

# **Introduction to Human-centric Mobile Computing**

Minho Shin

A graduate course in Fall, 2012

Computer Engineering Dept.

Myongji University

# Course Information (1)

- Instructor
  - *Minho Shin (call by name!)*
  - Room 5742, 5<sup>th</sup> Engineering Bldg.
  - Phone: 031-330-6786
  - Email: [shinminho@gmail.com](mailto:shinminho@gmail.com)
  - Office Hour: appointment by email
  - Research Domain
    - Wireless Networks and Mobile Computing

# Course Information (2)

- Goal
  - Introduce research topics in Human-centric Mobile Computing
  - In particular, *mobile privacy*
  - Improve communication skill (in English)
  - Train with developing research idea

# Course Information (3)

- Lectures
  - Introduction to the class
  - Introduction to topics
  - Misc: paper reading, presentation
- Presentation
  - Each student picks 3 papers and present 3 times
    - Each presentation takes 20~30 min.
  - Three student brings a non-obvious question
    - Discussion takes 20 min.
  - Another student becomes a note-taker
    - Upload the meeting note to Wiki

# Course Information (4)

- Evaluation
  - Involvement: 20%
  - Presentation:  $20\% \times 3$
  - Note-taking: 20%
- Peer evaluation
  - Students evaluate other students

# Presentation Structure

- Examples structure
  - Motivation
  - Problem
  - Existing solution
  - Approach & Solution
  - Evaluation
  - Contribution
  - Limitation
  - Suggestions or future work

# Presentation Evaluation

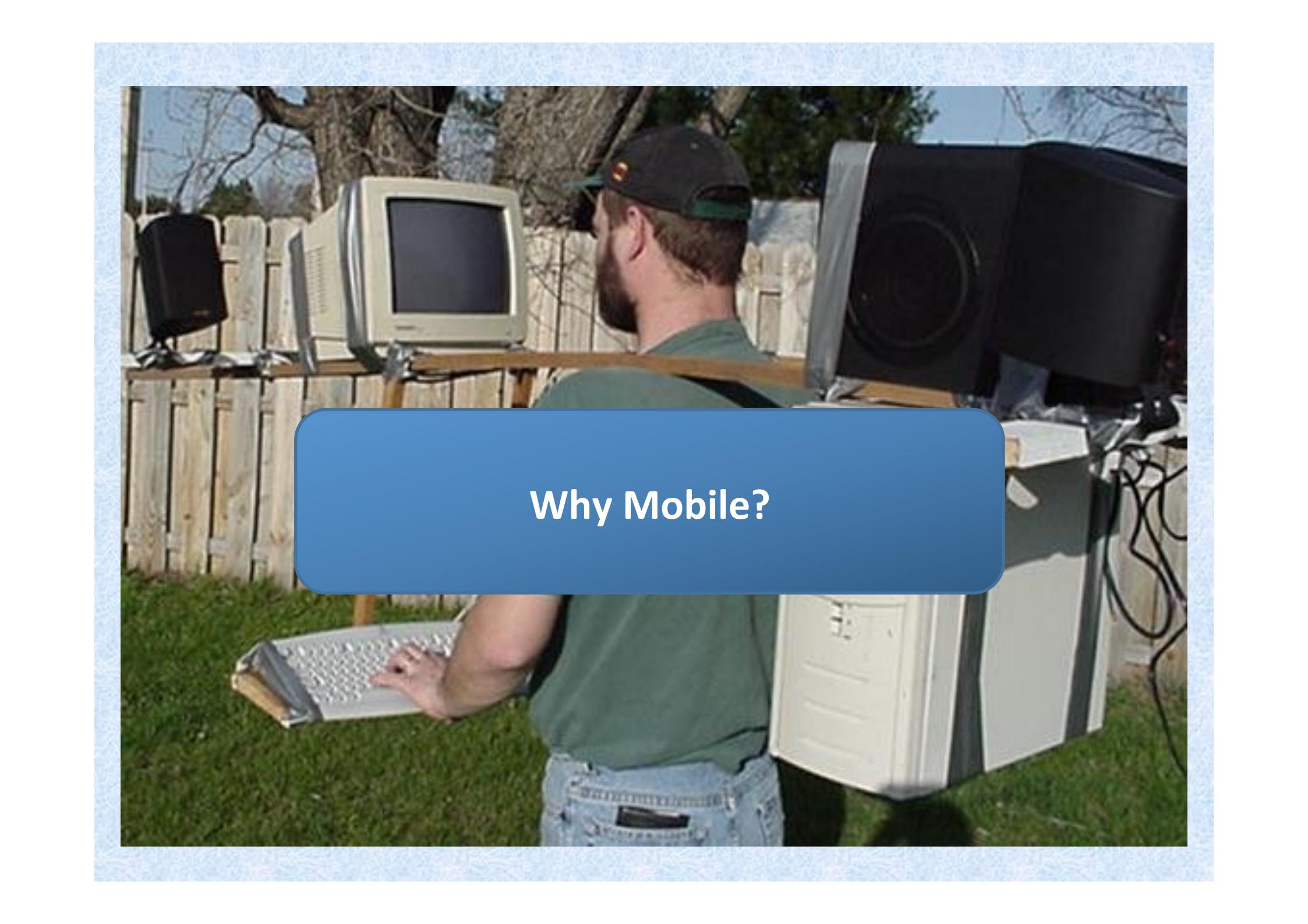
- Presentation skill
  - Talk & slides *understandable*?
- In-depth understanding of the selected paper
  - Technical correctness
  - Knowledge on the topic: Q&A
  - Evaluation of the paper: pros/cons, future direction

*Any question?*

**VIDEO**

# Human-centric Mobile Computing

- Definition:
  - A form of computing where a computer is carried by a human, interacting with the human, maintaining network connectivity
- Example:
  - Notebook, Netbook, Tablet, PDA, Smartphone,...
- Evolution of Computing
  - Mainframe → Desktop → (HMC?) → Ubiquitous

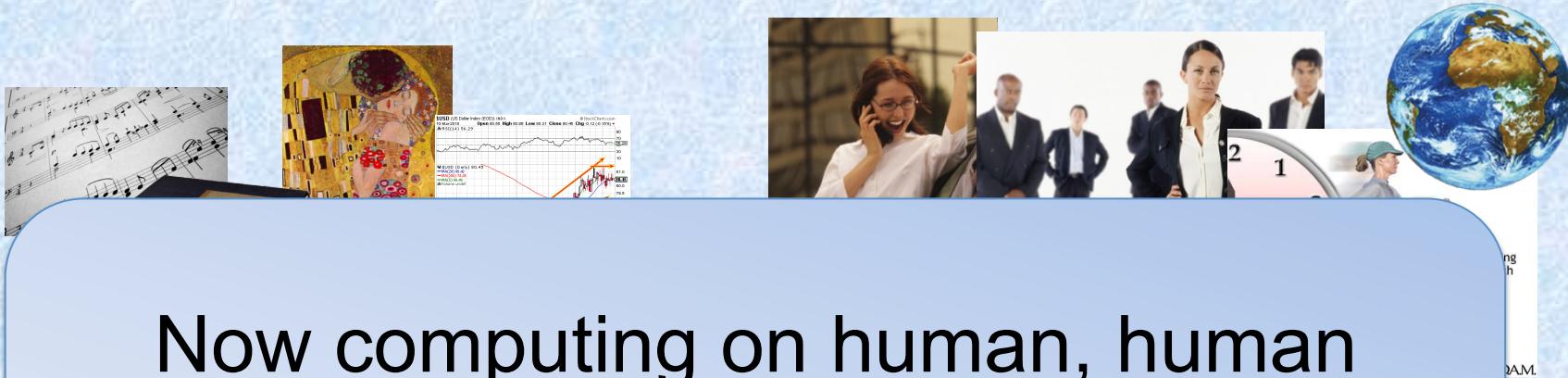
A photograph of a man in a green shirt and cap working on a mobile computer system outdoors. He is holding a keyboard and looking at a monitor mounted on a wooden railing. A large speaker and a server unit are also visible. A blue speech bubble contains the text "Why Mobile?".

Why Mobile?

# Opportunities of HMC

- All-the-time computing
- Human behavior monitoring
- Personal assistant
- Wide-scale sensing
- Medical applications
- and....

# What is Mobile Computing ?



Now computing on human, human society, human environment, health, and human life.



# Challenges of HMC

- Networking with Mobility
- Energy-saving
- Privacy-risk
- Security
- Understanding human life (Semantics)
- Sensing
- Interface

# Roadmap

- Areas of interest in Mobile Computing
  - Mobility-aware networking
  - Mobile sensing
  - Situation recognition
  - Context-aware Intelligence
  - Security & Privacy
  - App: Remote Health Monitoring, Traffic Monitoring

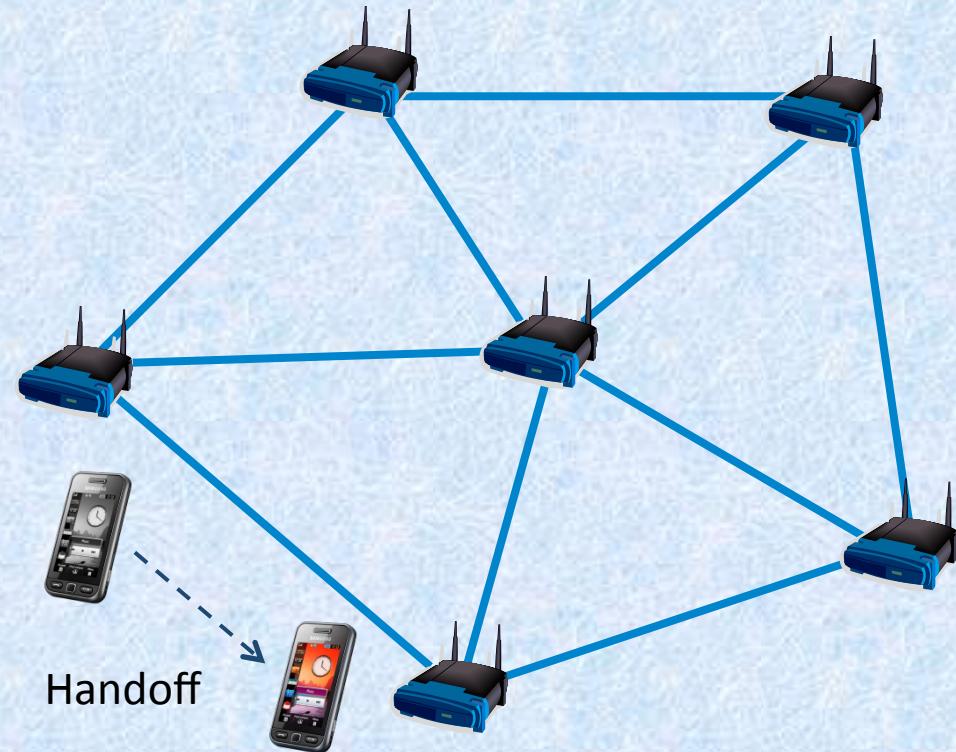
*Any question?*

# Mobility-aware Networking

- Research question:
  - *How to provide always-on network connectivity to mobile devices?*
- *Cellular network provides low-bandwidth always-on network connectivity, already*
- *High-bandwidth networking*
  - *Wi-Fi handoff*
- *Inter-networking*
- *Traditional MANET issues*

# Fast Hand-off in WiFi

- Want to move from one AP to another
- And make it fast!
- Better story-telling:
  - Why?
  - Do exactly what?
  - Is it hard?
  - Did others do?
  - How would you do?
  - How do you eval?

