
Future Generation Computer Systems 37 (2014) 1–13
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Two new fast heuristics for mapping parallel applications on
cloud computing
I. De Falco, U. Scafuri, E. Tarantino ∗

Institute of High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via P. Castellino 111, 80131 Naples, Italy

h i g h l i g h t s

• The paper deal with the mapping problem.
• Specific reference is made to task interaction graph applications.
• Two new fast heuristics are proposed.
• These heuristics are improvements of the classical Min–min and Max–min algorithms.
• The results demonstrate the effectiveness of the proposed algorithms.

a r t i c l e i n f o

Article history:
Received 19 December 2012
Received in revised form
16 December 2013
Accepted 24 February 2014
Available online 6 March 2014

Keywords:
Cloud computing
Mapping
Communicating tasks
Heuristics

a b s t r a c t

In this paper two new heuristics, named Min–min-C and Max–min-C, are proposed able to provide near-
optimal solutions to themapping of parallel applications, modeled as Task Interaction Graphs, on compu-
tational clouds. The aim of these heuristics is to determine mapping solutions which allow exploiting at
best the available cloud resources to execute such applications concurrentlywith the other cloud services.

Differently from their originating Min–min and Max–min models, the two introduced heuristics take
also communications into account. Their effectiveness is assessed on a set of artificial mapping problems
differing in applications and in node working conditions. The analysis, carried out also by means of
statistical tests, reveals the robustness of the two algorithms proposed in coping with the mapping of
small- and medium-sized high performance computing applications on non-dedicated cloud nodes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The cloud paradigm [1–3], commercially supported by impor-
tant firms as for instance Google [4], Amazon [5], andMicrosoft [6],
refers to the use of computing resources (hardware and software)
delivered as a service over a network.

The current cloud systems offer on-demand a broad range of
virtualized services which can be classified into three major mod-
els: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). IaaS refers to the practice of
delivering on demand IT infrastructure as a commodity to cus-
tomers. PaaS provides a development platform inwhich customers
can create and execute their own applications. SaaS endows the
user with an integrated service comprising hardware, develop-
ment platforms, and applications. All these models allow users to

∗ Corresponding author. Tel.: +39 081 6139525; fax: +39 081 6139531.
E-mail address: ernesto.tarantino@na.icar.cnr.it (E. Tarantino).

http://dx.doi.org/10.1016/j.future.2014.02.019
0167-739X/© 2014 Elsevier B.V. All rights reserved.
have at their disposal the resources needed without having any
knowledge about their numbers, characteristics, and location.

Although unsuitable to efficiently solve compute-intensive
parallel applications,many efforts are being dedicated bymanufac-
turers and scientists to provision the cloud systemswith new func-
tionalities. These capabilities allow executing in reasonable times
small- and medium-sized high performance computing (HPC) ap-
plications [7–9].

For the contemporary cloud systems the customers who have
to execute in parallel amultitask application can already negotiate,
by an IaaS contract, the leasing of virtual machines for a prefixed
time interval. Unfortunately such a leasing generally provides
functionalities relatively to the networking, the data storage, the
physical servers, and the virtualization software. Themanagement
of the operating system, of the middleware and of the runtime
phase, the choice of the number of virtual machines with specific
HW/SW characteristics, the mapping of the tasks on these virtual
machines, and the scheduling are left to the customers.

An alternative is that the customers want to commit to a cloud
middleware the management and the execution of their multitask

http://dx.doi.org/10.1016/j.future.2014.02.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.02.019&domain=pdf
mailto:ernesto.tarantino@na.icar.cnr.it
http://dx.doi.org/10.1016/j.future.2014.02.019


2 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13
applications concurrently with the current workload of the cloud
system. This service can be negotiated by a new form of PaaS
contract. To support this new contract the cloud middleware, in
addition tomapping on the physical resources the virtualmachines
and all the other services requested by other customers, must
also establish the optimal task/node deployment for the submitted
multitask applications.

Unfortunately, most of themapping tools described in scientific
literature make reference to the allocation of independent tasks.
Only a few of them can dealwith applicationswith communicating
tasks [10–13], yet they all can work only as long as applications
are modeled as Direct Acyclic Graphs (DAGs) [14–16]. This kind
of applications is much less general and flexible than multitask
applications modeled as Task Interaction Graphs (TIGs) [17,18].
In the TIG model all the tasks are considered simultaneously
executable and the communications can take place at any time, in
general according to iterative and non-deterministic patterns. This
means that there is no precedence relationship among tasks: each
task cooperates with its neighbors [19].

In this paper we wish to move a first step towards filling this
gap by introducing two mapping heuristics to efficiently allocate
TIG applications on non-dedicated cloud resources. As shown in
[20,21], given theNP-complete nature of themapping,metaheuris-
tic algorithms are the most appropriate to attain approximate so-
lutions that meet the application requirements in a reasonable
time [22–24].

In [25] a wide comparison among eleven heuristics is reported
for allocation of independent tasks. The conclusions state that
for the different situations, implementations, and parameter
values used there, Genetic Algorithm (GA) consistently gave the
best results. The average performance of the relatively simple
Min–min [26] heuristic was always within 12% of the GA heuristic.
AlsoMax–min [27] turns out to be quite effective and, asMin–min,
has the advantages of not necessitating parameter tuning and
of being much faster in terms of convergence times. Moreover,
more recently, Luo et al. [28] have taken 20 different fast greedy
heuristics into accountwhen aiming to allocate independent tasks.
Their results confirm that the classical Min–min performs very
well, since it is within the three best algorithms.

Since literature assesses the robustness and the effectiveness of
Min–min andMax–min for independent tasks, we have decided to
improve them so that they can account for communication times
too. It should be emphasized that these seminal algorithms take
care of computations only, so communications among tasks are
neglected whenever a node has to be chosen as the most suitable
allocation for a given task. This is due to the sequential nature
of these algorithms, which iteratively place one task at a time, so
communication times cannot be considered if all the tasks have not
yet been mapped.

To overcome this drawback a brand-new way of taking com-
munications into account in algorithms such as Min–min and
Max–min is presented. Namely, two new heuristics, Min–min-C
and Max–min-C, are introduced. They are based on the classical
Min–min and Max–min algorithms yet communications too are
considered, and seem therefore very promising for an effective
mapping of communicating tasks making up parallel applications
modeled as TIGs.

The effectiveness of our two algorithms is evaluated by per-
forming themapping of artificial applications on a cloud infrastruc-
ture at different workload operating conditions, and is assessed
against that of the two original algorithms.

Paper structure is as follows: Section 2 reports on the related
research; Section 3 presents the working environment, while
Section 4 explains our algorithms. In Section 5 the test problems
experienced are reported, the results attained are discussed, and a
statistical analysis is presented. Finally in Section 6 conclusions are
given, and a discussion on the approach proposed and on the open
problems to deal with is outlined.
2. Related research

The selection of the cloud resources that, on the basis of physical
characteristics (computational power, frequency, memory, band-
width, . . . ) and load (known or estimated), better support the ser-
vices as they are negotiated by the customers is nearly always a
problem of considerable difficulty.

In [29,30] the mapping is performed manually through a labo-
rious procedure whose results are particularly error-prone when
the number of virtual machines reaches hundreds or thousands of
nodes.

Fang et al. in [23] discuss a mapping mechanism related to
independent tasks, based on the two levels of load balance, which
considers the flexibility and virtualization in cloud computing.
The first-level scheduling is from the users’ application to the
virtual machine, and creates the description of a virtual machine
according to the resources and other configuration information
demanded by the application tasks. The second level is from the
virtual machine to host resources, and finds appropriate resources
for the virtual machine in the host resources under certain rules,
based on the description of the virtual machine for each task. The
load of the virtual machine is evaluated by the predicted execution
time of the tasks running on it.

In [31,32] approaches for a rule-based mapping which are able
to automatically adapt themapping between virtual machines and
physical hosts’ resources are advanced. The authors extended the
open source solution Eucalyptus and the papers differ for the per-
formance evaluationmetrics of the chosenmapping policies: max-
imizing computation performance and virtual machine locality to
achieve a high performance, and minimizing energy consumption
in the first case, while the second approach includes the waiting
time, the turnaround time, and the response time of the proposed
algorithm.

Unfortunately the criteria and the mapping algorithms pre-
sented up to now cannot be exploited to efficiently execute TIG
applications on cloud nodes. In fact, the mapping of this kind of
applications introduces further degrees of complexity if the cloud
resources, besides being heterogeneous and geographically dis-
persed, have features that vary even substantially over time as
the local loads and the network bandwidth dynamically change
[26,33]. The same holds for the classical mapping algorithms
which, known as NP-complete already on traditional parallel and
distributed systems, cannotwork adequately in heterogeneous en-
vironments [34], such as clouds are.

