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a b s t r a c t

We study on the forwarding of quality contextual information in mobile sensor networks (MSNs).
Mobile nodes form ad-hoc distributed processing networks that produce accessible and quality-stamped
information about the surrounding environment. Due to the dynamic network topology of such networks
the context quality indicators seen by the nodes vary over time. A node delays the context forwarding
decision until context of better quality is attained.Moreover, nodes have limited resources, thus, they have
to balance between energy conservation and quality of context.We propose a time-optimized, distributed
decision making model for forwarding context in a MSN based on the theory of optimal stopping. We
compare our findings with certain context forwarding schemes found in the literature and pinpoint the
advantages of the proposed model.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

A mobile context-aware system (MCAS) is in need of the con-
sumption of quality contextual information (context) [37] dissem-
inated among nodes in a mobile sensor network (MSN). Nodes
form ad-hoc distributed processing networks that produce eas-
ily accessible and quality-stamped information about the sur-
rounding environment. The objectives for the nodes are to sense,
process, and transmit context to other nodes. Since nodes have lim-
ited resources, they have to balance between energy conservation
and quality of context, while transmitting a quantum information.
Nodes are trying to disseminate up-to-date pieces of context, cap-
tured by other nodes (sources). Useable stored information is re-
trieved by a MCAS from the nodes. A MCAS exploits up-to-date
disseminated context in order to provide enhanced services such
as environmental monitoring, security surveillance, military oper-
ations, undersea explorations, contextual and situational inference
and reasoning [26,31,3].
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We consider a MSN involving (a) source nodes (sources),
equipped with sensors that generate (sense) and forward context
(e.g., luminance, humidity, temperature), and (b) consumer nodes
(consumers), that receive, store, and forward context to their
neighbours. The consumers attempt to disseminate context of high
quality as much as possible while being energy efficient; i.e., keep-
ing the communication load in low levels. This motivated us to
introduce an optimally scheduled, quality-aware context forward-
ing model for the consumers. The proposed model schedules the
context forwarding decision (CFD) within a finite time horizon by
reducing data transmission and overhead (possible context repli-
cation) in light of context quality.

Context quality refers to the utility entailed to a MCAS by the
consumption and use of the circulated context in the MSN. We es-
tablish context quality through an ageing framework which dep-
recates context, thus, leading from high to low quality. Freshness
is a typical indicator of the quality of context. Consider two pieces
of context p and q and a relation p ≻ q, which denotes that p is bet-
ter than q. The interpretation of the relation≻ associates with the
quality indicator of context [27]. Specifically, better context p can
be for instance, ‘more fresh’; i.e., more up-to-date sensed values, or
‘more reliable’; i.e., sensed values captured by reliable/trustworthy
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sources, or ‘more specific’; i.e., more detailed1 context [2], than q
referring to the perspective of interest of the MCAS [8]. Each node
compares received p with the locally stored q. If p ≻ q then the
node accepts p, otherwise, the node does not replace qwith p. Each
node can, further, locally refine information independently of other
nodes. It is also possible for a node to exploit the received p in order
to generate more valuable information and, thus, forward it across
the MSN [8]. We assume:

• a MSN, which consists of mobile nodes (sources and con-
sumers). All nodes adopt the same mobility model;
• consumers receive, store, and forward context to their current

neighbours;
• consumers are delay tolerant in the sense that context forward-

ing can be postponed in search for context with highest quality;
• each consumer assumes a finite time horizon for the CFD;
• the quality of context turns obsolete with time.

A consumer specifies a finite time horizon N in which it makes
a decision (CFD) to forward the local context p to its neighbours.
Local context refers to as the locally stored contextual information
in the consumer’s cache. The consumer should forward p before
the horizon N is reached taking into consideration the rate at
which p turns obsolete. The context p at time t has a certain
quality value, say ft . The ft function has certain characteristics to
be discussed in subsequent sections. The consumer, at time t , can
forward p immediately to its neighbours. However, the consumer
could refrain from forwarding p instantly to its neighbours in order
to receive better context q than p, possibly, from another consumer
or source from its neighbours at a later time. The consumer could
also continue receiving pieces of context of possibly better f values
until the horizon N . It is uncertain whether better context will
be received within N . The horizon N relates to the tolerance
capability of the consumer to forward context of best quality.
A high N value might result to reception of better context but,
also, might result to forwarding of nearly obsolete context since
no better context was attained. The consumer delays the CFD
through the reception of context with as high quality value as
possible (relative to those values seen previously) and, then,
forwards it to its neighbours.We formulate this scheduling problem
using optimal stopping theory [30] and analyse the problem using
backward induction [10] since the finite horizon constraint cannot
be neglected.