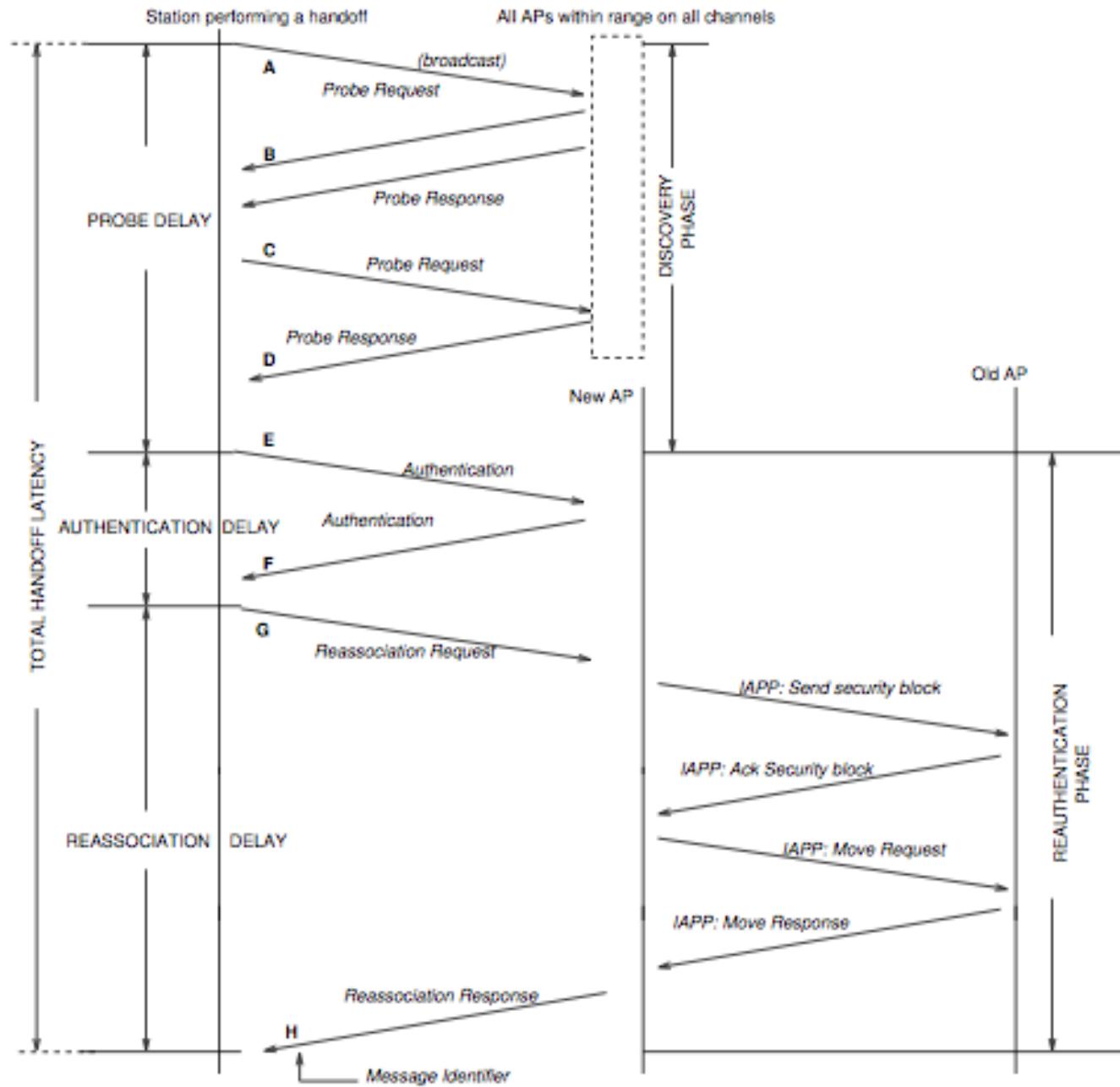


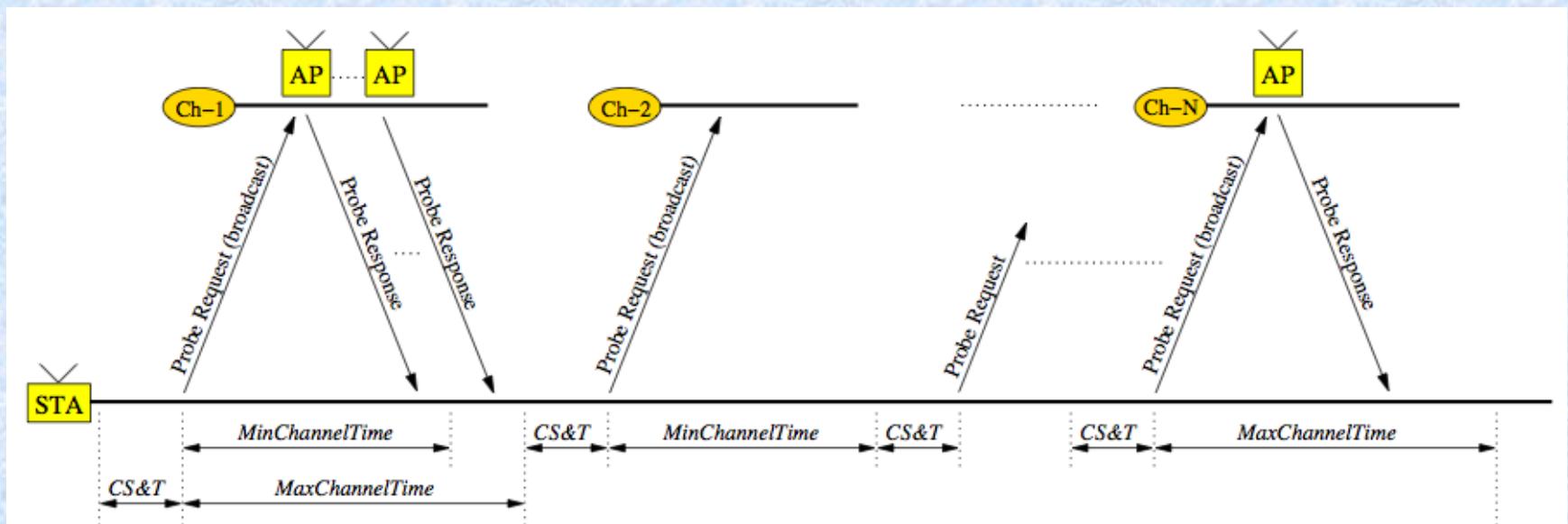
# Fast Hand-off in WiFi

- Motivation (Why?)
  - Increasing mobility, Increasing bandwidth demand, Increasing security demand, ...
  - But, Handoff is slow (=handoff latency is large)
- Goal/Objective/Problem def. (Do what?)
  - Provide seamless connectivity during mobility beyond one AP
  - Minimize handoff latency down to  $x$  ms to support VoIP/Video streaming apps

# Fast Hand-off in WiFi

- Challenges (Why is it hard?)
  - Need to complete necessary handoff procedures
  - Handoff = (Detection) + **Scanning** + Association
    - + Security + Vertical handoff
      - (Detection: when to handoff)
      - Scanning (probe): find best AP, slow,  $O(\#ch, \#Aps)$
      - Association: quick
      - Security: Auth & Key Exchange, Auth server, slow
      - Vertical handoff: Network-layer (IP assign), slow



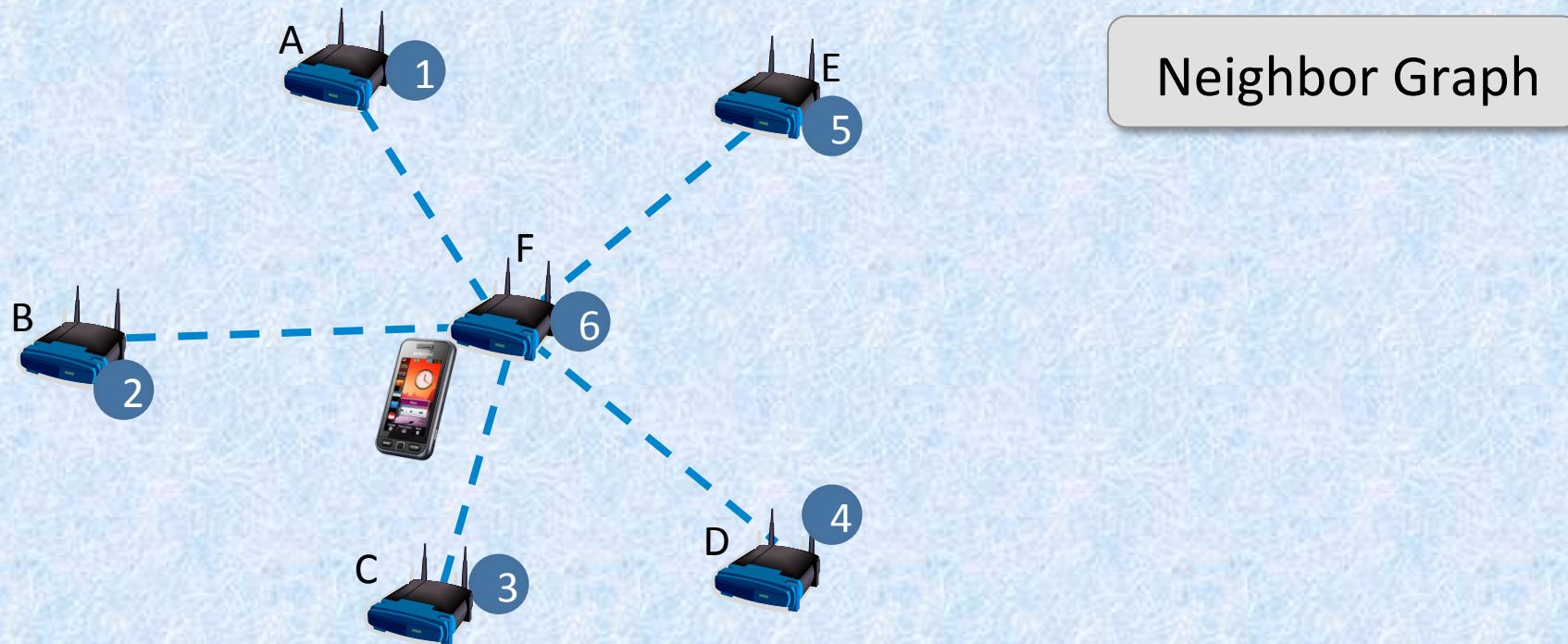


# Fast Handoff in WiFi

- Related work (scanning)
  - Optimize Min/MaxChannelTime
  - Selected Scanning (Channel Masking)
  - Neighbor Graph (NG-pruning)
  - Collaboration with APs (SyncScan)
  - Multi-radio scanning (MultiScan)