Considered the NP-nature of the mapping problem, a meta-
heuristic algorithm has been investigated by Mehdi et al. [24]. To
speed up themapping process and ensure the fulfillment of all task
deadlines and QoS requirements, the authors introduce a fast algo-
rithm that can find a mapping using genetic algorithms with ‘exist
if satisfy’ condition. Mapping time and makespan are the perfor-
mance metrics that are used to evaluate the proposed system.

A very recent and interesting paper is [13], in which two greedy
algorithms are used to generate the static allocation for the tasks
composing a DAG application in a cloud. One is called Cloud List
Scheduling (CLS), and the other CloudMin–Min Scheduler (CMMS).
Since the originalMin–min algorithmdoes not consider the depen-
dences among tasks, in CMMS the mappable task set must be up-
dated in every scheduling step to maintain the task dependences.
Namely, tasks in the mappable task set are the tasks whose prede-
cessor tasks are all assigned. It isworth noting that this is a first step
to extend the use of Min–min to interacting tasks, yet this modi-
fication affects DAG structures only, and cannot work for the here
considered TIGs, which are a much more general structure.

The problem of allocating TIGs to computing systems is
addressed in several papers but limited either to local area
networks [35] or to clusters of PCs [36], or to grid environments
relatively to dedicated nodes with advance reservation [37], and
restricted to the task grouping [38].



I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13 3
3. Our working environment

3.1. HPC parallel applications vs cloud computing

In [39] the cloud computing stack is described as a four-layered
architecture of IT infrastructures. At the lowest layer there are
the physical resources which, grouped in sites even geographically
dispersed, typically communicate each other by channels with a
different and frequently low bandwidth. Generally these resources
are quite different according to the cloud nature. For example,
typical commercial cloud deployments are more likely composed
by datacenters with hundreds or thousands of computing nodes
that host virtual machines to execute customers’ tasks.

To guarantee appropriate services to the customers, the cloud
resources are managed by a core middleware layer which,
endowed with a wide set of services, provides a suitable runtime
environment to adequately support the requests negotiated by the
different forms of IaaS, PaaS, and SaaS contracts.

Since, due to the heterogeneity of the resources and the low
interconnection bandwidth, the clouds are judged unsuitable for
the execution of HPC intensive parallel applications, it is highly
probable that these systems will constitute in the future valid, if
not the only, platforms able to run small or medium HPC parallel
applications.

To execute onto cloud systems this kind of applications three
successive phases must be undertaken: submission, mapping
or task-to-node allocation, and task scheduling. The first phase
presumes that the user provides the code of the application
tasks, each of which may have various requirements [40,41]. The
second phase, in accordance with the amount, type, and status of
the available resources (i.e., taking into account their estimated
dynamical workload), requires the cloud manager to select the
mapping solutions that match at best the application needs with
the available cloud resources. Finally, as the scheduling phase is
concerned, it is to note that the execution of MPI communicating
tasks on different nodes proceeds only if they are simultaneously
scheduled [42–44]. Then, hypothesizing that in cloud systems the
features and average loads of all the different nodes are known to
the cloud manager, the proposed mapper takes into account such
a problem by guaranteeing the co-scheduling. This is effected by
selecting only the cloud nodeswhich, according to their computing
workload, have at their disposal the computing power needed to
make the tasks assigned to them immediately running.

3.2. Our parallel application mapper

By dropping the other modules of the cloud middleware which
support the various IaaS, PaaS, and SaaS services, in Fig. 1 only those
involved in the process that implements the service relative to the
execution on the cloud of the TIG applications are reported. As it
can be noted from the figure, this service requires the presence
of two further specific modules: the Parallel Application Mapper
(PAM) of the Cloud Manager (CM), and the Parallel Application
Queue (PAQ ) of the cloud node. In fact the other outlined modules
are in any case involved in other cloud services.

The PAM interacts with the Accounting module to retrieve the
information needed for the application to be run, while it obtains
the workload of each cloud node by interacting with the Cloud
Resource Status (CRS) tool.

A customer who has to run a TIG application, provides the
Accounting tool of the CM with the task codes and with all the
information requested by the pertaining submission form, such as
the number of tasks and, for each task, the amount of computations
to be executed, the communicating partners and the amount of
communications whichmust be exchangedwith each partner. The
Accounting tool provides the task requirements to the PAM that
activates its mapping procedure which, on the basis of available
Fig. 1. The TIG application service.

cloud resources provided by the CRS, returns to the Accounting
the allocation retrieved. The expected resource use time and the
pertaining cost of this allocation are shown to the customer that
can decide whether or not to accept the relative contract.

In case of acceptance, the Accounting informs the PAM which
starts the procedure to submit the task codes to the PAQ of each
cloud node involved in the agreed mapping solution. As final step,
the PAM informs the CRS of the new load assigned to each of the
selected nodes.

The mapping strategy takes into account that the time spent to
execute a task on a node is affected by potential blocked states due
to the communication timing of the application tasks. If a single
task were assigned to a node with suitable available resources,
it might be idle waiting for events, e.g., communications, and
node resources would remain temporarily unexploited. Then, to
exploit at best the available resources, the possibility to allocate
on the same node more tasks, belonging to the same or different
applications, is allowed so that, during the block-state intervals,
the node can be harnessed to concurrently execute another task.
When an additional task is allocated on a node, the execution of
the new incoming task is evaluated by taking into account the time
requested for the execution of the tasks already mapped on the
same node.

Since the tasks in PAQ can belong to different applications,
to guarantee to the user that the execution of his application is
carried out on the basis of the submission order, a pre-emptive
FIFO scheduling policy is adopted. According to this hypothesis, a
process relative to a task of an application in a PAQ is running if and
only if there are no processes which precede it in the queue, while
it is descheduled and returns ready as soon as a process previously
submitted becomes executable. In other words, if at the instant
t a process is executing on the node j, such a process releases
the use of the processor only for the time intervals in which it
results blocked either waiting for a communication or in presence
of another process which precedes it in the queue. When such a
blocked process returns ready it becomes immediately running if
processes with a higher priority in the queue do not exist.

This strategy can fulfill the needs of the cloudmanager that can
exploit at best the available resources using them concurrently for
different applications.

At the same time, such an operating way encounters also the
demands of the users who want to pay just for the resources they
use, and to avoid penalization in the completion time of their
applications in the case that a scheduling policy different from FIFO
were adopted.

3.3. The setup for cloud mapping problem

We assume to have an application subdivided into p tasks to
be mapped on n nodes with 1 ≤ n ≤ p selected from the whole



4 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13
number of cloud nodes N . Each node is identified by an integer
value within the range [1,N].

To determine efficientmapping solutions of TIG applications on
cloud systems, alike other papers [25,45,46], it is indispensable to
have information about the number of instructions αi computed
per time unit on each node i, and a good estimation of the commu-
nication bandwidth βij between any couple of nodes i and j.

In general, the runtime state of resources, such as CPU load and
network capacity, is acquired either through statistical estimations
in a given time span, or gathered by tracking periodically and
forecasting dynamically resource conditions [47,48].

Since clouds address non-dedicated resources, their current
workloads must be considered to correctly evaluate the compu-
tation time of the tasks. We indicate with ℓi(1t) the average load
of the node i at any given time span 1t with ℓi(1t) ∈ [0.0, 1.0],
where 0.0 means a node completely discharged and 1.0 a node
loaded at 100%. Hence (1−ℓi(1t)) ·αi represents the power of the
node i available for the execution of one or more tasks of the appli-
cation to be mapped. Analogous considerations can be adduced to
establish the available communication bandwidths among nodes.
The current workload and the already employed bandwidth on
each physical cloud node are provided by the CRS module, outlined
in Section 3.1.

Besides raw resource information, application task properties
are also necessary formaking an effective deployment.We assume
that we know for each task k the number of instructions γk and
the amount of communications ψkm to be executed between the
kth and the mth task ∀m ≠ k. Obviously, ψkm is the generic ele-
ment of a p · p symmetric matrix ψ with all null elements on the
main diagonal. All this information can be obtained by means of
some performance-modeling strategies proposed in literature for
predicting execution time of parallel applications [49–52].

4. The algorithms

4.1. The TIG model

In this model a parallel application is represented by a Task In-
teraction Graph (TIG) G(V , E), where V = V1, V2, . . . , Vn is the set
of nodes and E ⊂ V ×V is the set of the edges. The nodes represent
the application tasks and the edges represent the mutual commu-
nication among the tasks. A function τ comp gives the computation
cost of tasks and a function τ comm takes into account the commu-
nication cost for message passing on edges. A task Vi is a neighbor
of a task Vj if (Vi, Vj) ∈ E. The relation is commutative in the sense
that if (Vi, Vj) ∈ E then (Vj, Vi) ∈ E.

The tasks exchange information during their execution but in
this model the temporal dependences in the task execution are not
explicitly addressed: all the tasks are considered simultaneously
executable and communications can take place at any time during
the computation. A more comprehensive description of the TIG
model can be found in [19].

