height given gender G
- $P(H=182 | G=f)$? and $P(H=182 | G=m)$?



- How much likely to observe an evidence when the gender was g ?
 - *Likelihood*

Bayesian Theorem

- Probability model:

$$P(G|H) = \frac{P(G)P(H|G)}{P(H)}$$

$$\text{Posterior} = \frac{\text{Prior} \times \text{Likelihood}}{\text{Evidence}}$$

Naïve Bayesian Classification

- Given evidences, we want to choose gender g that maximizes

$$\begin{aligned} P(G = g|H) &= \frac{P(G = g)P(H|G = g)}{P(H)} \\ &\propto P(G = g)P(H|G = g) \end{aligned}$$

Posterior \propto Prior \times Likelihood

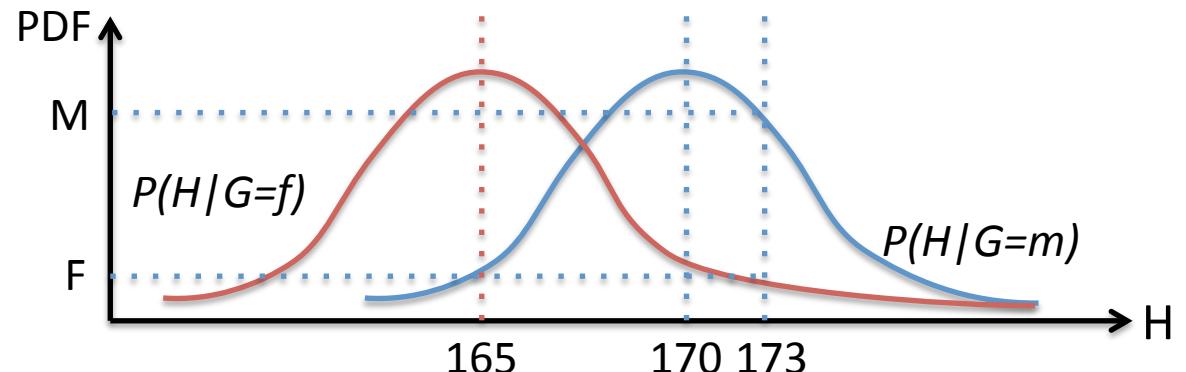
- Maximum A Posteriori (MAP) classification

Example Naïve Bayesian Classification

- Goal: Find gender g maximizing posterior

$$\text{Posterior} = P(G|H) \propto P(G)P(H|G)$$

- $P(G=m) = P(G=f) = 0.5$
- $P(H|G=m)$, $P(H|G=f)$ is given by (obtained from training)



- Classification when $H=173$:
 - Posterior of male = $0.5 * M$
 - Posterior of female = $0.5 * F$
 - Posterior of male > female, therefore, it's a male!

Naïve Bayesian w/ multiple features

- G: Gender {male, female}, as classes
- H: height, as an evidence
- W: weight, as an evidence
- F: foot size, as an evidence
- Classification
 - Given feature set {height, weight, foot-size}, predict the gender

Naïve Bayesian w/ multiple features

- Posterior: probability of gender given height, weight, and foot size

$$P(G|H, W, F)$$

- By Bayesian theorem,

$$\begin{aligned} P(G|H, W, F) &\propto P(G)P(H, W, F|G) \\ &\propto P(G)P(H|G)P(W, F|G, H) \\ &\propto P(G)P(H|G)P(W|G, H)P(F|G, H, W) \\ &\propto P(G)P(H|G)P(W|G)P(F|G) \end{aligned}$$

- *Feature independence assumption!*

Naïve Bayesian Assumption

- Features are independent
- Not always true, and mostly not true
- But this simplification works well in many cases
 - Defeats curse of dimensionality
 - What matters is the relative comparison between posteriors of classes, and feature independence simplification keeps the comparison