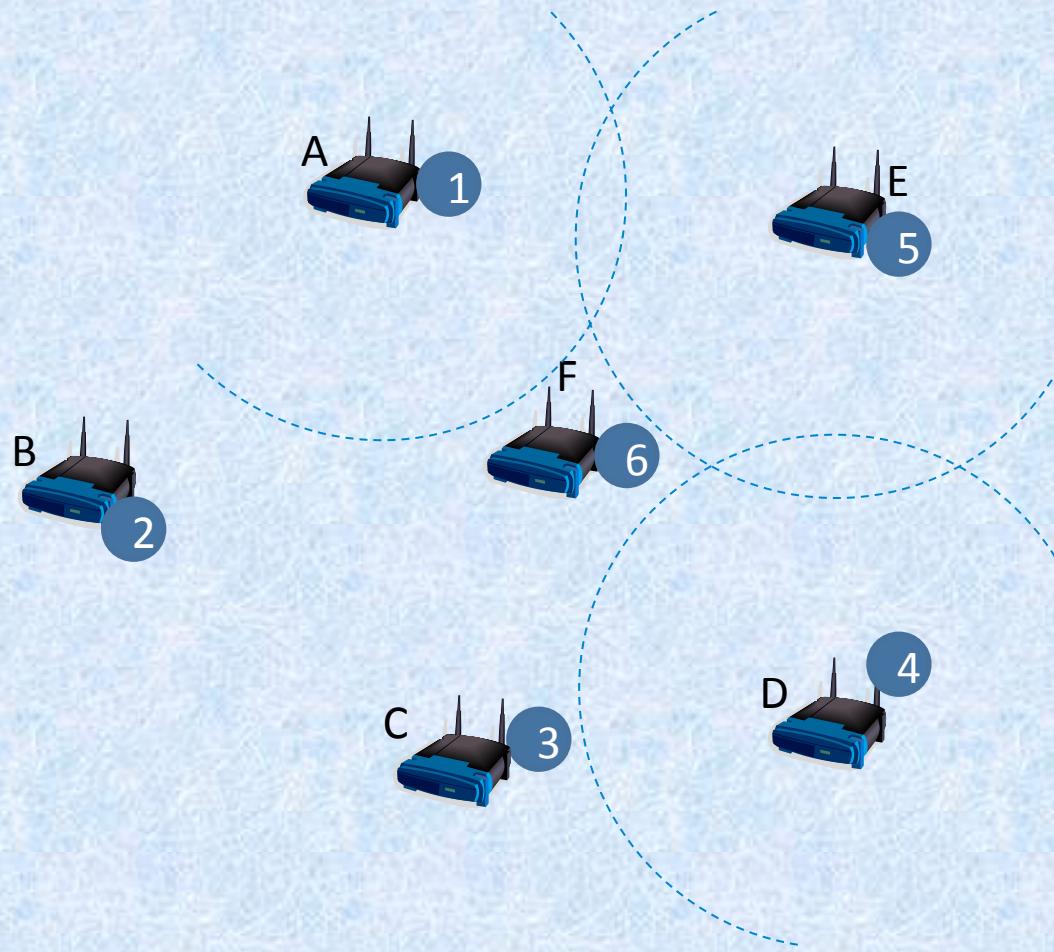
# Fast Scanning with NG-pruning

- Minimize # of channels to scan w/ NG & NOG



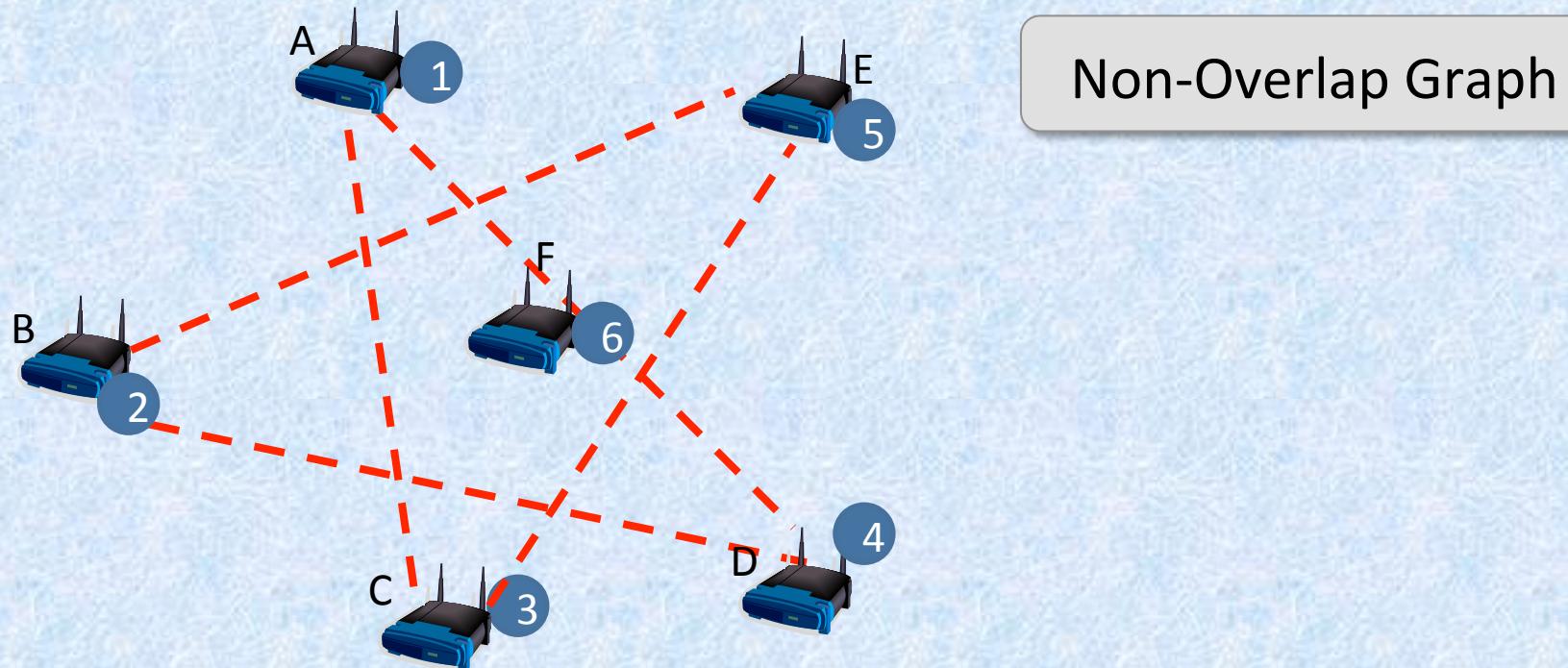
# Fast Scanning with ng-pruning

- Minimize # of channels to scan w/ NG & NOG



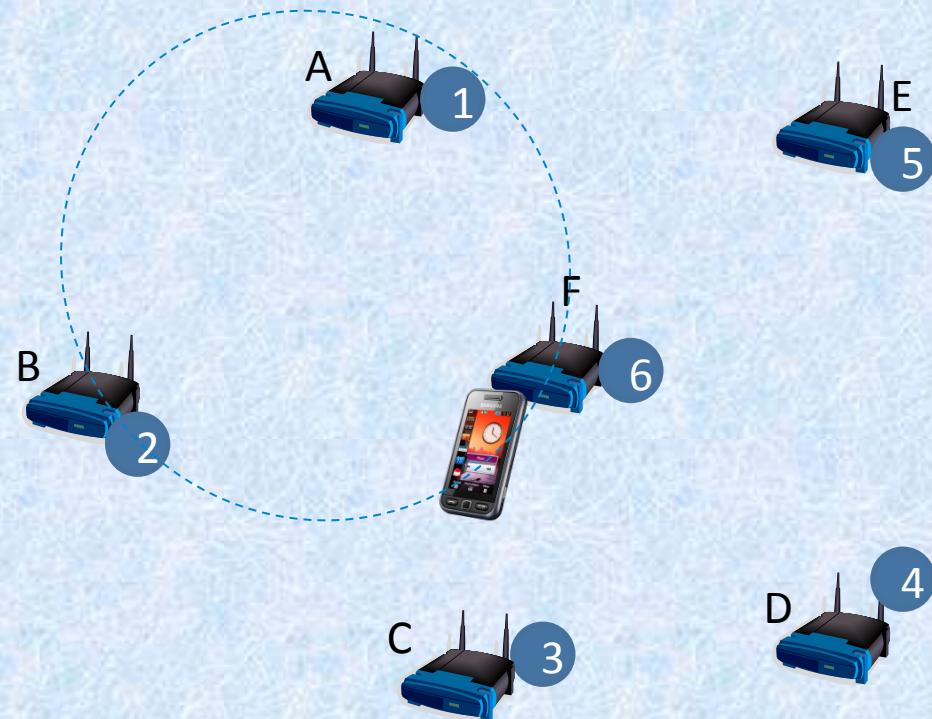
# Fast Scanning with ng-pruning

- Minimize # of channels to scan w/ NG & NOG



# Fast Scanning with ng-pruning

- Minimize # of channels to scan w/ NG & NOG

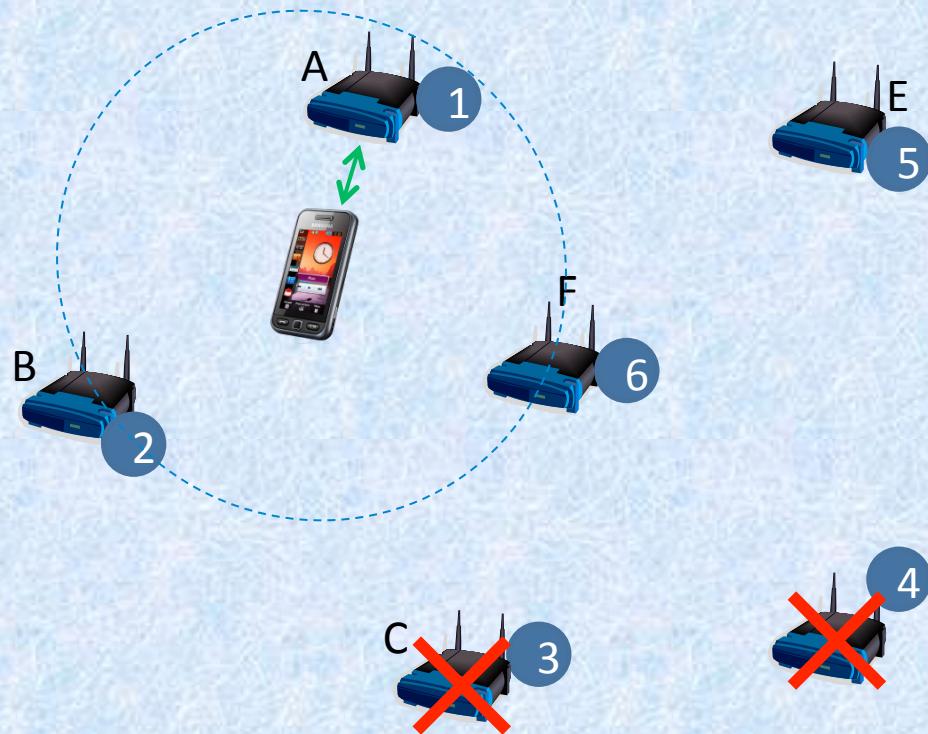


Channels to Scan:



# Fast Scanning with ng-pruning

- Minimize # of channels to scan w/ NG & NOG

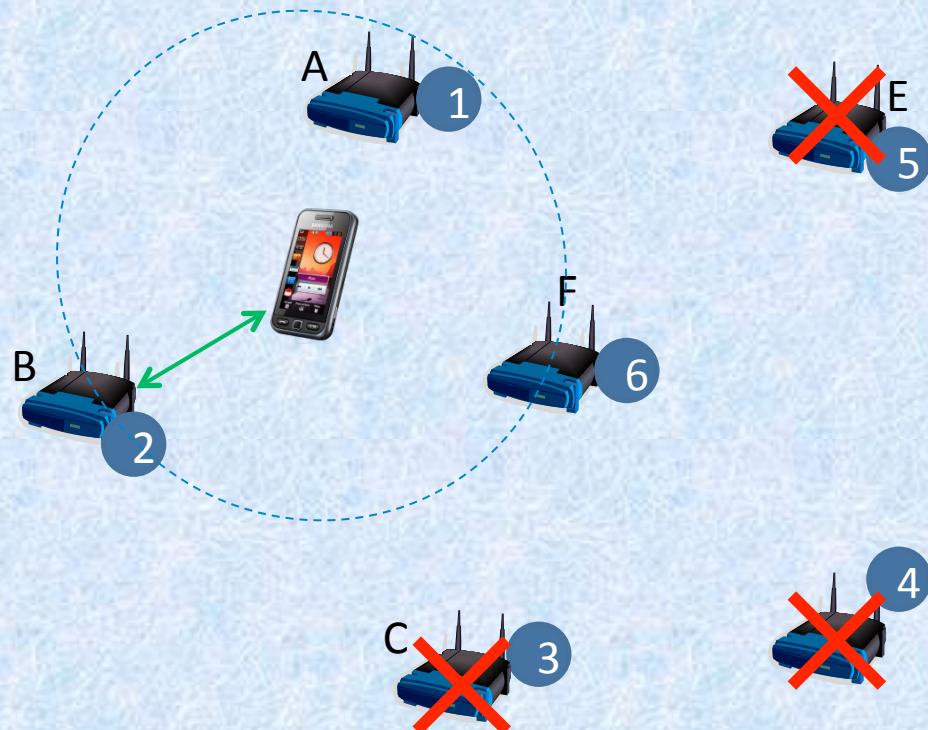


Channels to Scan:



# Fast Scanning with ng-pruning

- Minimize # of channels to scan w/ NG & NOG



Channels to Scan:



Scanning latency  
Down to 20 ms  
(Avg # of probes=1.5)

# Fast Handoff in WiFi

- Remaining topics
  - Fast AKE in WiFi handoff
  - Fast vertical handoff
  - Fast inter-network handoff

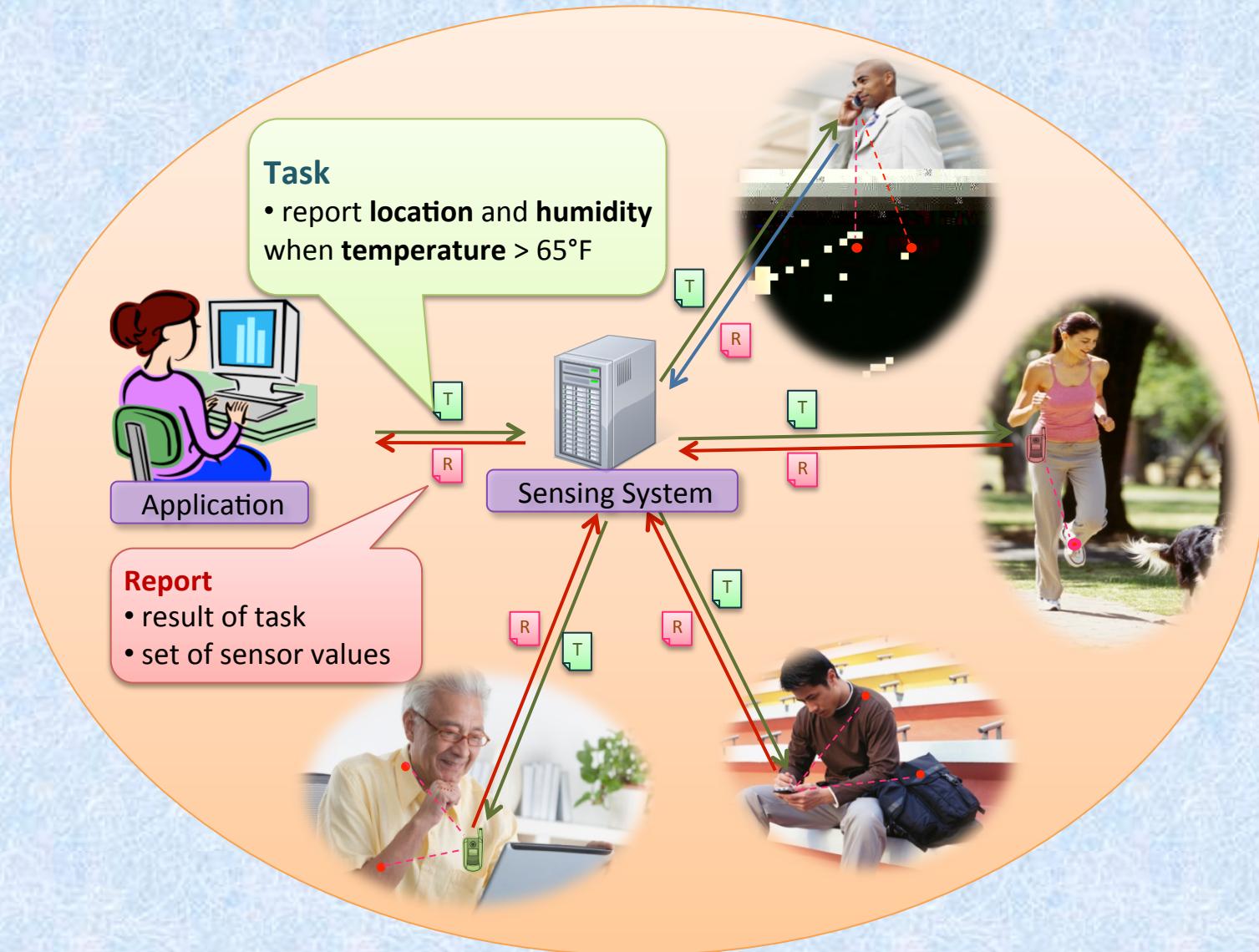
# People-centric Sensing

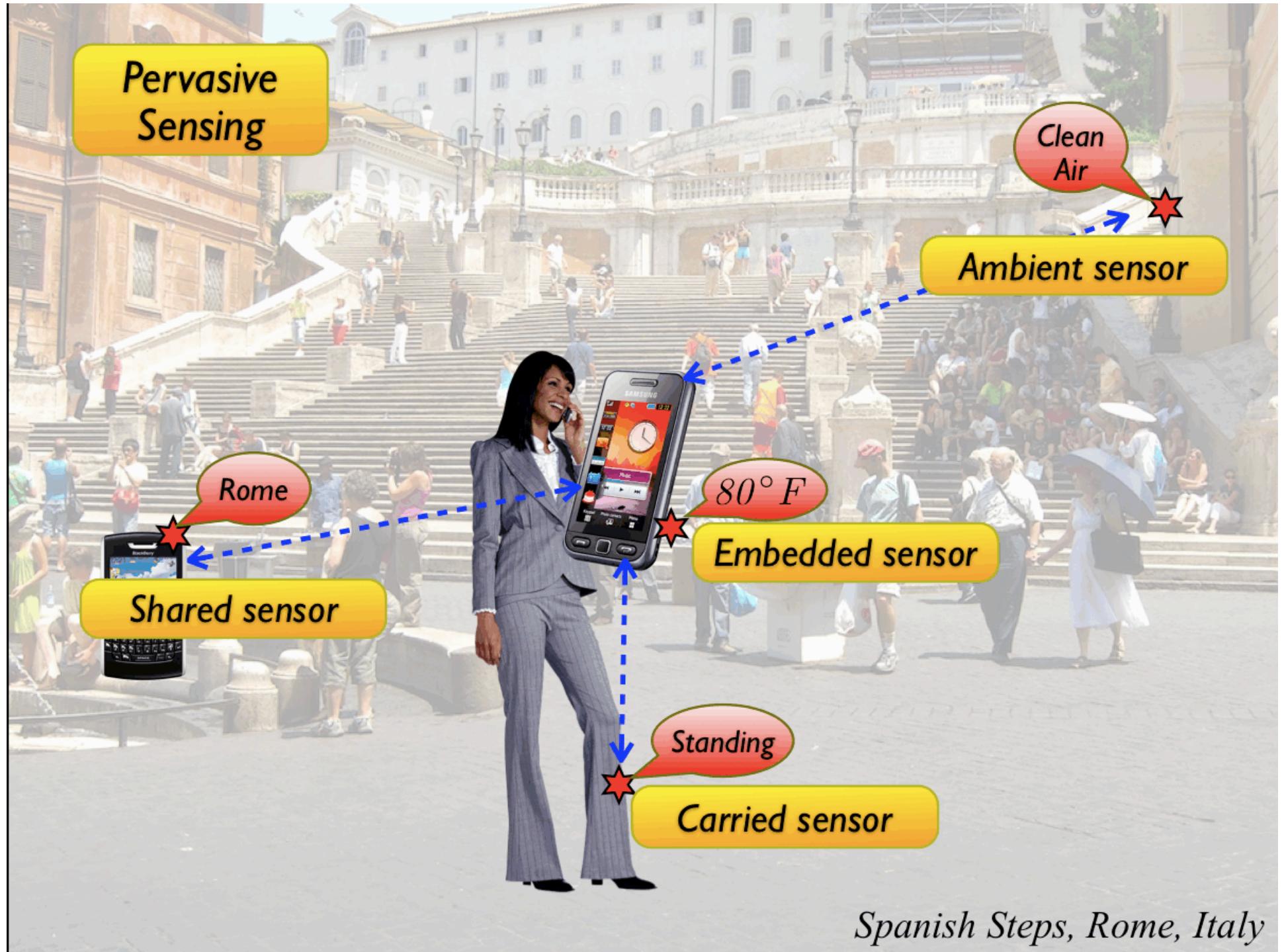
- Leverage human-carried devices for sensing
- Large-scale wide-area sensing
  - Task-based sensing
- Ambient sensing (pervasive)
  - Context-aware services
- Medical/Health sensing
  - Chronic disease
  - Emergency management
  - Lifestyle management