It is to note that all the parallel multitask applications, whose
communications take place through explicitmessage passing, such
as MPI and PVM, and with no precedence relationship among the
tasks, fit in this model.

4.2. The cost function

The appearance of run-time dependences yields difficult to
evaluate the execution time of a TIG application. Several cost func-
tions have been proposed in literature which try to approximate
the execution time expected for the application and simplify the
real situation in order to perform an evaluation of the cost once
fixed the heuristic. Thus, the mapping problem can be seen as an
optimization problem by defining a cost function to be minimized.
In general cost functions consider both computation and commu-
nication costs of each task in the TIG model but these costs may be
handled in different ways. Basically, the cost functions used with
the task-mapping problemmay be categorized as belonging either
to the minimax model [53] or to the summed cost model [18]. The
summed cost method tries to balance the computation cost be-
tween all the nodes, i.e., by minimizing the load imbalance cost,
while keeping the amount of intranode communications to a min-
imum, by minimizing the global communication cost.

Within this paper we make reference to the minimax model.
In this model the computation and communication cost of each
processor for a given mapping, known as resource use time, is
estimated and the maximum cost among all the nodes is to be
minimized.

Formally, let µ be a solution consisting of an array of p integer
values, where µ[i] = j means that the ith task of the application
is placed on the jth node of the cloud (1 ≤ j ≤ N). Denoting
with τ

comp
ij and τ comm

ij respectively the computation and the
communication times requested to execute the task i on the node j
it is assigned to, the total resource time needed to execute i on j is:

τij = τ
comp
ij + τ comm

ij .

Let τ sj be the summation of the resource times needed by all
the tasks assigned to the jth node by the current mapping. This
value is the time spent by node j in executing computations and
communications of all the tasks assigned to it by the proposed
solution. Clearly, τ sj is equal to zero for all the nodes not included
in the vector µ.

Then, the quality of the proposed solution is computed by the
function:

Φ(µ) = max
j∈[1,N]

{τ sj } (1)

and, according to the minimax model, the goal is to achieve the
smallest value among these maxima.

Our mapping approach follows this minimax model. In fact,
the function evaluate(), mentioned in the forthcoming Section 4.4,
computes exactly Φ(µ). Nevertheless, some evaluations inside
this function depend on the hypothesized cloud environment. In
particular, τij is evaluated on the basis of the computation power
and of the bandwidth that remain available once deducted the
current cloud workloads.

By using the notations introduced in Section 3.3, the values
in the above equation can be computed respectively as: τ comp

ij =

γi/((1 − ℓj(1t)) · αj) and τ comm
ij =

p
k=1,k≠i ψik/βjµ[k].

4.3. The seminal algorithms

TheMin–min heuristicworks by taking into account the setU of
the unmapped tasks. Initially this set contains all the p application
tasks to be mapped.

The first step consists in finding for each task i its minimum
completion time over all the N cloud nodes: τmin

i = min1≤j≤N{τij}.
Let us denote byM the set of the τmin

i for all the tasks in the parallel
application.

The second step selects from M the task k with the minimum
among these completion times τmin

i , i.e., k is the task for which
τmin
k = mini∈U {τmin

i }, and assigns it to the corresponding node
of the cloud that ensures that completion time. This choice of the
minimum among the minima is the reason for naming this algo-
rithm Min–min.

The third step, finally, removes thenewlymapped task k fromU .
The above steps two and three are repeated until all the tasks

of the parallel application are mapped, i.e., exactly p times. At the
end of these p iterations the set U will be empty.



I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13 5
Fig. 2. A pseudo-code description of the Min–min-C procedure.
The Max–min heuristic is very similar to Min–min, and also
begins with the set U of all unmapped tasks.

The first step is absolutely identical as in the previous algorithm,
and, as its result, for each task i in the parallel application its
minimum completion time τmin

i is found.
In its second step, Max–min selects the task w with the overall

maximum completion time from M , i.e., τmax
w = maxi∈U {τmin

i }, and
assigns it to the corresponding node in the cloud. This choice of the
maximum among the minima explains why this heuristic is called
Max–min.

Thirdly, Max–min removes from U the newly mapped task.
This process iterates steps two and three for exactly p times. At

the end there will be no tasks to be mapped, i.e., U will be empty.
These heuristics have proven useful when mapping indepen-

dent tasks in heterogeneous environments. They can manage the
concepts of node load, node computing power, and number of in-
structions for a task as described earlier.

4.4. The proposed algorithms

The algorithmswe propose here are extensions to the above re-
ported Min–min and Max–min heuristics. The basic idea is to add
a way to take communications into account as well. Namely, the
concepts of communication bandwidth and amount of communi-
cation for a task should be considered.

At a quite high descriptive level, both Min–min-C and Max–
min-C start by considering all the p tasks of a parallel application
as not mapped. Then, the algorithm calls for p times a function se-
lect_task, and receives from it two pieces of information: the task
chosen and the node onto which map this task. The task chosen is
removed from the set of unmapped tasks. At the end of the p iter-
ations all the p tasks composing the application will be mapped.

Within the select_task function, when trying to map a not-yet-
mapped task i onto a node j, they both compute exactly the com-
munication time with each already mapped task k on a node x on
the basis of the actual bandwidth βjx. If the task k, instead, has not
beenmapped yet, the communication between i and k is supposed
to take place at a bandwidth equal to the average value over all
the possible bandwidths available for the node j with all the other
nodes contained in the cloud, i.e., βaver

j . Computations, of course,
are taken into account in exactly the same way as in their origi-
nating algorithms, and computation and communication times are
summed to achieve the execution time of task i onto node j.

At the end of the algorithm, of course, the resource use time for
the achieved mapping will be computed in the evaluate function
by taking into account for the communications all the exact
bandwidths between the nodes onto which the application tasks
have been allocated. This computation is described in full details
in the previous Section 4.1.

A pseudo-code description for Min–min-C is shown in Fig. 2.
The pseudo-code for Max–min-C is the same, apart from one

single difference: in the function select_task the node with the
highest value of time is to be saved in node[i], rather than that with
the lowest value as it is for Min–min-C.



6 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13
Table 1
Power expressed in MIPS and node indices.

A B C D E F
A1 A2 A3 B1 B2 C D1 D2 D3 E1 E2 E3 E4 F1 F2

α 3000 2000 1500 1400 1200 1000 900 800 700 600 500 400 300 200 100
nI 1–12 13–28 29–36 37–46 47–62 63–94 95–98 99–118 119–134 135–142 143–158 159–168 169–188 189–208 209–216
Fig. 3. The cloud architecture.

5. Experiments and results

The algorithms have been implemented in C language and all
the experiments have been effected on aMacBookPro4.1 Intel Core
Duo 2.4 GHz, 2 GB RAM. Less than one second is needed to execute
all the four algorithms for each problem.

The experimental phase has been subdivided in two subsec-
tions, i.e. Experiment A and Experiment B. To carry out all the exper-
iments we have hypothesized a cloud architecture made up of 216
nodes grouped into six sites, denoted with A, B, C, D, E, and F with
36, 26, 32, 40, 54, and 28 nodes respectively. This cloud structure
is depicted in Fig. 3. As it can be seen, except C, each site consists
of more subsites with different numbers of nodes. As an example
F is subdivided into two subsites F1 and F2 made up of 20 and 8
nodes respectively. Each node is characterized by a set of resource
properties.

Without loss of generality we suppose that all the nodes in the
same subsite have the same nominal power α expressed in terms
of millions of instructions per second (MIPS). For the sake of sim-
plicity we have hypothesized for each node four communication
typologies. The first is the bandwidth βii available when tasks are
mapped on the same node (intranode communication); the second
is the bandwidth βij between the nodes i and j belonging either
to the same subsite (intrasubsite communication), to different sub-
sites of the same site (intrasite communication) or to different sites
(intersite communication). The intranode bandwidths βii, usually
higher than βij, have all been fixed to 100000 Mb/s.

The features of the nodes and the structures of the applications
considered for the two experiments have been chosen with
two different objectives. Within the Experiment A the test bed
considered is very special and the objective is to simply evaluate
the goodness of the mapping solution retrieved, as illustrated
in the Section 5.1.2. Instead the Experiment B has been carried
out in a more realistic cloud environment and with irregular TIG
applications.
5.1. Experiment A

5.1.1. Cloud features
In Table 1 the computational capacities and the indices of

the nodes are shown per each subsite of the cloud architecture
depicted in Fig. 3. To give an example all the nodes of the subsite E1
have α = 600. It is to observe that the power decreases from 3000
to 100MIPS when going from A1 to F2. Hereinafter we shall denote
the nodes by means of the indices nI still shown in Table 1, so that,
for instance, 49 is the third node in B2, while 138 is the fourth node
in E1.