Spam Filter

$$\text{Posterior} = \frac{\text{Prior} \times \text{Likelihood}}{\text{Evidence}}$$

$$P(C|E) = \frac{P(C)P(E|C)}{P(E)} \quad C = S \text{ or } \sim S$$

E is non-spam if $P(\sim S|E) > P(S|E)$

E is spam if $P(\sim S|E) < P(S|E)$

Prior

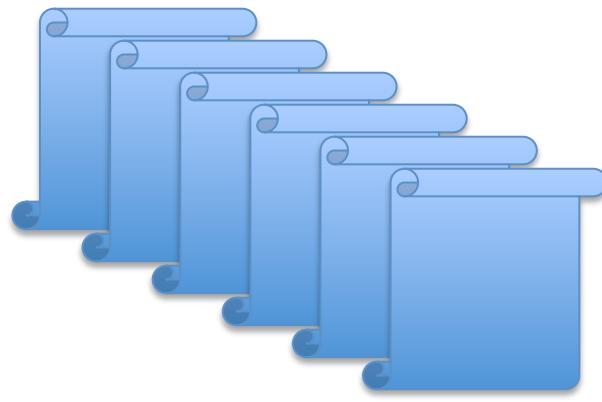
- $P(S)$: probability of an email being spam

$$P(S) = \frac{\text{number of spam emails}}{\text{number of all emails}}$$

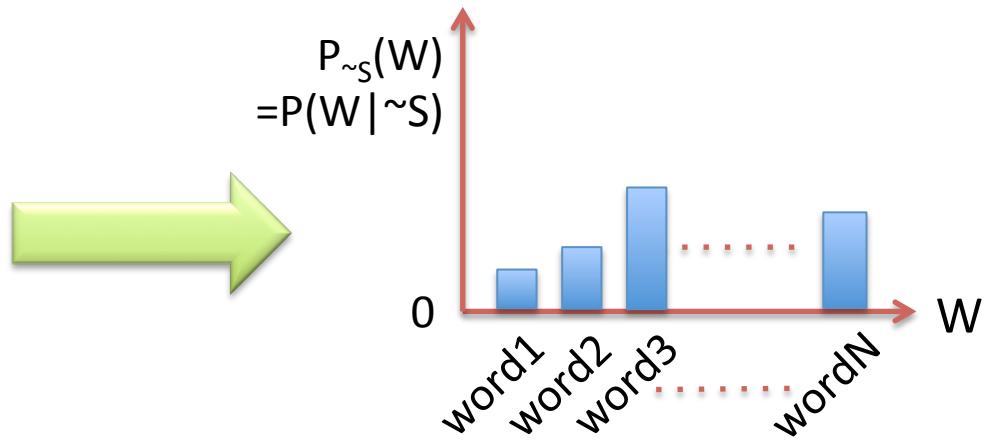
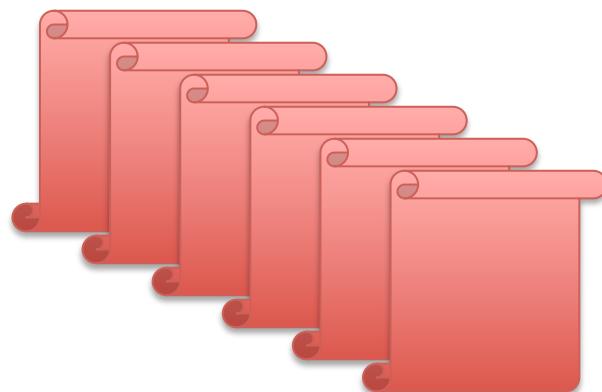
- $P(\sim S)$: probability of an email being non-spam

$$P(\sim S) = \frac{\text{number of non-spam emails}}{\text{number of all emails}}$$