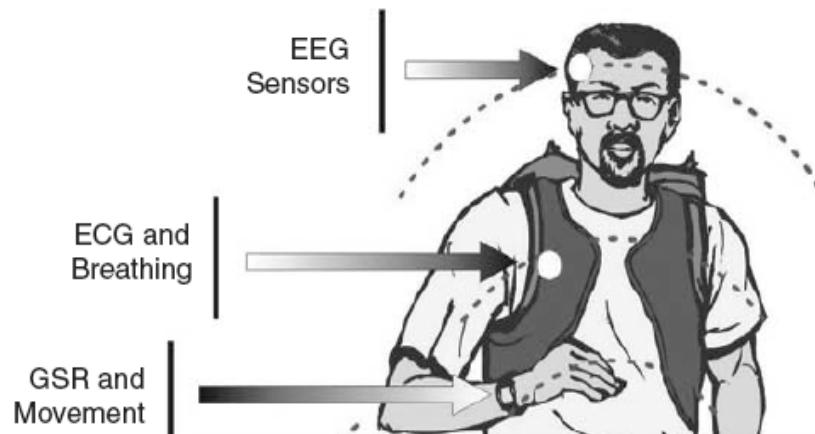
# People-centric Sensing

- Large-scale wide-area sensing
  - How to monitor environmental/human/social phenomena in an efficient, correct, and secure way?
  - Examples:
    - CarTel
    - Mobiscopes
    - SenseWeb
    - Urbannet
    - Metrosense
    - Millennium Project

# Large-scale Task-based Sensing



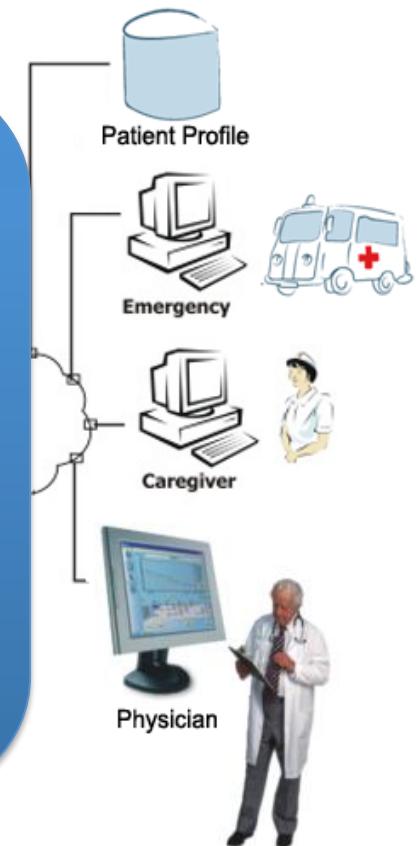




# Pervasive Health Monitoring

*Tons of Applications...*

- Monitor Parkinson's Disease (Klapper2003)
- Stress Level Monitoring (Jovanov2003)
- Brain Monitoring with EEG (Chen2008)
- Cardiovascular/Blood Pressure (Hahn2008)
- Physical Rehabilitation (Javanov2005)
- Fitness Monitoring (Jea2008)



Jovanov et. al, "Stress Monitoring...",  
IEEE Engineering in Medicine and Biology Mag. May/June 2003

# Challenges

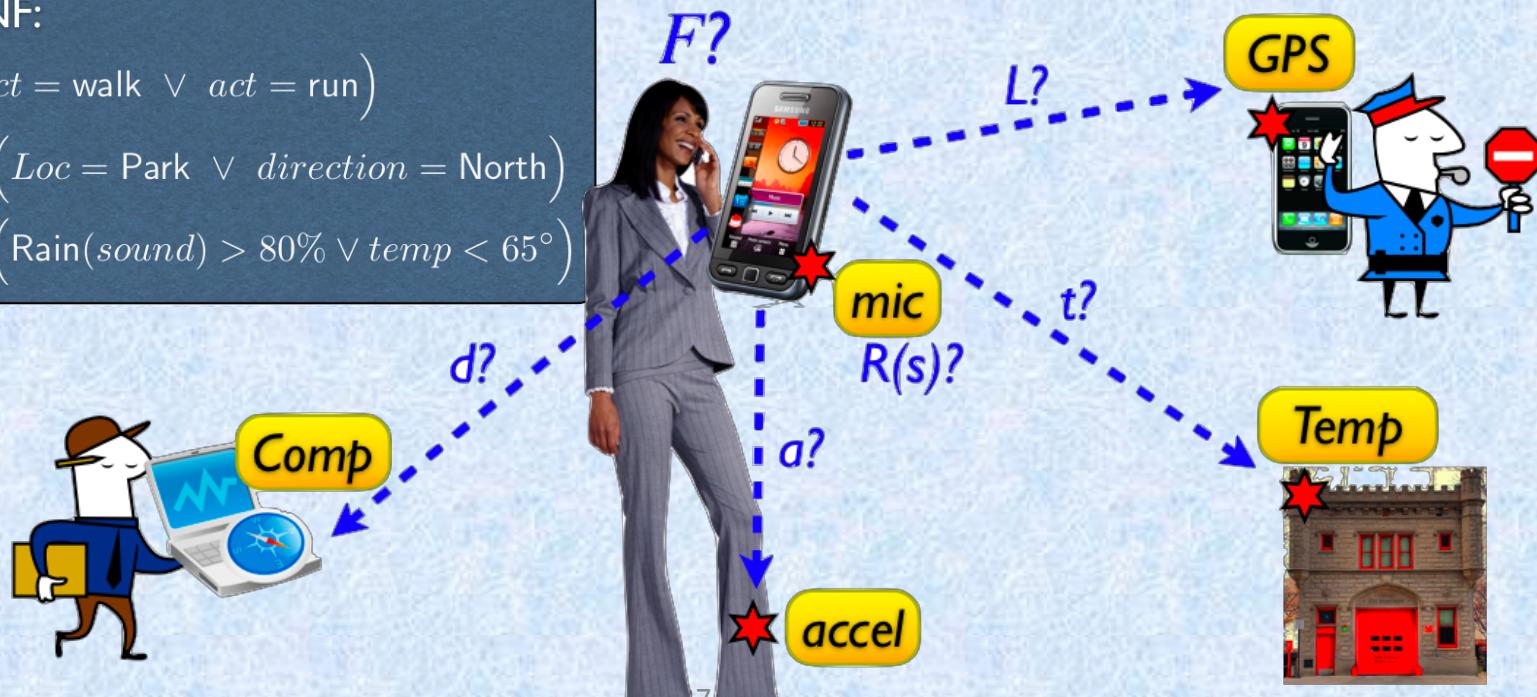
- System design
  - Architecture
  - Scalability
  - Performance
- Energy-aware sensing
- Data integrity
- Privacy
- Authentication
- Etc...

# Energy-aware context monitoring

- Problem:
  - Context monitoring requires continuous (wireless) communication with sensors (internal & external)

Event in CNF:

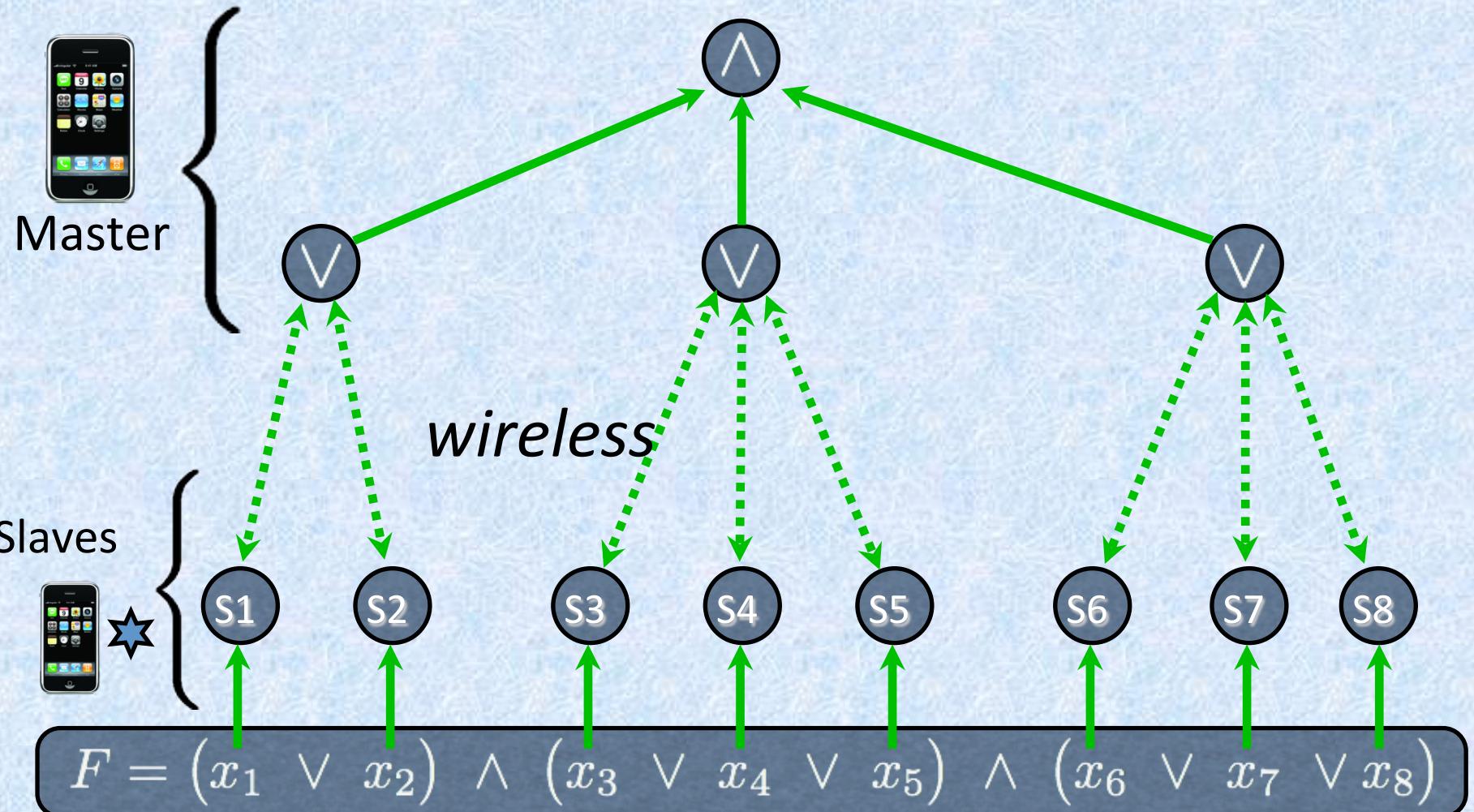
$$\begin{aligned} F = & \left( \text{act} = \text{walk} \vee \text{act} = \text{run} \right) \\ & \wedge \left( \text{Loc} = \text{Park} \vee \text{direction} = \text{North} \right) \\ & \wedge \left( \text{Rain}(\text{sound}) > 80\% \vee \text{temp} < 65^\circ \right) \end{aligned}$$



# Deamon: energy efficient monitoring

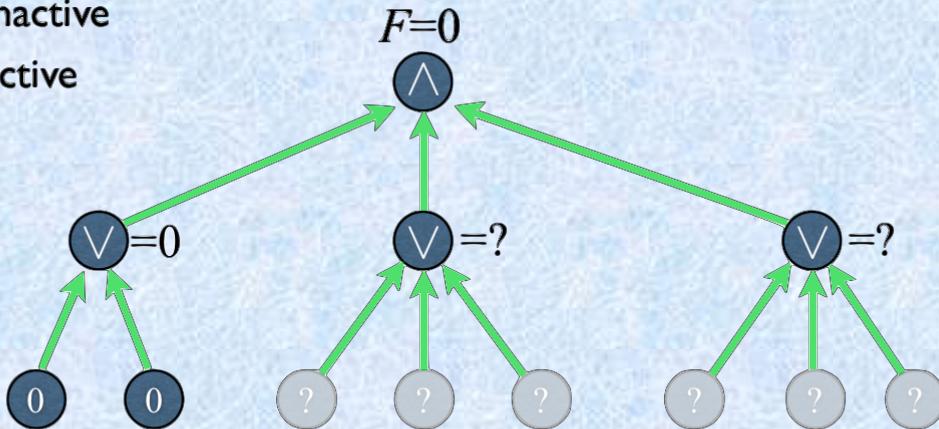
- Goal:
  - Given a Boolean expression  $F$  defined on sensor values, a set of helping nodes, detect when  $F$  becomes true
  - Save energy: less communication and sampling
- Method:
  - DEAMON (Distributed Energy-Aware sensor Monitoring)
  - $F$  is either in CNF or DNF
  - Assign sensors to helping nodes: weighted set cover prob.
  - Monitor only sensors that determine value of  $F$