Finally, the input and output bandwidths between two nodes
are supposed to be equal. In our case the intersite, the intrasite, and
the intrasubsite bandwidths are reported in Table 2. It is to remark
that the bandwidth increases from 100 to 10000 when going from
A1 to F2, and the bandwidth between nodes belonging to the same
site is supposed to be lower than twonodes of the same subsite. For
example each node of D2 communicates with a node of D3 with a
bandwidth of 75Mb/s, while the bandwidth inside D3 is 400Mb/s.

5.1.2. Applications
To the best of our knowledge, no papers exist that providemap-

ping solutions for environments and TIG applicationswith features
comparable with those hypothesized by us. In fact, most of those
described in scientific literature make reference to the allocation
of independent tasks only. Only a few of them consider applica-
tions with communicating tasks, but they take into account only
DAGs [10–12],whereaswe are in themost general case of TIGs. And
even when the environments described by other authors could be
taken into account, the further working conditions (average load
and bandwidth use), not specified by them but crucial for us, make
any comparison with their algorithms impossible. Therefore in the
following no results from algorithms other than those described
here are reported.

In the light of the above considerations, it has been conceived
to take into account here TIG applications with regular topolo-
gies, and to arrange the experiments so as to attain solutions ap-
preciable in absolute rather than relative value. To evaluate the
goodness of our mapper on allocation problems, experimental en-
vironments for which the optimal solutions can be simply re-
trieved have been conceived. In fact, by choosing conveniently the
computing capabilities, the communication bandwidths and the
load conditions of all the cloud nodes, and given appropriate ap-
plications, it is possible to find out ‘by hand’ the related optimal
mapping solutions. In these situations, the quality of the provided
solutions can be rapidly verified by comparison with the expected
optimal ones. If irregular TIG applications were chosen, a ‘qualita-
tive’ analysis would be impracticable since the optimal or subopti-
mal solutions would be very difficult to deduct. This holds also for
real applications forwhich the evaluation of quality of themapping
is arduous. Our aim has been to test the ability of the mapping tool
to work in predetermined conditions, so that we can be confident
that it works properly also in case of random loads.

Although the experiments have been carried out on different
scenarios for cloud systems and applications in terms of load,
number of tasks, computations, and communications, here the
solutions obtained only for four different types of quite general
application structures, which are described below, are reported.



I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13 7
Table 2
Intersite, intrasite, and intrasubsite bandwidths expressed in Mb/s.

Site A B C D E F
A1 A2 A3 B1 B2 C D1 D2 D3 E1 E2 E3 E4 F1 F2

A1 100
A2 50 100
A3 75 75 100
B1 4 4 4 200
B2 4 4 4 75 200
C 6 6 6 6 6 300
D1 8 8 8 8 8 8 400
D2 8 8 8 8 8 8 50 400
D3 8 8 8 8 8 8 75 75 400
E1 10 10 10 10 10 10 10 10 10 800
E2 10 10 10 10 10 10 10 10 10 100 800
E3 10 10 10 10 10 10 10 10 10 200 200 800
E4 10 10 10 10 10 10 10 10 10 100 100 200 800
F1 16 16 16 16 16 16 16 16 16 16 16 16 16 1000
F2 16 16 16 16 16 16 16 16 16 16 16 16 16 400 10000
Fig. 4. The application structures faced in this paper. Top left: ring. Top right: WK. Bottom left: ternary tree. Bottom right: mesh.
The four application structures are reported in Fig. 4. The first
structure has been considered as a TIG application made up of
p = 24 tasks numbered from 1 to 24, and structured as a ring. The
top-left pane of Fig. 4 illustrates the application structure. These
tasks are divided into three groupsG1,G2, andG3 constituted by 10
(1–10), 8 (11–18), and 6 (19–24) tasks respectively. The ten tasks in
G1 have γk = 90 Giga Instructions (GI) to execute, those of G2 have
γk = 10 GIwhile inG3 γk = 1000Mega Instructions (MI). The con-
secutive tasks of G1 exchange 100 Mb each other while those con-
secutive of G2 and of G3 exchange one another 3000 and 100000
Mb respectively. The ring is closed assuming that the first and the
last tasks of two consecutive groups exchange 10 Mb.

The second structure has been designed as a TIG application
composed of p = 16 tasks numbered from 1 to 16, and arranged
in the WK-recursive topology [54] of degree 4 and level 2 (WK(4,
2)) shown in the top-right pane of Fig. 4. These tasks are divided
into four groups G1, G2, G3, and G4 each consisting of four consec-
utively numbered tasks. As an example the G1 includes the tasks
from 1 to 4 and so on. The amount of computation and communi-
cation of each task varies according to the group it belongs to, and
to the position occupied in the topology. In particular as regards
the computation, the tasks of G1, G2, G3, and G4 have to execute
γk = 160 GI, γk = 45 GI, γk = 15 GI, and γk = 900 MI respec-
tively. As the communication is concerned with, inside each of the
four groups an all-to-all communication takes place (each task of
each of the four groups exchanges datawith each of the other three
tasks in the same group). The amount of this exchange is 100, 1000,
10000, and 100000 Mb going from the tasks belonging to G1 to
those of G4. In addition, there is an inter-group communication of
100 Mb which occurs by means of the links connecting the task
pairs (2,), (7, 10), (12, 15), (13, 4), (3, 9), and (8, 14).

The third structure has been imagined as a TIG application
composed of p = 40 tasks numbered from 1 to 40, and structured
in a ternary tree as depicted in the bottom-left pane of Fig. 4 with
task 1 in the root node at the top level, tasks from 2 to 4 in the first
level, and so on. The amount of computation and communication
that each task has to perform depends on the level it is placed on.
Task 1 executes 100 MI and exchanges 10000 Mb with each of
its three leaves. Each task belonging to the first level, in addition
to exchanging 10000 Mb with the root node, executes 1 GI and
exchanges 1000 Mb with each of its three leaves. Each task of the
second level exchanges 1000 Mb with its vertex, executes 10 GI,
and exchanges 100 Mb with its own leaves. Finally, each of the 27
leaves of the third level executes 100 GI and exchanges 100 Mb
with its vertex.



8 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13
Table 3
Numerical results achieved by the algorithms: resource utilization times (in
seconds) for the TIG applications.

Problem Min–min Max–min Min–min-C Max–min-C

ring-no-load 2065.766 2049.549 68.625 76.138
ring-load 2112.500 2169.816 92.002 156.102
ring-random 504.860 2003.531 493.101 493.101
WK-no-load 3058.633 3002.450 68.370 68.370
WK-load 4992.992 4674.506 249.047 287.967
WK-random 456.417 4519.258 461.356 461.356
tree-no-load 3050.700 2111.302 858.333 930.653
tree-load 3259.285 7617.710 2182.593 2486.846
tree-random 1406.810 4377.314 1406.810 1961.576
mesh-no-load 5609.466 8722.199 201.500 201.500
mesh-load 21053.200 9993.614 1220.335 1105.268
mesh-random 1867.181 9972.520 1837.153 1837.153

The fourth structure has been conceived as a TIG application
made up of p = 36 tasks numbered from 1 to 36, and arranged
on a mesh as outlined in the bottom-right pane of Fig. 4. The task
36 in the root node at the top level is linked to the five different
tasks of the first level. Each of these five tasks is connected to
a group of six tasks characterized by all-to-all communication.
These five groups are indicated as G1, G2, G3, G4, and G5, and
represent the second level. As an example, the ‘blast’ ofG4 contents
is shown. The root task executes 1 GI and exchanges 10000 Mb
with each of its five leaves. Each task belonging to the first level, in
addition to exchanging 10000 Mb with the root node, executes 10
GI, exchanges 10Mbwith eachof the six tasks of the group towhich
is connected, and 10000Mbwith each of the other four tasks of its
level. The amount of computation and communication carried out
by each task depends on the group it belongs to. In particular, each
task of G1 executes 300 GI and exchanges 10 Mb, of G2 carries out
100GI and exchanges 3000Mb, ofG3 executes 50GI and exchanges
5000 Mb, of G4 executes 25 GI and exchanges 10000 Mb, and
finally each task of G5 performs 1000 MI and exchanges 100000
Mb.

For each such general structure, three different experiments
have been performed in different operating node conditions, i.e.,
no-load, load, and random cases.

In the first, all the nodes have been supposed unloaded, i.e.,
ℓi(1t) = 0.0, 1 ≤ i ≤ n (no-load case).

In the second, loads have been chosen for each node in a con-
trolled way, differing from a structure to another. This means that
most nodes still have ℓi(1t) = 0.0, apart from a few that are
supposed loaded (load case). Namely, for the ring, the loads of the
nodes in the range [1, 20]have ℓi(1t) = 0.7. For theWK, the nodes
within the interval [1, 10] have ℓi(1t) = 0.7. For the ternary tree,
the nodes in the range [1, 30] have ℓi(∆t) = 0.9. Finally, for the
mesh, the nodes within [1, 34] have been supposed loaded with
ℓi(1t) = 0.7. In all the four structures thesemodifications in loads
have been taken because some of the now loaded nodes are cho-
sen in the solutions of the first experiment. The aim is to see if the
mappers realize that now better solutions, different from the for-
mer ones, exist.