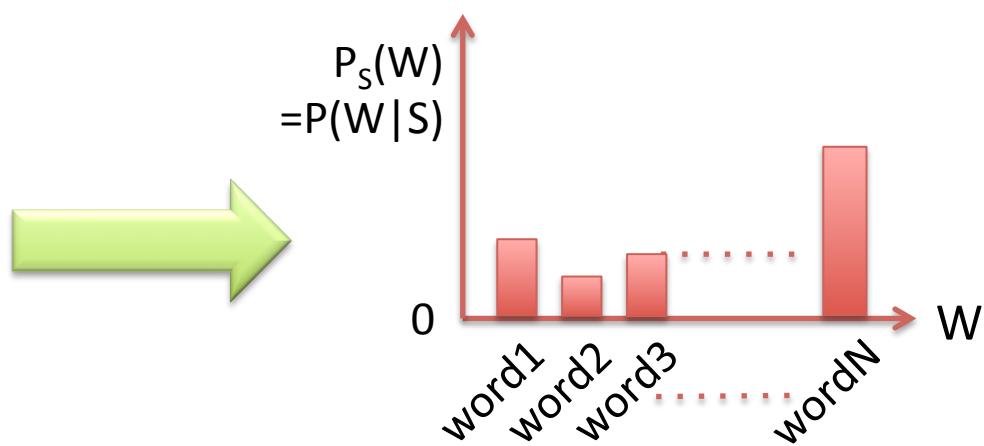
Spam Filter: Likelihood Model



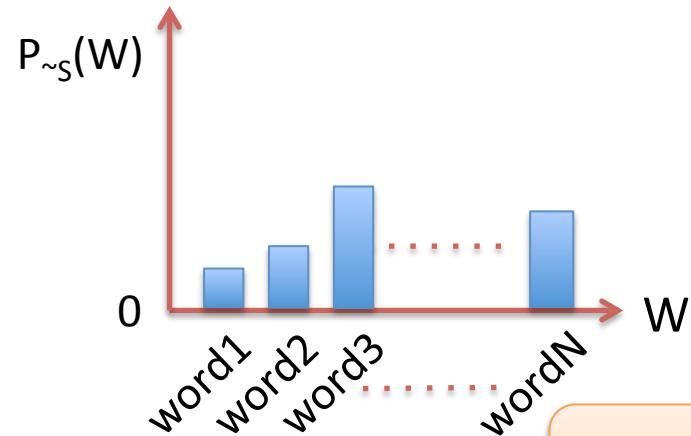
Normal emails ($\sim S$)



Spam emails (S)



Likelihood of E given non-spam



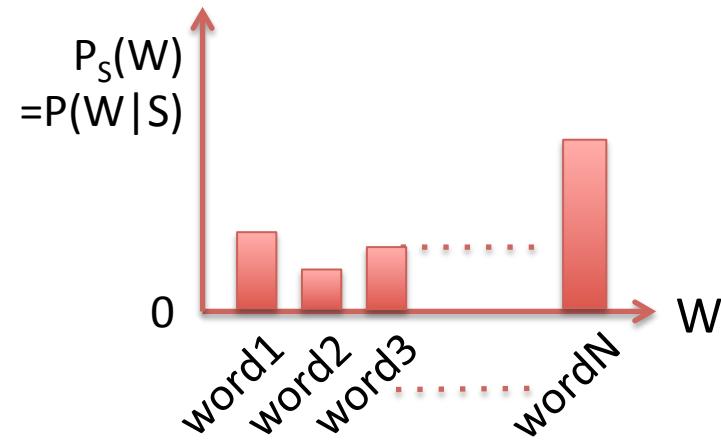
$$\begin{aligned} P(E|\sim S) &= P_{\sim S}(\text{"Subj" and "Replica" and ... "XXX"}) \\ &= P_{\sim S}(\text{"Subj"}) \times P_{\sim S}(\text{"Replica"}) \times \dots \times P_{\sim S}(\text{"XXX"}) \end{aligned}$$

Independence
Assumption

$$E = \{\text{"Subj", "Replica", ..., "XXX"}\}$$

$$\begin{aligned} P(E = \{w_1, \dots, w_n\} | S = \text{non-spam}) &= P_{\sim S}(w_1, \dots, w_n) \\ &= \prod_i P_{\sim S}(w_i) \end{aligned}$$

Likelihood of E given spam



$$\begin{aligned} P(E|S) &= P_S(\text{"Subj"} \text{ and } \text{"Replica"} \text{ and } \dots \text{ "XXX"}) \\ &= P_S(\text{"Subj"}) \times P_S(\text{"Replica"}) \times \dots \times P_S(\text{"XXX"}) \end{aligned}$$

$$\begin{aligned} P(E = \{w_1, \dots, w_n\} | S = \text{spam}) &= P_S(w_1, \dots, w_n) \\ &= \prod_i P_S(w_i) \end{aligned}$$

Classification

$$\text{Posterior} \propto \text{Prior} \times \text{Likelihood}$$

$$\begin{aligned}\text{Posterior}_{\text{spam}} &= P(S|E) \\ &\propto P(S)P(E|S) \\ &= P(S) \prod_{w \in E} P_S(w)\end{aligned}$$

$$\begin{aligned}\text{Posterior}_{\text{non-spam}} &= P(\sim S|E) \\ &\propto P(\sim S)P(E|\sim S) \\ &= P(\sim S) \prod_{w \in E} P_{\sim S}(w)\end{aligned}$$