# CNF Evaluation Tree

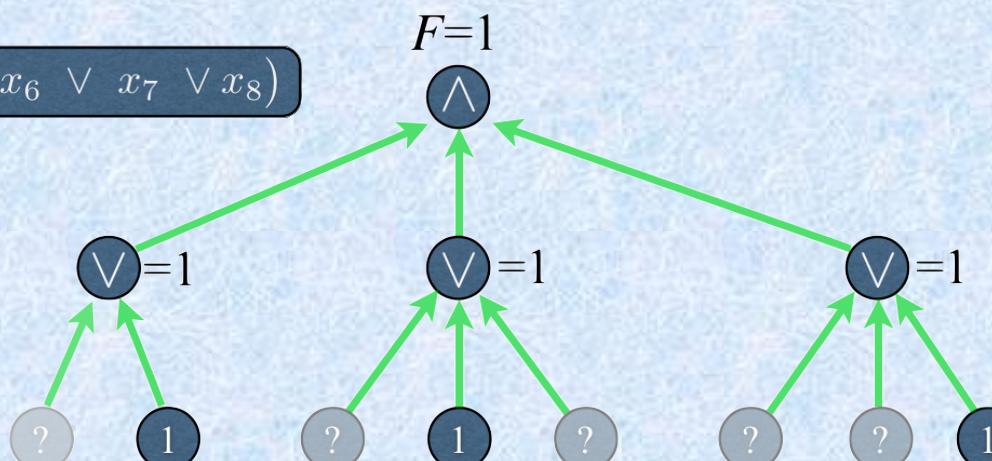


# Deamon: idea

 inactive  
 active



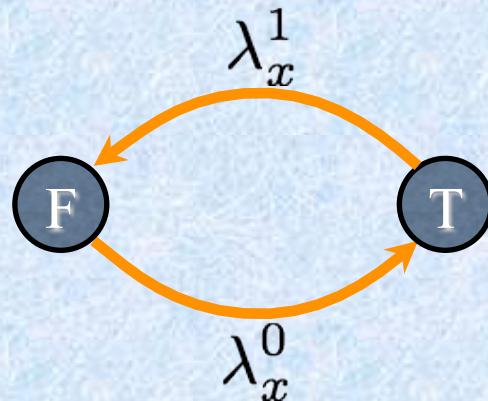
$$F = (x_1 \vee x_2) \wedge (x_3 \vee x_4 \vee x_5) \wedge (x_6 \vee x_7 \vee x_8)$$



$$F = (x_1 \vee x_2) \wedge (x_3 \vee x_4 \vee x_5) \wedge (x_6 \vee x_7 \vee x_8)$$

# Model for analysis

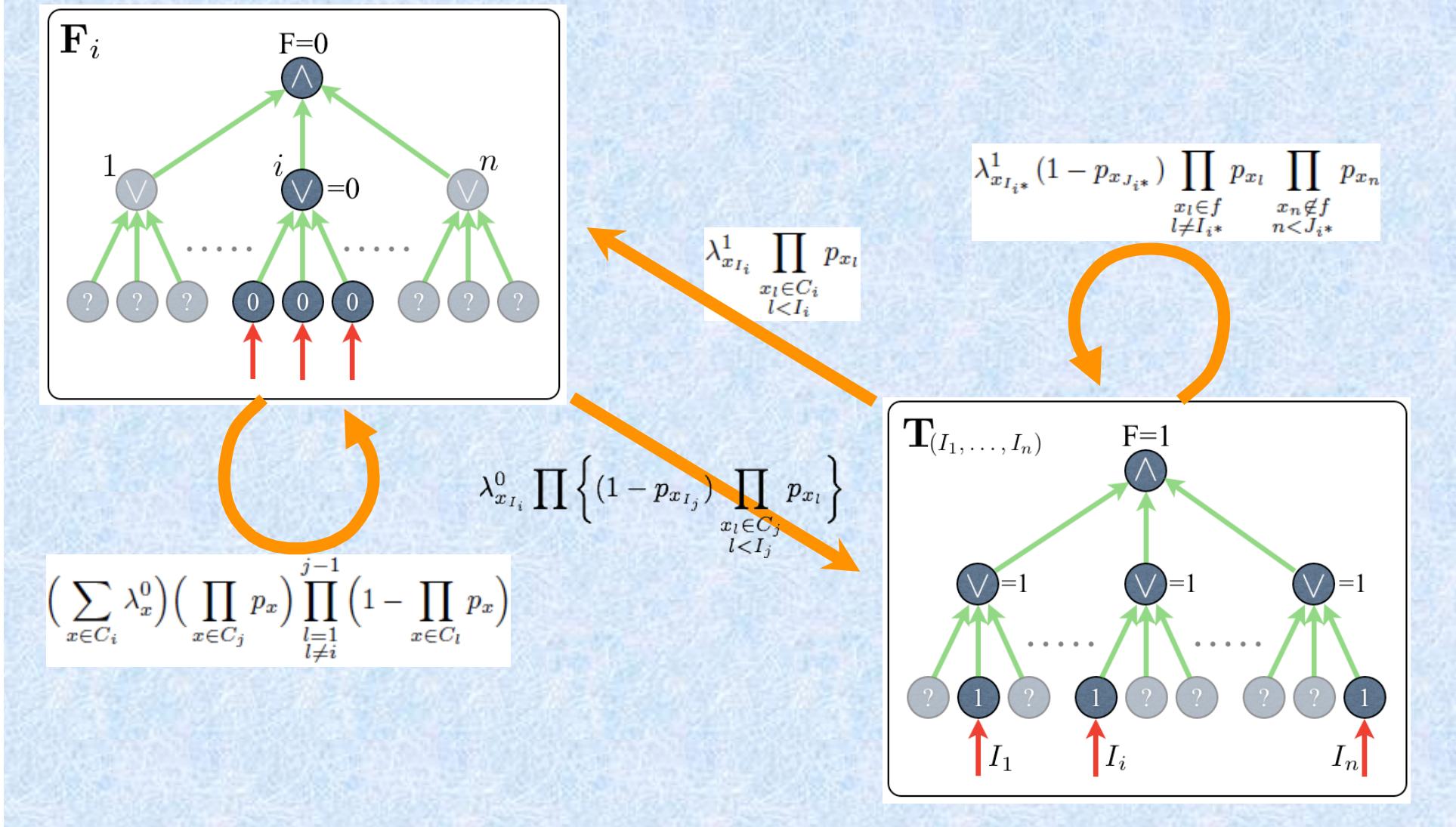
- Dynamics of atom  $x$  in CNF
- alternating renewal process  $(p_x, \lambda_x)$
- $p_x := \Pr(x = \text{F})$  stationary probability
- $\lambda_x$  : change rate



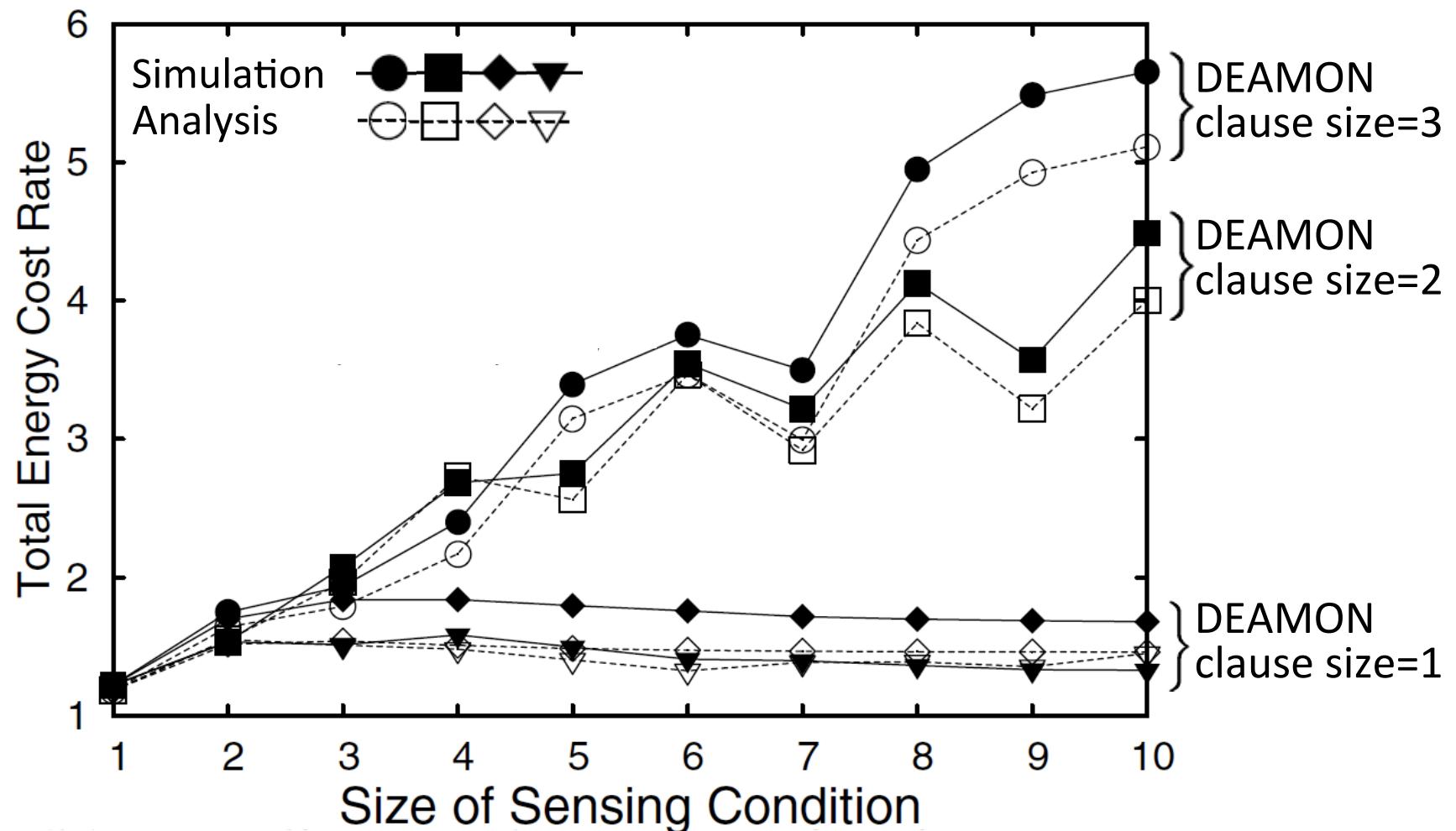
$$\lambda_x = \frac{2\lambda_x^0\lambda_x^1}{\lambda_x^0 + \lambda_x^1}$$