In the third, and last experiment, once established that the
system works properly in predetermined conditions, we can test
it by randomly choosing ℓi(1t) for each node within the range
[0.2, 0.7] (random case).

Thus, a total of twelve different test cases has been designed.

5.1.3. Results
In Table 3 the results achieved by the four tested algorithms

over the twelve different test cases are shown. In particular the
values in the table represent the estimated resource use times
(in seconds) of the different TIG applications on the basis of the
algorithm used to perform the mapping.
It is evident that both Min–min-C and Max–min-C outperform
their corresponding versions Min–min and Max–min. On the ring-
no-load and WK-no-load problems, for example, the two former
achieve results better by two order of magnitude than their two
originating heuristics. In most cases the improvement is of one
order of magnitude. Min–min-C seems to perform slightly better
than Max–min-C since it achieves the best results over ten test
cases (five times absolute best, five times a draw), whereas the lat-
ter wins in five test cases (once absolute best, four times a draw).
The original Min–min performs as the best heuristic in two cases
(once best, once a draw). Finally, never is Max–min the best per-
forming algorithm.

Furthermore, closer examination of Table 3 reveals that Min–
min-C is always either the first or the second technique, and
Max–min-C does so too, apart from one case in which it ranks as
third. Max–min is in all cases either the third of the fourthmethod,
and Min–min also is in the same range apart from two cases in
which it is the best.

As long as the no-load cases are faced, the superiority of Min–
min-C and Max–min-C is evident by one or two orders of magni-
tude. When some nodes get loaded, the execution times found by
all the four methods of course increase, and there is still a gap of
at least one order of magnitude between the two couples, apart
from the ternary tree structure. Finally, when the random–load sit-
uations are investigated, Min–min is able to reduce this gap and
becomes comparable, whereas performance of Max–min remains
worse by about one order of magnitude.

As an example of the solutions found by the four algorithms, let
us take the WK-no-load problem into account. The four solutions
in terms of resource utilization time are:

Min–min: µ =

1 2 3 4 9 10 11 12 5 6 7 8 1 2 3 4


Φ(µ) = 3058.633 s

Max–min: µ =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Φ(µ) = 3002.450 s

Min–min-C: µ =

2 5 3 4 1 1 1 1 6 6 6 6 209 209 209 209


Φ(µ) = 68.370 s

Max–min-C: µ =

5 3 4 2 6 6 6 6 1 1 1 1 209 209 209 209


Φ(µ) = 68.370 s.

According to the encoding reported in Section 4.1, for instance
the solution related to Max–min-C maps the task 1 on node 5, the
task 2 on node 3, the task 3 on node 4, the task 4 on node 2 and so
on until to the task 16 that is deployed on node 209.

It is very interesting to note that the solution found by both
Min–min-C andMax–min-C is a suboptimal one. In fact, it allocates
the four groups of tasks on nodes of A1, A1, A1, and F2 respectively.
The nodes of A1 are themost powerful ones, so they are well suited
to the heavy-computing tasks of the first group G1. Only one task
is mapped onto any such node, so as not to overload those nodes.
The tasks of the groups G2 and G3, instead, are quite balanced
as regards computation and communication. The four tasks of G2
have beenmapped on a same powerful node belonging to A1 (node
1 for Min–min-C and node 6 for Max–min-C). In this way, the time
required for the communications has been highly decreased, as
that for the computations. A similar decision has been taken for
the tasks belonging to the group G3, all mapped on a powerful
node of A1, i.e., 6 for Min–min-C and 1 for Max–min-C. The tasks in
the group G4, instead, are the most heavily communicating ones,
and have been deployed onto one single node of F2, so that the
time needed for the communications among them can be kept low.
Furthermore, using a node of F2 is sensible because this group G4
has to communicate with the other groups too, and F2 has the
highest intrasubsite bandwidth.



I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13 9
Table 4
Power expressed in MIPS and node indices.

A B C D E F
A1 A2 A3 B1 B2 C D1 D2 D3 E1 E2 E3 E4 F1 F2

α 2000 6400 57063 140564 6400 2000 12096 27079 76383 68200 147600 6400 12000 18938 68200
nI 1–12 13–28 29–36 37–46 47–62 63–94 95–98 99–118 119–134 135–142 143–158 159–168 169–188 189–208 209–216
Table 5
Intersite, intrasite, and intrasubsite bandwidths expressed in Mb/s.

Site A B C D E F
A1 A2 A3 B1 B2 C D1 D2 D3 E1 E2 E3 E4 F1 F2

A1 1000
A2 100 1000
A3 100 100 10000
B1 20 20 20 1000
B2 20 20 20 100 800
C 34 34 34 16 16 800
D1 10 10 10 10 10 20 1000
D2 10 10 10 10 10 20 100 1000
D3 10 10 10 10 10 20 100 100 1000
E1 10 10 10 10 10 10 10 10 10 100
E2 10 10 10 10 10 10 10 10 10 100 100
E3 10 10 10 10 10 10 10 10 10 100 100 1000
E4 10 10 10 10 10 10 10 10 10 100 100 100 1000
F1 16 16 16 16 16 16 16 16 16 16 16 16 16 1000
F2 16 16 16 16 16 16 16 16 16 16 16 16 16 100 1000
The two original algorithms Min–min and Max–min, instead,
require very high times, because mapmore tasks of different types
on a same node, so that they can take advantage of the computa-
tional power of nodes in A1. Nevertheless these algorithms have to
suffer from their slowness in communications since an optimiza-
tion of the deployment of the communication-intensive tasks is not
taken into account.

It is interesting to note that, when loads are added to the nodes
in the range [1, 10], as it is in the second experiment on the WK
structure, all the four mappers have correctly avoided using the
now loaded and therefore less powerful nodes in [1, 10], and have
turned their attention to the now most powerful nodes, that are
the only two in A1 that have no load, i.e., 11 and 12.

In fact, for this experiment the new best solutions become:

Min–min:
µ =


11 12 11 12 11 11 11 11 11 12 11 11 11 12 11 12


Φ(µ) = 4992.992 s

Max–min:
µ =


11 12 11 11 11 12 12 12 12 11 11 11 11 11 12 12


Φ(µ) = 4674.506 s

Min–min-C:
µ =


12 12 12 12 11 11 11 11 12 12 12 12 209 209 209 209


Φ(µ) = 249.047 s

Max–min-C:
µ =


12 12 12 12 12 12 12 12 11 11 11 11 209 209 209 209


Φ(µ) = 287.967 s.

Also in this case, as in the previous experiment, the superiority
of the mapping performed by Min–min-C and Max–min-C with
respect to Min–min and Max–min lies in the fact that the former
mappers place the most heavily communicating tasks on a node
well suited to communications. The latter mappers, instead,
overload the most computation-bound nodes, resulting in bad
allocation, incapable of efficiently dealing with communications,
and in a much higher time for the whole application.
5.2. Experiment B

5.2.1. Cloud features, applications and results
Leaving the structure of the cloud unchanged, we have here

supposed the computational capacities and the indices of the nodes
as reported in Table 4. These computational powers are typical of
real processors and range from 2000 MIPS of the ARM Cortex A8
processor (2005) to 147600MIPS of the Intel Core i7-980XExtreme
Edition processor (2010).

Wehave considered as communication bandwidth the common
values shown in Table 5, and have randomly set the load ℓi(1t) of
each cloud node in the range [0.1, 0.5].

Moreover, we have assumed to have irregular TIG applications
characterized by a number of tasks pwhich varies randomlywithin
the range [10, 50]. For each task k the number of instructions γk
is randomly set within 10 GI and 1000 GI, so as the amount of
communicationsψkm to be exchangedbetween the kth and themth
task ∀m ≠ k are randomly chosen within 100 Mb and 10 Gb. Each
task communicates with a number of partners randomly chosen
within 1 and ⌊p/3⌋ and the partners are selected still randomly
within 1 and p.

By doing so, we have generated 15 different instances of TIGs.
It should be noted that on each problem Min–min-C achieves bet-
ter result than Min–min, and so does Max–min-C with respect to
Max–min. The results obtained by the different algorithms are out-
lined in Table 6.

5.2.2. Statistical analysis
To compare the algorithms, a classical statistical approach

based on nonparametric statistical tests has been carried out,
following [55,56]. Therefore, multiple comparison analysis has
been effected bymeans of Friedman, Aligned Friedman, and Quade
tests. To do so, the ControlTest package [57] has been used. It is a
Java package freely downloadable at http://sci2s.ugr.es/sicidm/ [58],
developed to compute the rankings for these tests, and to carry
out the related post-hoc procedures and the computation of the
adjusted p–values. A brief explanation of these statistical tests is
reported in the Appendix.