$$p_x = \frac{\lambda_x}{2\lambda_x^0}$$

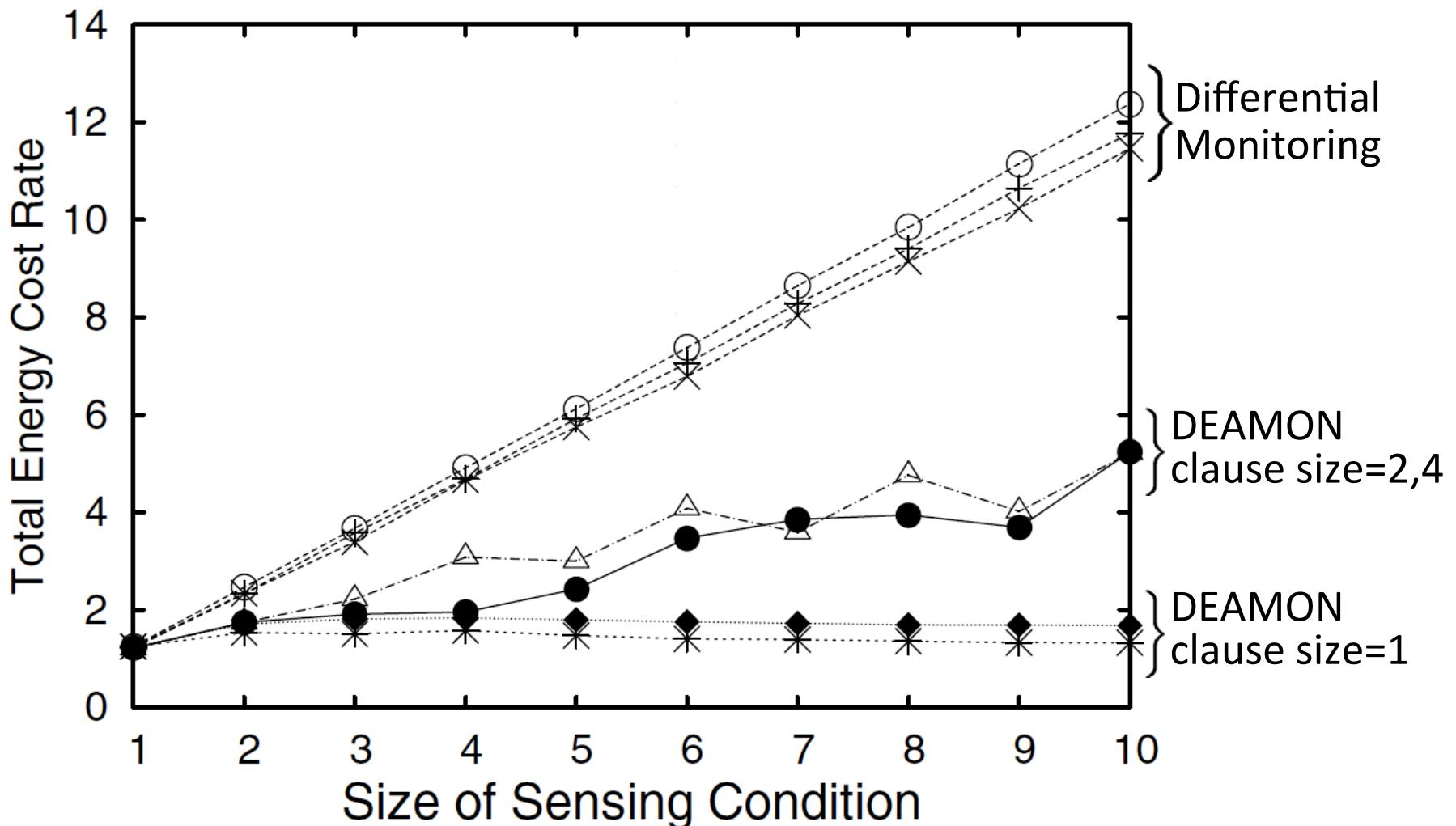
# Markov Chain: Transition



# Analysis vs. Simulations



# DEAMON saves energy

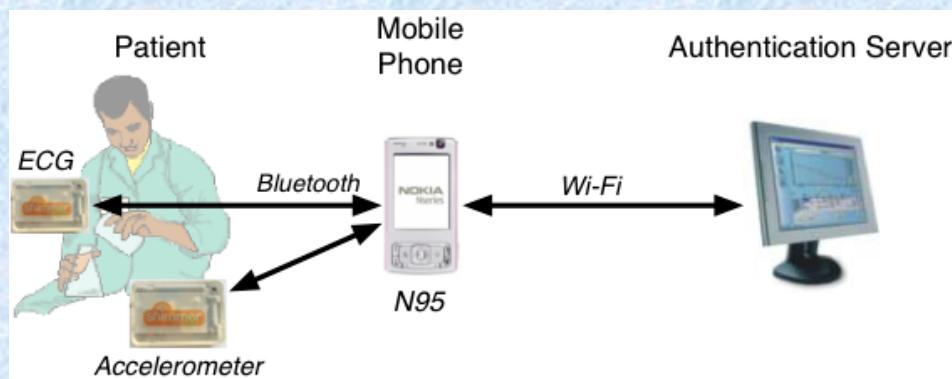
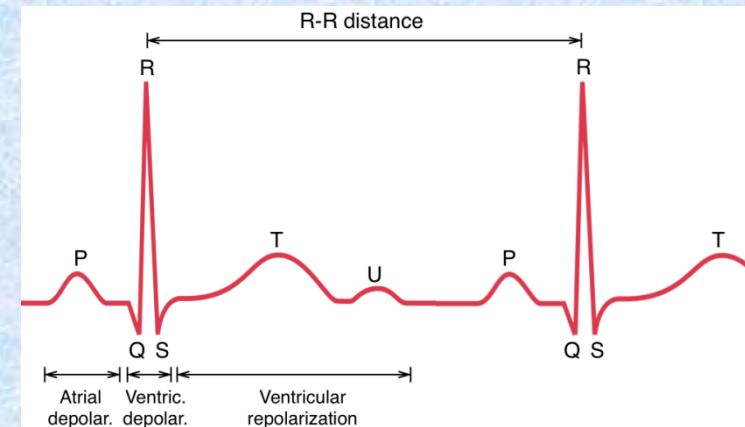


# Patient verification in Remote H. M.

- Goal
  - Verify if the sensor data belongs to the right person
  - Continuous verification
  - Non-permanent identification
- ECG-based activity-aware patient authentication
  - *[ICMI-MLMI'09]*
  - Wearable ECG sensor & activity sensor
  - Classification by Machine Learning

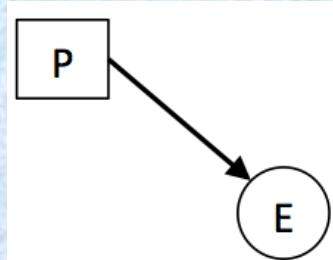
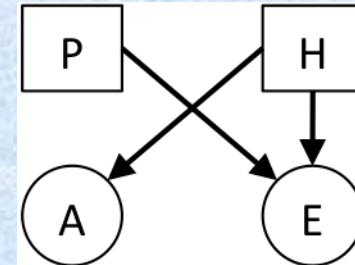
# Feature extraction

- Features:
  - Fiducial: R-R, QR-slope, RS-slope,
  - Non-fiducial: Auto-Correlation
  - Accelerometer means/variations



# Classification and decision

- Classification methods
  - K-Nearest Neighbor (KNN)
  - Bayesian Network



- Patient verification
  - Binary classification using imposter model

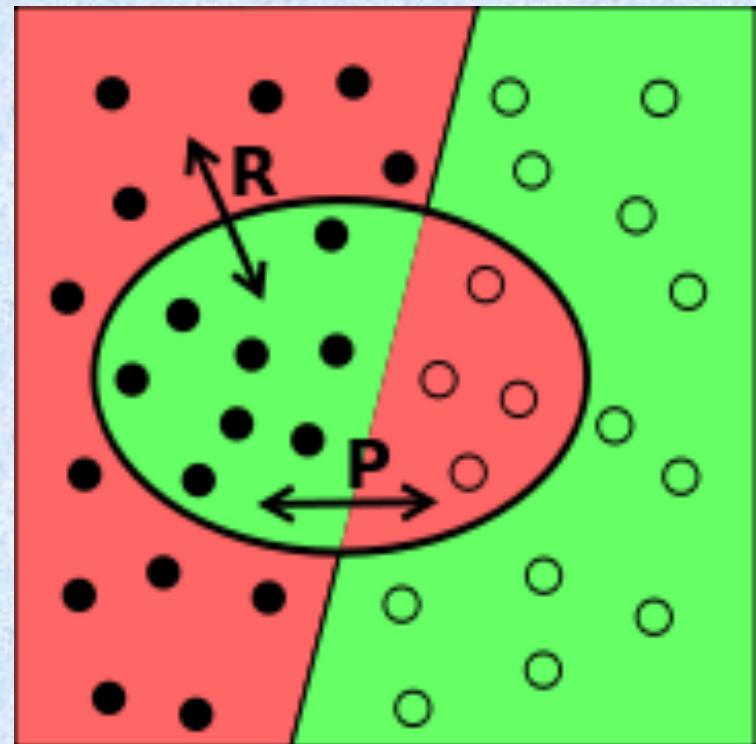
|           | Activity-Aware |        |           |           | Activity-Unaware |        |        |
|-----------|----------------|--------|-----------|-----------|------------------|--------|--------|
|           | KNN            | xKNN   | $ h  = 2$ | $ h  = 3$ | KNN              | xKNN   | BN     |
| Precision | 0.8243         | 0.8278 | 0.8488    | 0.8252    | 0.7855           | 0.7677 | 0.8139 |
| Recall    | 0.8039         | 0.7925 | 0.8326    | 0.8174    | 0.8035           | 0.7987 | 0.8140 |

# Precision and Recall

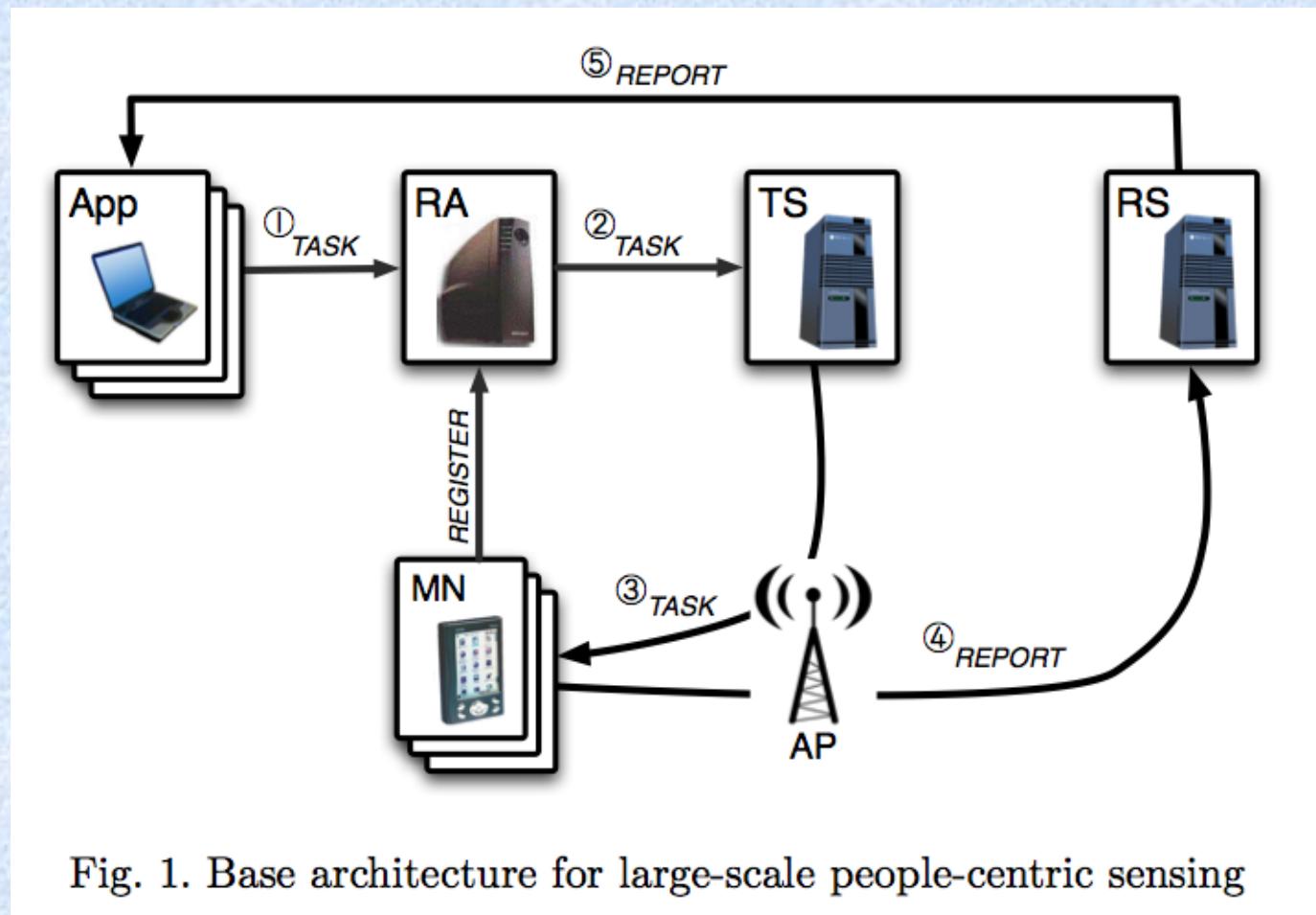
- Left: relevant
- Right: irrelevant
- Circle: guessed relevant

- Precision:
  - Right retrieval / Retrievals
- Recall:
  - Right retrieval / Relevant



# Architecture for People-cent. Sensing



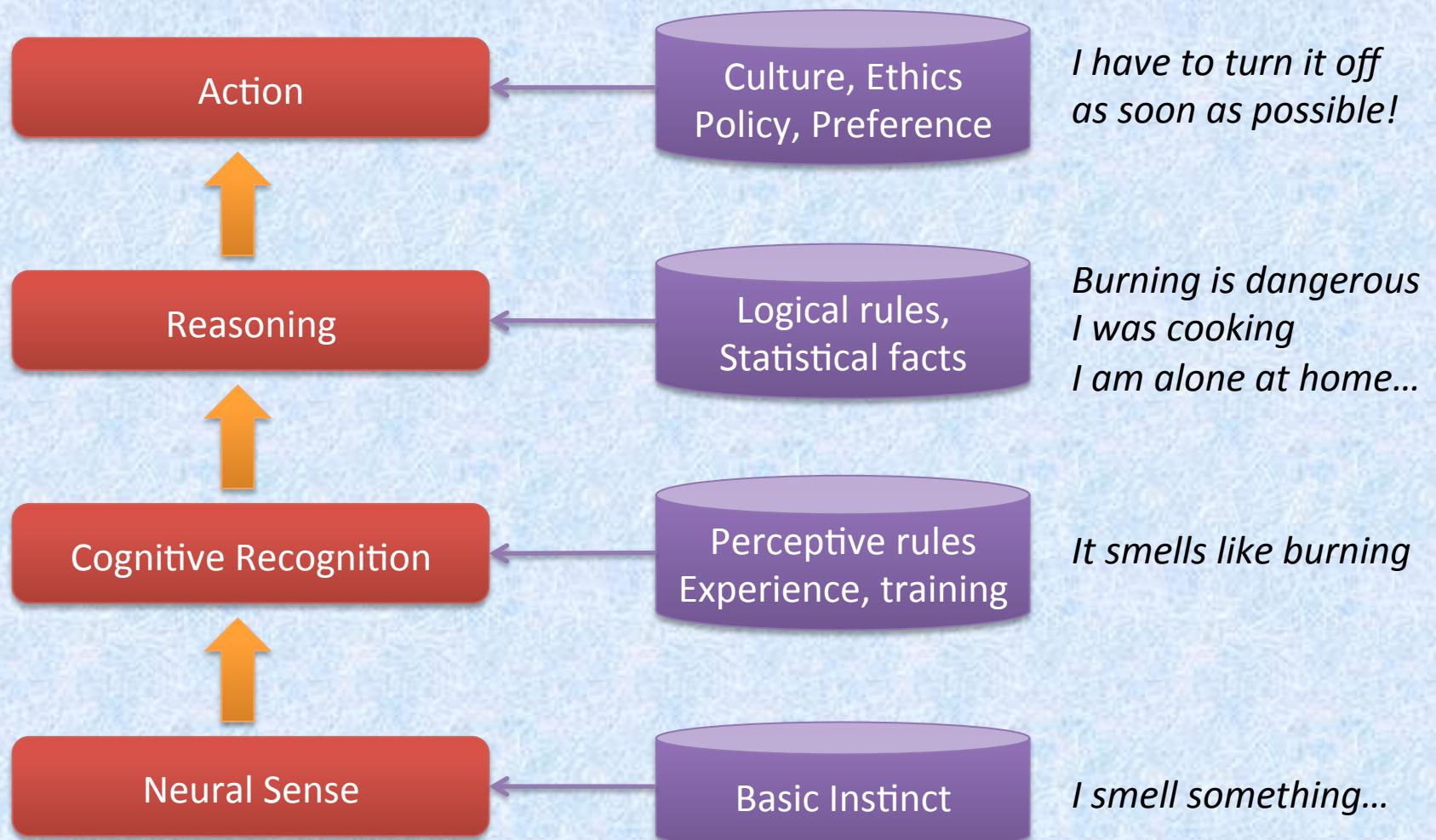
# What can HMC offer?