The results for the one-to-all analysis are reported in the
following.



10 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13
Table 6
Resource utilization times (in seconds) for the instances of the TIG applications.

Instance p Min–min Max–min Min–min-C Max–min-C

Inst1 14 239.279 61.367 61.329 61.079
Inst2 25 249.754 2156.842 74.327 67.765
Inst3 42 4180.514 9223.947 193.866 202.596
Inst4 38 2123.789 4801.762 184.781 112.927
Inst5 26 201.605 3168.008 94.636 87.391
Inst6 31 321.101 2632.391 90.421 84.429
Inst7 44 3825.445 6603.204 252.092 198.753
Inst8 18 352.626 62.493 68.196 61.775
Inst9 29 411.255 4072.849 97.877 91.132
Inst10 37 2390.776 3622.805 156.163 101.317
Inst11 17 246.016 59.987 62.790 59.077
Inst12 20 309.050 2170.711 74.982 69.933
Inst13 46 4756.522 6462.253 229.050 259.180
Inst14 32 427.828 3072.310 85.606 80.155
Inst15 50 3971.087 7012.009 289.640 290.579

Table 7
Average rankings of the algorithms.

Algorithm Friedman Aligned Friedman Quade

Max–min-C 1.250 18.375 1.331
Min–min-C 2.000 19.313 1.735
Min–min 3.250 39.500 3.074
Max–min 3.500 52.813 3.860
Statistic 32.400 12.286 57.451
p–value 0.000 0.007 0.000

Table 7 contains the results of the Friedman, Aligned Friedman,
and Quade tests in terms of average rankings obtained by all the
algorithms. The last two rows show the statistic and the p–value for
each test, respectively. For Friedman and Aligned Friedman tests
the statistic is distributed according to chi-square with 3 degrees
of freedom, whereas for Quade test it is distributed according to
F-distribution with 3 and 45 degrees of freedom.

In each of the three tests, the lower the value for an algorithm,
the better the algorithm is. Max–min-C turns out to be the best
in all of the three tests, and Min–min-C is always the second best
heuristic. For all the tests both the versions taking communications
into account largely outperform the classical algorithms. Min–min
performs, on average, better than Max–min, as it was pointed out
also in [25], where inter-task communications were not taken into
account.

Furthermore, with the aim to examine if some hypotheses of
equivalence between the best performing algorithm and the other
ones can be rejected, the complete statistical analysis based on the
post-hoc procedures ideated by Bonferroni, Holm, Holland, Rom,
Finner, and Li has been carried out following [56]. Moreover, the
adjusted p–values have been computed by means of [57].

Tables 8–10 report the results of this analysis performed at a
level of significance α = 0.05. The level of significance represents
themaximumallowable probability of incorrectly rejecting a given
null hypothesis. In our case, as an example, if it is equal to 0.05, this
means that if an equivalence hypothesis is rejected, there is a 5%
probability of making amistake in rejecting it, so a 95% that we are
correctly rejecting it.

In these tables the other algorithms are ranked in terms of
distance from the best performing one, i.e., Max–min-C in all
the three cases, and each algorithm is compared against this
latter with the aim to investigate whether or not the equivalence
hypothesis can be rejected. For each algorithm each table reports
the z value, the unadjusted p–value, and the adjusted p–values
according to the different post-hoc procedures. The variable z
represents the test statistic for comparing the algorithms, and its
definition depends on themain nonparametric test used. In [56] all
the different definitions for z, corresponding to the different tests,
are reported. The last row in the tables contains for each procedure
the threshold value Th such that the procedure considered rejects
those equivalence hypotheses that have an adjusted p–value lower
than or equal to Th.

Summarizing the results of these tables, Max–min-C is statisti-
cally superior to bothMax–min andMin–min. As concerns its com-
parison against Min–min-C, for all the three tests there are three
post-hoc procedures, i.e., those by Bonferroni, Rom, and Li, that
cannot reject the equivalence hypothesis, whereas the other three
tests by Holm, Holland, and Finner reject this hypothesis.

Finally, Table 11 shows the pairwise comparison between these
four algorithms. Two post-hoc procedures, i.e., those by Holm
and Shaffer, are considered here. Only for Min–min and Max–min
cannot the equivalence hypothesis be rejected by both procedures.
Furthermore, the equivalence between Min–min-C and Max–min-
C can be rejected by Holm, whereas it cannot by Shaffer. All the
other equivalence hypotheses can be statistically rejected by both
procedures.

The conclusion of these pairwise comparisons is that the per-
formance of Min–min-C andMax–min-C is statistically better than
that obtained by the seminal versions of the respective algorithms,
i.e., Min–min and Max–min.

6. Conclusions and future works

Even if not specifically designed to this aim, cloud platforms
yield available the computational power needed to efficiently
execute small and medium HPC applications.

This paper focuses on the task/node mapping problem of par-
allel multitask applications, modeled as TIGs, on non-dedicated
cloud nodes. Two new resource-oriented mapping heuristics,
Min–min-C and Max–min-C, have been introduced. They are very
simple and their execution times are extremely low, and can pro-
vide users with solutions in a quasi-real time.
Table 8
Results of post-hoc procedures for Friedman test over all tools (at α = 0.05).

i Algorithm p z = (R0 −Ri)/SE Bonferroni Holm Holland Rom Finner Li

3 Max–min 0.000 4.930 0.000 0.017 0.017 0.017 0.017 0.047
2 Min–min 0.000 4.382 0.000 0.025 0.025 0.025 0.034 0.047
1 Min–min-C 0.100 1.643 0.100 0.050 0.050 0.050 0.050 0.050

Th 0.017 0.050 0.050 0.025 0.050 0.047
Table 9
Results of post-hoc procedures for Aligned Friedman test over all tools (at α = 0.05).

i Algorithm p z = (R0 −Ri)/SE Bonferroni Holm Holland Rom Finner Li

3 Max–min 0.000 5.231 0.000 0.017 0.017 0.017 0.017 0.006
2 Min–min 0.001 3.209 0.001 0.025 0.025 0.025 0.034 0.006
1 Min–min-C 0.887 0.142 0.887 0.050 0.050 0.050 0.050 0.050

Th 0.017 0.050 0.050 0.025 0.050 0.006



I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13 11
Table 10
Results of post-hoc procedures for Quade test over all tools (at α = 0.05).

i Algorithm p z = (R0 −Ri)/SE Bonferroni Holm Holland Rom Finner Li

3 Max–min 0.000 3.977 0.000 0.017 0.017 0.017 0.017 0.025
2 Min–min 0.006 2.740 0.006 0.025 0.025 0.025 0.034 0.025
1 Min–min-C 0.525 0.636 0.525 0.050 0.050 0.050 0.050 0.050

Th 0.017 0.050 0.050 0.025 0.050 0.025
Table 11
Pairwise comparison between the algorithms.

Algorithm p z Holm Shaffer

Max–min vs. Max–min-C 0.000 4.930 0.008 0.008
Min–min vs. Max–min-C 0.000 4.382 0.010 0.017
Max–min vs. Min–min-C 0.001 3.286 0.013 0.017
Min–min vs. Min–min-C 0.006 2.739 0.017 0.017
Min–min-C vs. Max–min-C 0.100 1.643 0.025 0.025
Min–min vs. Max–min 0.584 0.548 0.050 0.050

Th 0.025 0.017

Experimental results reveal that these two new algorithms
are an effective approach to efficiently face the mapping of MPI
applications in terms of maximal resource utilization in cloud
environments. Moreover, a statistical analysis evidences their
superiority with respect to the two originating heuristics.

To properly work, our mapping strategies require the co-
scheduling of all the tasks of the same application. At first sight,
the co-scheduling might seem a limitation for the actual usability
of ourmappers, since currently this feature is not available in cloud,
yet it is not an unrealistic hypothesis. In fact, it should be pointed
out that very recently both academic [59] and industrial [60,61]
research are aiming at implementing co-scheduling in clouds. This
would yield a cloud model in which our mapper perfectly fits.

An interesting issue to investigate in our future activity is the
choice of the next task to allocate when sequentially creating the
solution. We think that this choice should consider for each task,
apart from the currently accounted amount of computation, also
the amount of communications and the number of partners in-
volved in those data exchanges. Moreover, other heuristic algo-
rithms used to map independent tasks only could be improved
through the same idea used here and tested against communicat-
ing applications.

Appendix

A very basic explanation of the statistical tests reported in
Section 5.2.2 is given here, for a case in which np problems and nA
algorithms are considered.

Friedman test ranks the algorithms for each problem sepa-
rately; the best performing algorithm is assigned the rank of 1, the
second best rank 2, and so on up to nA. The ranks for each algorithm
are summed over the np faced problems, and the sum is divided
by np.