- Human-centric mobile computing
  - Everyone has one
  - Always carried by the user
  - Always interacts with the user
  - Always connected
  - Improving computation power
  - Sensing capability
- What can mobile device learn about the user?
- What can we do with such information?

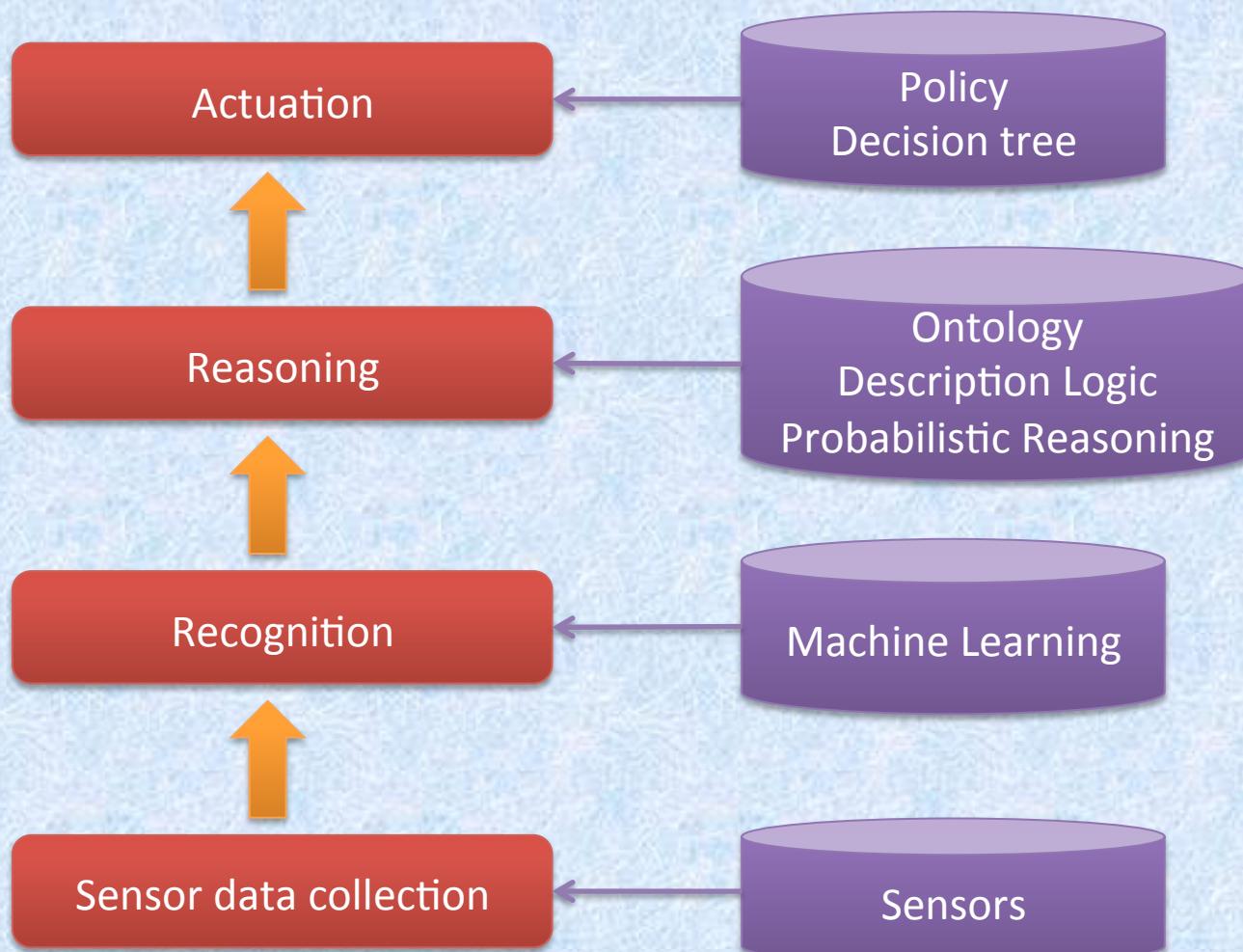
# Available Data about the User

- Hard sensor
  - Location: GPS, Cell tower (Google), WiFi (Skyhook)
  - Motion: accelerometer
  - Proximity, Light, Audio, Video
- Soft sensor
  - Explicit: schedule, todo list, contacts
  - Implicit: web browsing, email, chat, app usage, resource usage, ...

# Data processing of Human



# Data processing of HMC



# Context-aware computing

- The mobile device “knows” the “context” of the user and “adapts” to the context
- *Context is any information that can be used to characterize the situation of an entity. (by A. K. Dey)*
  - *An entity is a person, place, or object that is considered relevant to the interaction between the user and application, including the user and applications themselves.*

# Context

- Characteristics of Context
  - Context is Dynamic
  - Context is Relational
  - Context is Imperfect
  - Low-level context  $\leftrightarrow$  High-level context
    - Abstraction
  - Hard sensor  $\leftrightarrow$  soft sensor

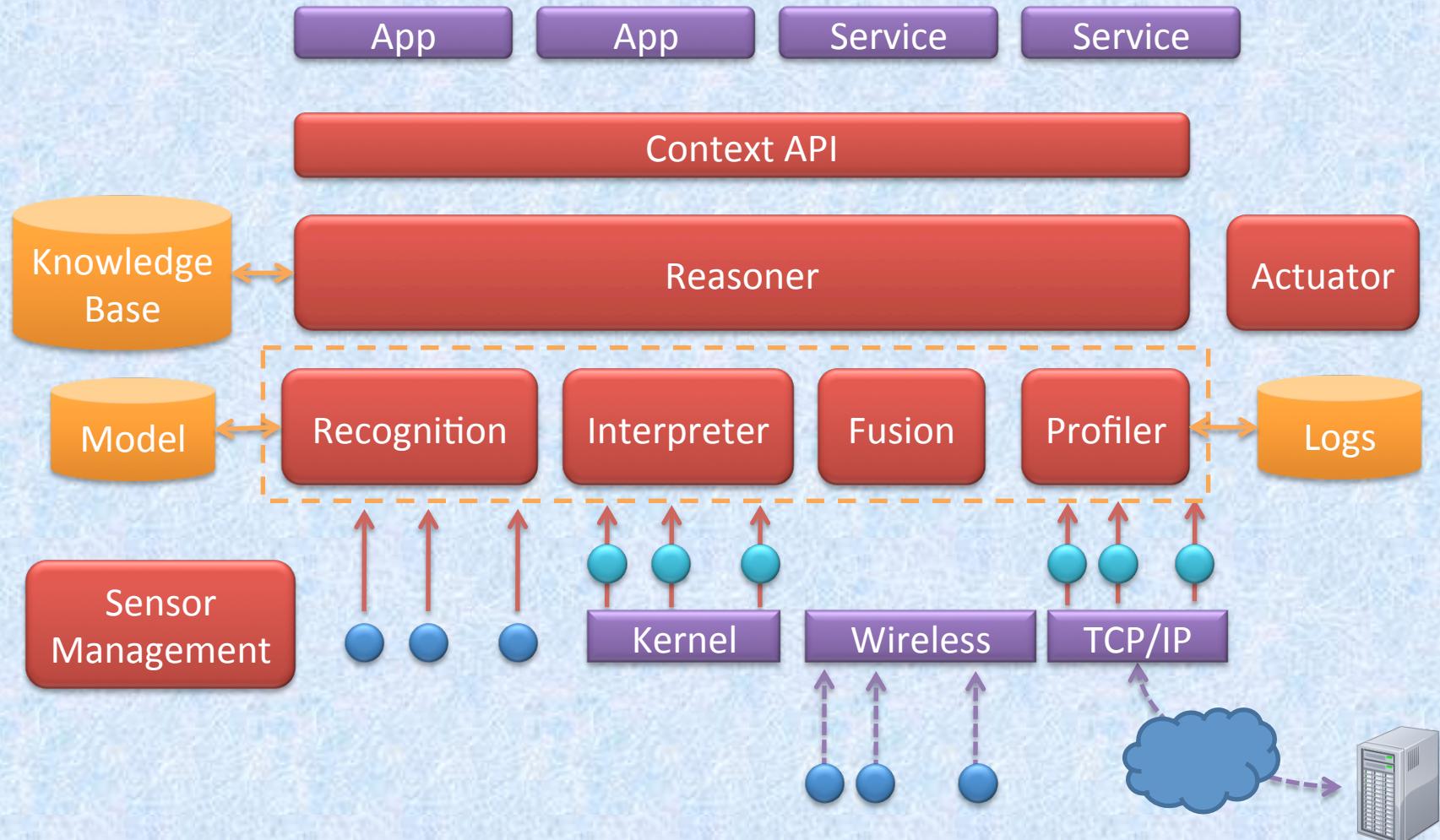
# Categorization of Context

- By [Soylu2009]
  - User context
    - External/ Internal
  - Device context
    - Hard/ Soft
  - Application context
    - Target platform, memory requirement, etc...
  - Information context
    - Properties of information pieces available
  - Environmental context
    - Physical/ Digital
  - Time context
  - Historical context
  - Relational context

# Applications of Context-Aware Comp.

- *Adaptation of system behavior depending on the current, past, or the future context*
- Information filtering and recommendation
- Context-adaptive user interface/presentation
- Context-aware search
- Context-dependent application configuration
- Context-based action
- Context-based resource allocation
- Collaborative filtering
- Case-based reasoning

# System Architecture



# Challenges

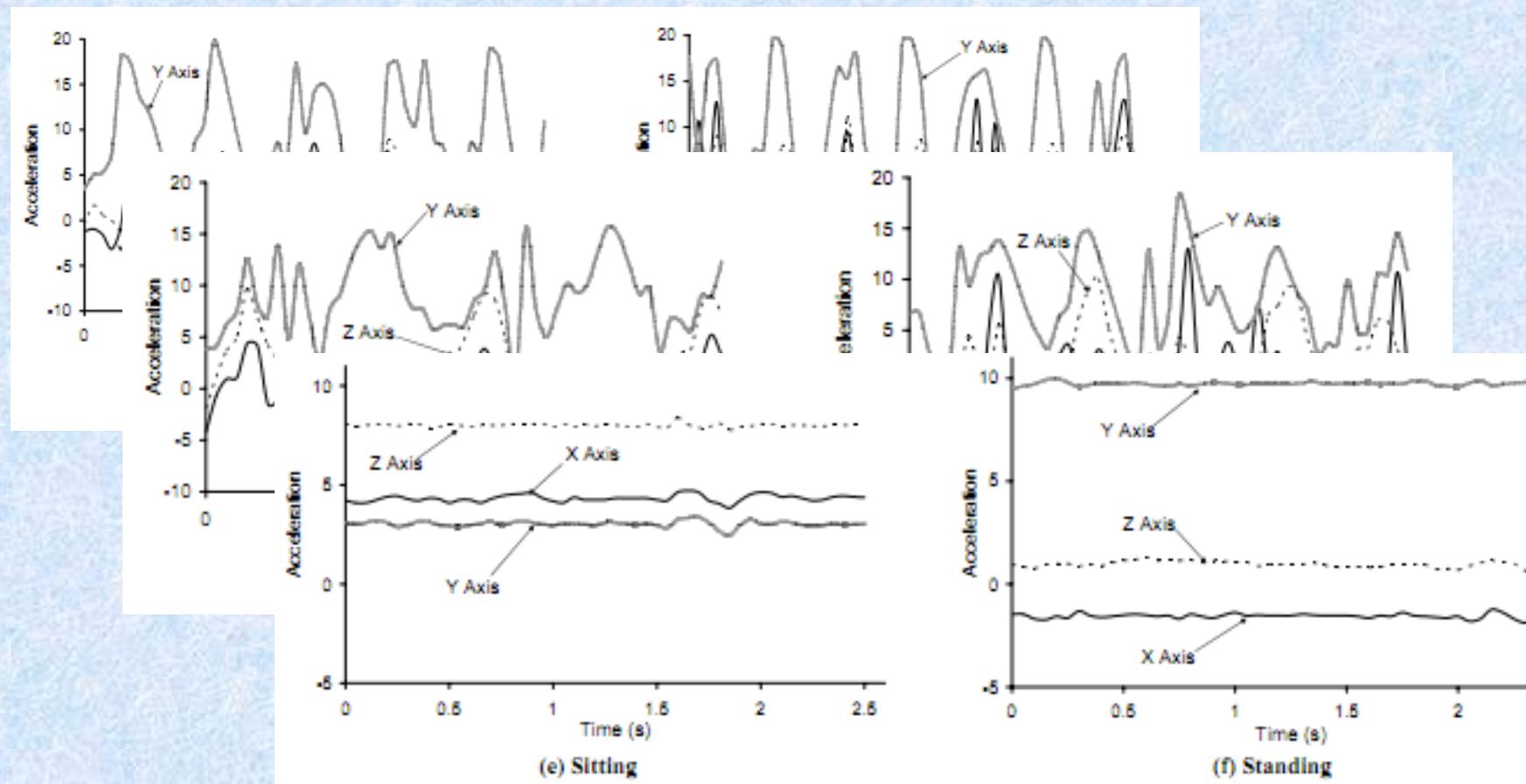
- Context acquisition
  - Given a set of contexts, provide appropriate and best low-data
  - Identify, find, and obtain context data from various context source
- Context refinement
  - Convert sensor-data into mid-level context
  - Movement → activity type
  - Sound → activity or surrounding situation
  - Image → place/ situation
- Profiling
  - Derive personalized context pattern based on history data
  - Movement profiling for significant-place learning, location prediction
  - Behavior profiling for behavior prediction/recommendation
  - Social profiling for social-activity prediction, relationship learning
  - Preference profiling

# Challenges

- Context modeling
  - Ontology (no uncertainty, heavy)
  - Bayesian networks
  - Fuzzy logic
  - Probabilistic Relational Model
  - SCM (Symbol string Clustering Map)
- Context reasoning
  - Description Logic (deterministic, deductive)
  - Machine Learning (probabilistic, inductive)
- Context imperfectness
  - Integration of Bayesian network with ontology
  - Fuzzy /PRM/ Markov Logic

# Activity Recognition

- Fordham Univ. KDD 2010



# Activity Recognition

Table 2: Accuracies of Activity Recognition

|            | % of Records Correctly Predicted |                     |                       |           |
|------------|----------------------------------|---------------------|-----------------------|-----------|
|            | J48                              | Logistic Regression | Multilayer Perceptron | Straw Man |
| Walking    | 89.9                             | <u>93.6</u>         | 91.7                  | 37.2      |
| Jogging    | 96.5                             | 98.0                | <u>98.3</u>           | 29.2      |
| Upstairs   | 59.3                             | 27.5                | <u>61.5</u>           | 12.2      |
| Downstairs | <u>55.5</u>                      | 12.3                | 44.3                  | 10.0      |
| Sitting    | <u>95.7</u>                      | 92.2                | 95.0                  | 6.4       |
| Standing   | <u>93.3</u>                      | 87.0                | 91.9                  | 5.0       |
| Overall    | 85.1                             | 78.1                | <u>91.7</u>           | 37.2      |

# Features used

- **Average[3]**
  - Average acceleration (for each axis)
- **Standard Deviation[3]**
  - Standard deviation (for each axis)
- **Average Absolute Difference[3]**
  - Average absolute difference between the value of each of the 200 readings within the ED and the mean value over those 200 values (for each axis)
- **Average Resultant Acceleration[1]**
  - Average of the square roots of the sum of the values of each axis squared over the ED
- **Time Between Peaks[3]**
  - Time in milliseconds between peaks associated with most activities (for each axis)
- **Binned Distribution[30]**
  - The range of values for each axis (maximum – minimum), divide this range into 10 equal sized bins, and then record what fraction of the 200 values fell within each of the bins.