A drawback of the ranking scheme employed by the Friedman
test is thatwhen the number of algorithms for comparison is small,
this may pose a disadvantage, and comparability among problems
is desirable.

To overcome this problem, in Aligned Friedman test a value
of location is computed as the average performance achieved by
all algorithms in each problem. Then, the difference between the
performance obtained by an algorithm and the value of location is
obtained. This step is repeated for each combination of algorithms
and problems. The resulting differences are then ranked from 1 to
nA · np relative to each other. Again, the ranks for each algorithm
are summed over the faced problems, and the sum is divided by
the number of problems.
The main drawback with the two above described tests is that
they consider all problems to be equal in terms of importance.

Quade test takes into account the fact that some problems are
more difficult or that the differences registered on the run of vari-
ous algorithms over them are larger. Therefore, ranks are assigned
to the problems themselves according to the width of the results
range in each problem. Thus, the problem with the smallest range
is assigned rank 1, the second smallest rank 2, and so on to the
problem with the largest range, which gets rank np. So, each prob-
lem i is given a rank Qi. Next, for each problem the product S ji is
computed as: S ji = Qi · (r

j
i − (nA + 1)/2), where r ji is the rank of

algorithm j within problem i. By doing so, this value takes into ac-
count both the relative importance of each observation within the
problem, and the relative significance of the problem the obser-
vation refers to. Finally, a value Sj computed as Sj =

np
i=1 S

j
i , for

j = 1, 2, . . . , nA can be assigned to each algorithm.

References

[1] I. Foster, Z. Yong, I. Raicu, S. Lu, Cloud computing and grid computing 360-
degree compared, in: Proc. Workshop on Grid Computing Environments, IEEE
Press, Austin, Texas, 2008, pp. 1–10.

[2] R. Buyya, C.S. Yeo, S. Venugopal, Market–oriented cloud computing: vision,
hype, and reality for delivering IT services as computing utilities, Keynote
paper, in: Proc. 10th Int. Conf. on High Performance Computing and
Communications, IEEE Press, Dalian, China, 2008, pp. 25–27.

[3] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.

[4] (2011, Jun) Google App Engine (Online). Available: https://developers.google.
com/appengine/. Last checked December 6, 2013.

[5] (2006) Amazon Elastic Compute Cloud (Online). Available: http://aws.amazon.
com/ec2/. Last checked December 6, 2013.

[6] Windows Azure (Online). Available: http://www.windowsazure.com (in
Italian). Last checked December 6, 2013.

[7] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, G. Fox, High performance
parallel computing with clouds and cloud technologies, Technical Report,
August 25 2009. (Online). Available: http://grids.ucs.indiana.edu/ptliupages/
publications/CGLCloudReview.pdf.

[8] O. Niehörster, A. Brinkmann, G. Fels, J. Krüger, J. Simons, Enforcing SLAs in
Scientific Clouds, in: Proceedings of IEEE International Conference on Cluster
Computing, Heraklion, Crete, Greece, 2010, pp. 178–187.

[9] A. Gupta, L.V. Kale, F. Gioachin, V. March, C.H. Suen, B-S. Lee, P. Faraboschi,
R. Kaufmann, D. Milojicic, Exploring the Performance and Mapping of
HPC Applications to Platforms in the Cloud, in: Proceedings of the 21st
International Symposium on High-Performance Parallel and Distributed
Computing, Delft, The Netherlands, 2012, pp. 121–122.

[10] M. Iverson, F. Özgüner, Dynamic, competitive scheduling of multiple DAGs
in a distributed heterogeneous environment, in: Proc. 7th Heterogeneous
Computing Workshop, Orlando, Florida, USA, 1998, pp. 70–78.

[11] R. Sakellariou, H. Zhao, A hybrid heuristic for DAG scheduling on hetero-
geneous systems, in: Proc. 13th Heterogeneous Computing Workshop, IEEE
Press, Santa Fe, New Mexico, USA, 2004.

[12] G.Q. Liu, K.L. Poh, M. Xie, Iterative list scheduling for heterogeneous
computing, J. Parallel Distrib. Comput. 65 (2005) 654–665.

[13] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu, Online optimization for scheduling
preemptable tasks on IaaS cloud systems, J. Parallel Distrib. Comput. 72 (2012)
666–677.

[14] H. Kasahara, S. Narita, Practical multiprocessor scheduling algorithms for
efficient parallel processing, IEEE Trans. Comput. 33 (11) (1984) 1023–1029.

[15] A.K.M. Khaled Ahsan Talukder, M. Kirley, R. Buyya, Multiobjective differential
evolution for workflow execution on grids, in: Proc. 5th Int. Workshop
Middleware for Grid Computing, ACM Press, Newport Beach, CA, 2007.

http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref1
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref2
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref3
https://developers.google.com/appengine/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.windowsazure.com
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CGLCloudReview.pdf
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref9
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref11
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref12
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref13
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref14
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref15


12 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13
[16] F. Chan, J. Cao, Y. Sun, Graph scaling: a technique for automating program
construction and deployment in cluster GOP, in: Proc. 5th Int. Workshop in
Advanced Parallel Processing Technologies, in: Lecture Notes in Computer
Science, vol. 2834, Springer, Berlin Heidelberg, Germany, 2003, pp. 254–264.

[17] D.L. Long, L.A. Clarke, Task interaction graphs for concurrency analysis, in: Proc.
11th Int. Conf. Software Engineering, ACM Press, Pittsburgh, Pennsylvania,
USA, 1989, pp. 44–52.

[18] P. Sadayappan, F. Ercal, J. Ramanujam, Cluster partitioning approaches to
mapping parallel programs onto a hypercube, Parallel Comput. 13 (1990)
1–16.

[19] L. Hluchy, M. Senar, M. Dobrucky, T.D. Viet, A. Ripoli, A. Cortes, Mapping and
scheduling of parallel programs, in: J.C. Cunha, P. Kacsuk, S.C. Winter (Eds.),
Parallel Program Development for Cluster Computing: Methodology, Tools
and Integrated Environments, Advances in Computation: Theory and Practice,
vol. 5, Nova Press, 2001, pp. 45–68. (chapter 3).

[20] S. Pandey, L. Wu, S. Guru, R. Buyya, A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments, in: Proc. 24th Int. Conf. on Advanced Information Networking
and Applications, IEEE Press, Perth, Australia, 2010, pp. 400–407.

[21] Y. Ge, G. Wei, GA-based task scheduler for the cloud computing systems,
in: Proc. Int. Conf. onWeb Information Systems andMining, IEEE Press, Sanya,
China, 2010, pp. 181–186.

[22] G. Gan, T. Huang, S. Gao, Genetic simulated annealing algorithm for task
scheduling based on cloud computing environment, in: Proc. Int. Conf.
on Intelligent Computing and Integrated Systems, IEEE Press, Gandhinagar
Gujarat, India, 2010, pp. 60–63.

[23] Y. Fang, F. Wang, J. Ge, A task scheduling algorithm based on load balancing in
cloud computing, in: Proc. Int. Conf. onWeb Information Systems andMining,
IEEE Press, Sanya, China, 2010, pp. 271–277.

[24] N.A. Mehdi, A. Mamat, H. Ibrahim, S.K. Subramaniam, Impatient task mapping
in elastic cloud using genetic algorithm, J. Comput. Sci. 7 (6) (2011) 877–883.

[25] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther,
J.P. Robertson, M.D. Theys, B. Yao, A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed
computing systems, J. Parallel Distrib. Comput. 61 (6) (2001) 810–837.

[26] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on
non identical processors, J. Assoc. Comput. Mach. 24 (2) (1977) 280–289.

[27] F. Dong, S.G. Akl, Scheduling Algorithms for Grid Computing: State of the
Art and open Problems, School of Computing, Queen’s University Kingston,
Ontario, Tech. Rep. no. 2006–504, 2006.

[28] P. Luo, K. Lü, Z. Shi, A revisit of fast greedy heuristics for mapping a class of
independent tasks onto heterogeneous computing systems, J. Parallel Distrib.
Comput. 67 (2007) 695–714.

[29] S. Childs, B. Coghlan, J. Walsh, D. O’Callaghan, G. Quigley, E. Kenny, A virtual
testGrid, or how to replicate a national grid, in: Proc. 15th Int. Symp. on High
Performance Distributed Computing, Paris, France, 2006.

[30] B. Quétier, M. Jan, F. Cappello, One step further in large-scale evaluations: the
V-DS environment, Research Report RR-6365, Institut National de Recherche
en Informatique et en Automatique, 2007.

[31] C. Kleineweber, A. Keller, O. Niehörster, A. Brinkmann, Rule-based mapping
of virtual machines in clouds, in: Proc. 19th Int. Euromicro Conference on
Parallel, Distributed and Network-Based Processing, IEEE Press, Ayia Napa,
Cyprus, 2011, pp. 527–534.

[32] A.E. Ezugwu, S.M. Buhari, S.B. Junaidu, Virtual machine allocation in cloud
computing environment, Int. J. Cloud Appl. Comput. 3 (2) (2013) 47–60.

[33] D. Fernandez-Baca, Allocating modules to processors in a distributed system,
IEEE Trans. Softw. Eng. 15 (11) (1989) 1427–1436.

[34] F. Berman, High-performance schedulers, in: I. Foster, C. Kesselman (Eds.), The
Grid: Blueprint for a Future Computing Infrastructure, Morgan Kaufmann, San
Francisco, CA, 1998, pp. 279–307.

[35] C.-C. Hui, S.T. Chanson, Allocating task interaction graphs to processors
in heterogeneous networks, IEEE Trans. Parallel Distrib. Syst. 8 (9) (1997)
908–925.

[36] C. Roig, A. Ripoll, M.A. Senar, F. Guirado, E. Luque, A new model for static
mapping of parallel applications with task and data parallelism, in: Proc.
of the Int. Parallel and Distributed Processing Symposium, IEEE Press, Fort
Lauderdale, Florida, USA, 2002.

[37] A. Jain, S. Sanyal, S.K. Das, R. Biswas, FastMap: a distributed scheme for
mapping large scale applications onto computational grids, in: Proc. 2nd Int.
Workshop on Challenges of Large Applications in Distributed Environments,
IEEE Press, Arlington, TX, USA, 2004, pp. 118–127.

[38] R. Baraglia, R. Ferrini, L. Ricci, N. Tonellotto, R. Yahyapour, A launch-time
scheduling heuristic for parallel application on wide area networks, J. Grid
Comput. 6 (2008) 159–175.

[39] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud computing: a view
of scientific applications, in: Proc. Int. Symp. on Pervasive Systems, Algorithms,
and Networks, IEEE Press, Kaohsiung, Taiwan, 2009, pp. 4–16.
[40] D. Laforenza, Grid programming: some indications where we are headed,
Parallel Comput. 28 (12) (2002) 1733–1752.

[41] A. Doğan, F. Özgüner, Scheduling of a meta-task with QoS requirements in
heterogeneous computing systems, J. Parallel Distrib. Comput. 66 (2) (2006)
181–186.

[42] G. Mateescu, Quality of service on the grid via metascheduling with resource
co-scheduling and co-reservation, Int. J. High Perform. Comput. Appl. 17 (3)
(2003) 209–218.

[43] C. Qu, A grid advance reservation framework for co-allocation and co-
reservation across heterogeneous local resource management systems,
in: R. Wyrzykowski, et al. (Eds.), Proc. 7th Int. Conf. Parallel Processing
and Applied Mathematics, in: Lecture Notes in Computer Science, vol. 4967,
Springer, Berlin Heidelberg, Germany, 2007, pp. 770–779.

[44] E. Elmroth, J. Tordsson, Grid resource brokering algorithms enabling advance
reservations and resource selection based on performance predictions, Future
Gener. Comput. Syst. 24 (6) (2008) 585–593.

[45] K. Ki-Hyung, H. Sang-Ryoul, Mapping cooperating grid applications by affinity
for resource characteristics, in: Lecture Notes in Computer Science, vol. 3397,
Springer, Berlin Heidelberg, Germany, 2005, pp. 313–322.

[46] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous distributed
computing systems, IEEE Concurr. 6 (3) (1998) 42–51.

[47] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith, S. Tuecke, A
directory service for configuring high-performance distributed computations,
in: Proc. 6th Symp. High Performance Distributed Computing, IEEE Press,
Portland, OR, USA, 1997, pp. 365–375.

[48] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid information services
for distributed resource sharing, in: Proc. 10th Symp. High Performance
Distributed Computing, IEEE Press, San Francisco, CA, 2001, pp. 181–194.

[49] J.M. Schopf, F. Berman, Using stochastic information to predict application
behavior on contended resources, Internat. J. Found Comput. Sci. 12 (3) (2001)
341–364.

[50] V. Taylor, X. Wu, R. Stevens, Prophesy: an infrastructure for performance
analysis and modeling of parallel and grid applications, AGM SIGMETRICS
Perform. Eval. Rev. 30 (4) (2004) 13–18.

[51] H.A. Sanjay, S. Vadhiyar, Performancemodeling of parallel applications for grid
scheduling, J. Parallel Distrib. Comput. 68 (2008) 1135–1145.

[52] V. Adve, M. Vernon, Parallel program performance prediction using determin-
istic graph analysis, ACM Trans. Comput. Syst. 22 (1) (2004) 94–136.

[53] V.M. Lo, Heuristic algorithms for task assignment in distributed systems, IEEE
Trans. Comput. 37 (11) (1988) 1384–1397.

[54] G. Della Vecchia, C. Sanges, A recursively scalable network VLSI implementa-
tion, Future Gener. Comput. Syst. 4 (3) (1988) 235–243.

[55] J. Demsar, Statistical comparisons of classifiers overmultiple data sets, J. Mach
Learn. Res. 7 (2006) 1–30.

[56] J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18.

[57] S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational
intelligence and datamining: experimental analysis of power, Inform. Sci. 180
(2010) 2044–2064.

[58] S. Garcia Lopez, Statistical inference in computational intelligence and data
mining, http://sci2s.ugr.es/sicidm/. Last checked December 6, 2013 (online)
(June 2010).

[59] H. Salimi, M. Najafzadeh, Mohsen Sharifi, Advantages, challenges and opti-
mizations of virtual machine scheduling in cloud computing cnvironments,
Int. J. Comput. Theory Eng. 4 (2) (2012) 189–193.

[60] Whats New in Performance in VMware vSphere 5.0, Technical White
Paper. Available: http://www.vmware.com/files/pdf/techpaper/Whats-New-
VMware-vSphere-50-Performance-Technical-Whitepaper.pdf, 2011. Last
checked December 6, 2013.

[61] Google. Available: http://code.google.com/p/virtual-machine-scheduler/. Last
checked December 6, 2013.

Ivanoe De Falco was born in Naples, Italy, in 1961, and
got his Laurea degree cum laude in Electrical Engineering
at University of Naples ‘‘II’’ in 1987. He is currently a senior
researcher at the Institute of High Performance Computing
and Networking (ICAR) of the National Research Council
of Italy (CNR). He is the author or a coauthor of
about 100 publications in international journals and in
the proceedings of international conferences, and his
papers have received about 220 citations in international
literature. His main fields of interest include evolutionary
algorithms and parallel computing. He is in the editorial

board of Applied Soft Computing and of Journal of Artificial Evolution and
Applications.

http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref16
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref17
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref18
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref19
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref20
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref21
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref22
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref23
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref24
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref25
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref26
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref27
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref28
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref30
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref31
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref32
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref33
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref34
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref35
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref36
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref37
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref38
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref39
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref40
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref41
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref42
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref43
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref44
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref45
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref46
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref47
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref48
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref49
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref50
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref51
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref52
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref53
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref54
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref55
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref56
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref57
http://sci2s.ugr.es/sicidm/
http://refhub.elsevier.com/S0167-739X(14)00044-2/sbref59
http://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-50-Performance-Technical-Whitepaper.pdf
http://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-50-Performance-Technical-Whitepaper.pdf
http://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-50-Performance-Technical-Whitepaper.pdf
http://code.google.com/p/virtual-machine-scheduler/


I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13 13
Umberto Scafuri was born in Baiano (AV) on May 21,
1957. He got his Laurea degree in Electrical Engineering
at the University of Naples ‘‘Federico II’’ in 1985. He
currently works as a technologist at the Institute of High
Performance Computing and Networking (ICAR) of the
National Research Council of Italy (CNR). His research
activity is basically devoted to parallel and distributed
architectures and evolutionary models.
Ernesto Tarantino was born in S. Angelo a Cupolo, Italy,
in 1961. He received the Laurea degree in Electrical
Engineering in 1988 from University of Naples, Italy. He
is currently a researcher at National Research Council of
Italy. After completing his studies, he conducted research
in parallel and distributed computing. During the past
decade his research interests have been in the fields
of theory and application of evolutionary techniques
and related areas of computational intelligence. He is
author of numerous scientific papers in international
conferences and journals. He has served on several

program committees of conferences in the area of evolutionary computation.


	Two new fast heuristics for mapping parallel applications on cloud computing
	Introduction
	Related research
	Our working environment
	HPC parallel applications vs cloud computing
	Our parallel application mapper
	The setup for cloud mapping problem

	The algorithms
	The TIG model
	The cost function
	The seminal algorithms
	The proposed algorithms

	Experiments and results
	Experiment A
	Cloud features
	Applications
	Results

	Experiment B
	Cloud features, applications and results
	Statistical analysis


	Conclusions and future works
	Appendix
	References