# Jigsaw [Sensys2010]

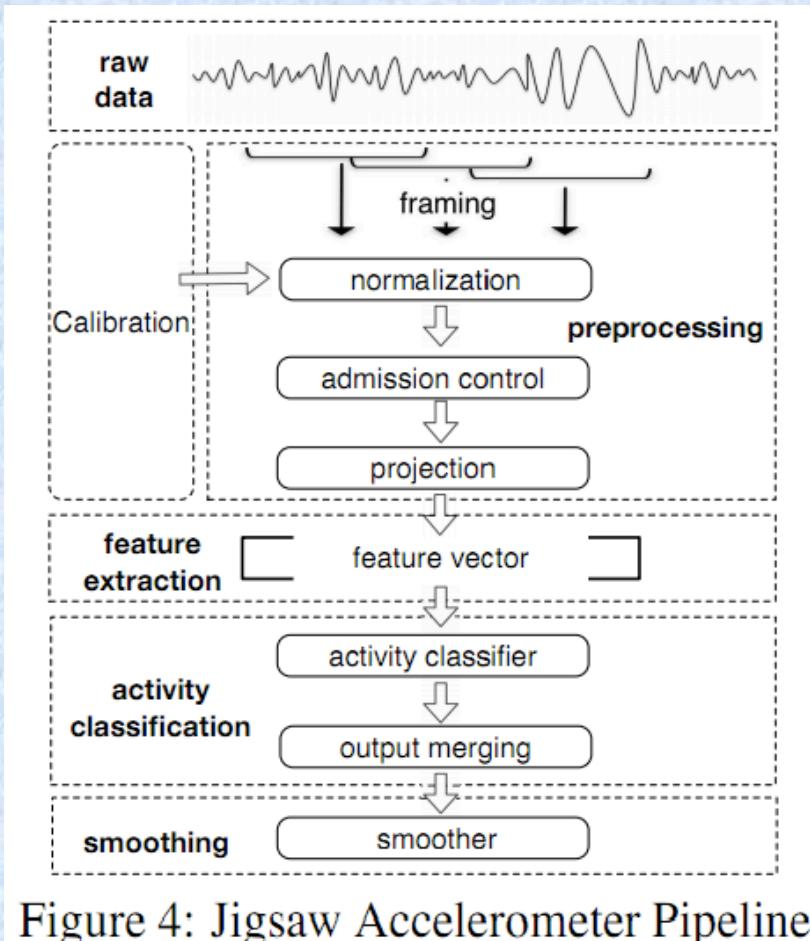


Figure 4: Jigsaw Accelerometer Pipeline

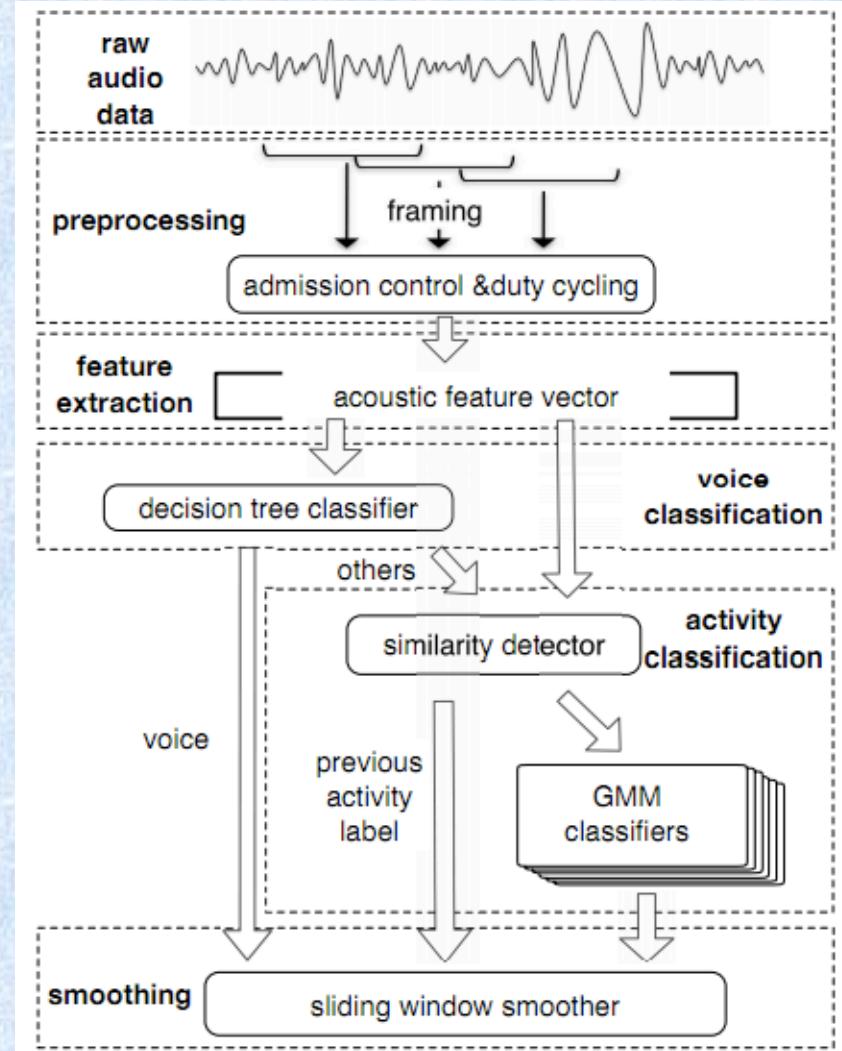


Figure 5: Jigsaw Microphone Pipeline

# Features

|                  |                                                                         |
|------------------|-------------------------------------------------------------------------|
| Time domain      | mean, variance, mean crossing rate                                      |
| Frequency domain | spectrum peak, sub-band energy, sub-band energy ratio, spectral entropy |

Table 1: Motion Feature Set

| Category         | Feature set                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| voice            | Spectral Rolloff [12], Spectral Flux [25]<br>Bandwidth [12], Spectral Centroid [12]<br>Relative Spectral Entropy [6]<br>Low Energy Frame Rate [25] |
| other activities | 13 MFCC coefficient feature set [32]<br>Spectral Centroid [12], Bandwidth [12]<br>Relative Spectral Entropy [6]<br>Spectral Rolloff [12]           |

Table 3: Acoustic Feature Set

# Jigsaw Architecture

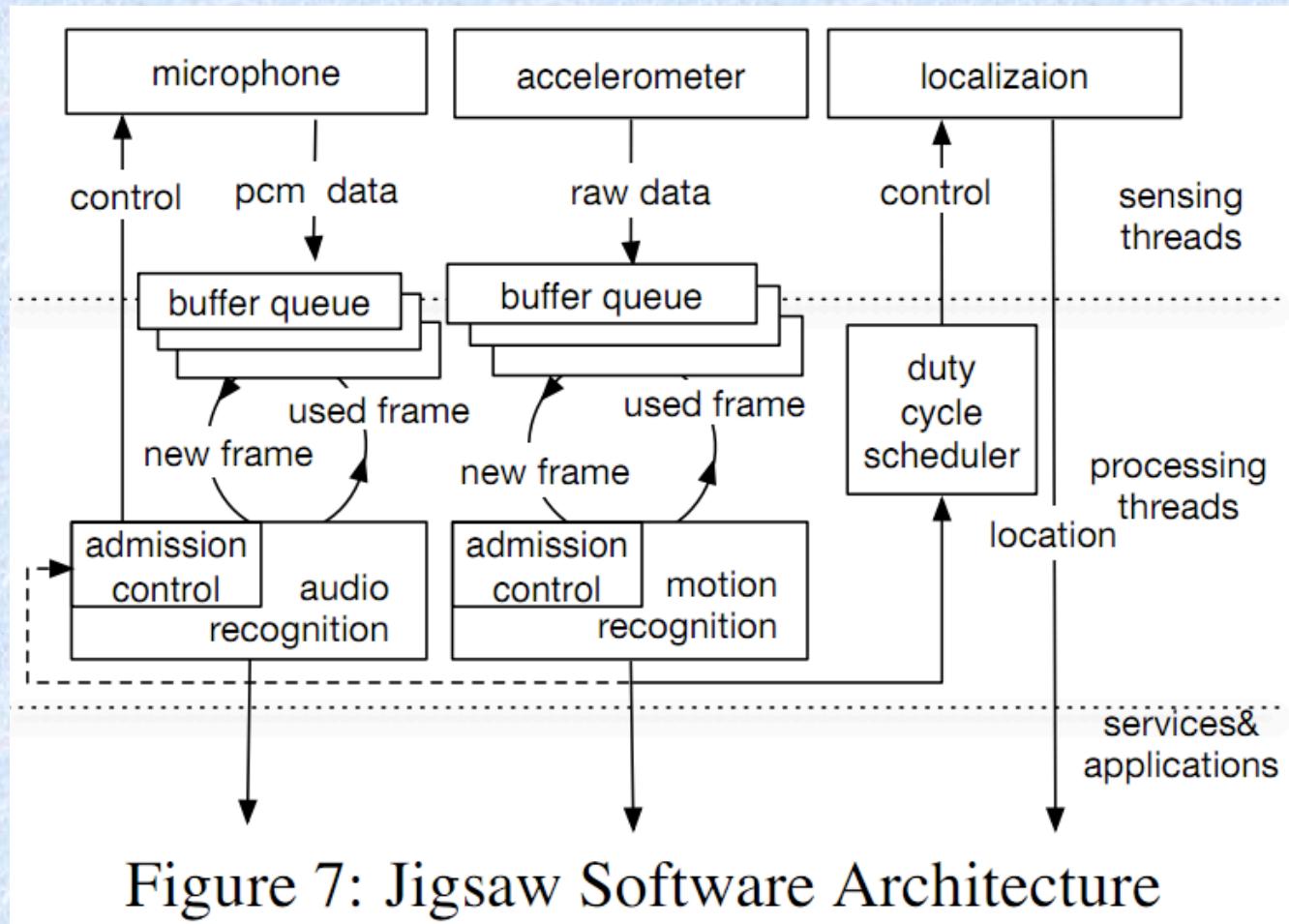


Figure 7: Jigsaw Software Architecture

# Results

|            | Accuracy w/o Split&Merge(%) |       |       |       | Accuracy with Split&Merge(%) |       |       |       |
|------------|-----------------------------|-------|-------|-------|------------------------------|-------|-------|-------|
|            | DT                          | MG    | SVM   | NB    | DT                           | MG    | SVM   | NB    |
| cycling    | 82.62                       | 82.41 | 86.60 | 77.45 | 92.05                        | 90.07 | 92.88 | 90.87 |
| vehicle    | 92.87                       | 93.80 | 93.52 | 83.59 | 90.52                        | 87.47 | 90.29 | 89.83 |
| running    | 98.11                       | 97.18 | 97.40 | 98.37 | 98.01                        | 97.40 | 98.03 | 97.30 |
| stationary | 94.25                       | 96.81 | 97.48 | 94.99 | 95.19                        | 98.07 | 97.68 | 96.19 |
| walking    | 90.35                       | 91.89 | 93.90 | 88.55 | 96.81                        | 97.04 | 96.66 | 95.17 |
| Average    | 91.64                       | 92.42 | 93.78 | 88.59 | 94.52                        | 94.01 | 95.10 | 93.87 |

Table 7: Classifier Accuracy with and w/o Split and Merge

| actual\output | voice  | other  |
|---------------|--------|--------|
| voice         | 0.8535 | 0.1465 |
| other         | 0.0408 | 0.9592 |

Table 9: Confusion Matrix for the Voice Classifier

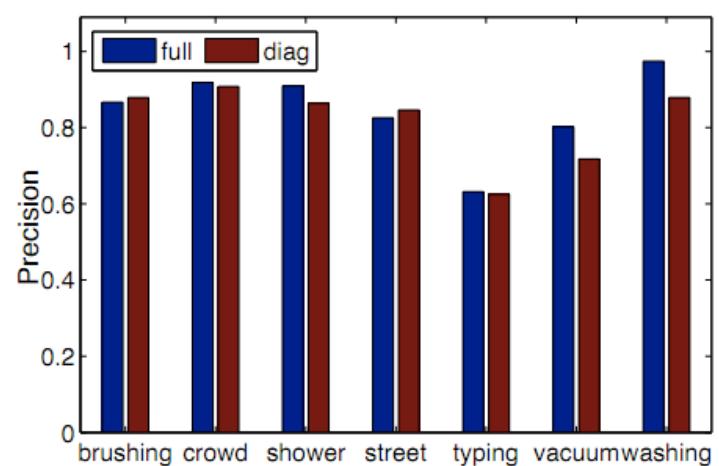


Figure 10: Precision of Two Types of GMM