1.2. Motivating examples

Quality-aware CFD results to exchange of high quality pieces
of context, since consumers delay context forwarding in light of
receiving context of high quality. A time-optimized CFD mecha-
nism can enhance the forwarding policy of an autonomous mobile
node (e.g., robot). Specifically, many research efforts have stud-
ied systems emphasizing in autonomous mobile nodes [9] for sup-
porting distributed intelligence in MSN. The higher quality pieces
of context a MCAS receives, the more capable becomes of inter-
preting and inferring (new) knowledge (e.g., from typical sensor
data fusion to reasoning about more specific context/situational
awareness [3]). Certain MCASs based on the exchanged context
in a MSN are: ‘covering’ (explore enemy terrain), ‘self-assembling’
(reconfigurable robots) [1], ‘localization’ and ‘coverage’ (improve-
ment of positioning accuracy; location of land mines) [15]. We can
distinguishmotivating scenarios in whichmultiple airborne nodes
(unmanned aerial vehicles—UAVs) identify as much quality infor-
mation regarding a phenomenon as possible, thus, enriching their

1 If the MCAS can infer/deduce context q from context p, then context q can be
replaced with context p.
knowledge on the surroundings, and hover in formation over a
ground target. Ground nodes (unmanned ground vehicles—UGVs)
collect spatial disseminated information of high accuracy (high
spatial resolution) for applying obstacle-avoidance and formation
algorithms to navigate an entire flock of robots to the goal. Fur-
thermore, UGVs enter a building, collect specific up-to-date/fresh
contextual information and send back high quality visual images
of the interior.

Quality-aware CFD can enhance the context discovery process
in [4]. In context discovery [4], consumers collaboratively explore,
locate, and track sources that generate context. All consumers co-
operatively pursue the acquisition of context of high quality by lo-
cating sources in aMSN. Evidently, consumers improve the quality
of the discovered context through time-optimized CFD, thus, being
capable of providing high quality information for the exploration
area leading to reliable real-time inferred situations. In addition,
quality-aware CFD can be adopted for keeping the communication
load in MSN in low levels. For instance, a consumer can delay in
delivering aggregated information to a MCAS in light of accumu-
lating more pieces of information from neighbouring nodes. The
more information is aggregated themore data accuracy is achieved
(e.g., maximum/average value estimation in a data stream). Ev-
idently, aggregation operation eliminates data redundancy and,
thus, communication load. In this case, optimality in CFD copes
with the trade-off between energy and delay in data aggregation.

Socially-aware networking (SAN) is an emerging paradigm to
solve problems of networks consisting of mobile nodes with so-
cial properties, e.g. social relationship andmobility patterns. These
characteristics can be utilized to design efficient data forward-
ing/routing protocols in a mobile social network (MSoN). Specif-
ically, a MSoN is a special kind of delay-tolerant network (DTN)
in which mobile users move around and communicate/share data
with each other via their carried short-range communication de-
vices. Mobile users with common interests autonomously form a
community, in which the frequently visited location is their com-
mon home. MSoC can be a mobile vehicular network, a MSN, and a
Pocket Switch Network [38]. Recently, certain socially-aware rout-
ing algorithms based on SAN have been proposed, e.g., [21,16,40].
For instance, the idea behind the algorithm in [40] is the oppor-
tunistic routing of messages in a MSoN through an optimal set of
relay nodes for each home, i.e., each home only forwards its mes-
sage to the node through its optimal set of relay nodes and ignores
other relay nodes. In that sense, the discussed algorithm solves the
problem of whether a home should select a visited node as the re-
lay node of message delivery or ignore this visited node to wait for
those better relay nodes. Quality-aware CFD can be appropriately
adopted in SANespeciallywhendealingwith quality-stampeddata
sharing being optimally routed within a MSoN home.

1.3. Related work

Methods derived from the optimal stopping theory have been
applied to information dissemination in ad-hoc networks. The
authors in [43] propose an opportunistic scheduling scheme for ad-
hoc communications based on the maximal ‘rate of return’ prob-
lem [32]. The model in [43] treats opportunistic scheduling in
ad-hoc networks, in which links cooperate to maximize the over-
all network throughput. The model in [43] focuses on the level of
channel probing, whilst our model focuses on the level of forward-
ing quality context to neighbouring nodes. The data deliverymech-
anisms in [5,6] deal with the delivery of quality information to
context-aware applications in static and mobile ad-hoc networks,
respectively, assuming epidemic-based information dissemination
schemes. Themechanism in [5] is based on the probabilistic nature
of the ‘secretary problem’ [33] and the optimal online time series
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search problem. The work in [6] investigates the optimal schedul-
ing of information delivery in mobile ad-hoc networks. Therefore,
theworks in [5,6] are not similar to the case studied here. Our study
focuses on the forwarding decision of univariate context in MSNs
and not on the delivery of context to applications over epidemic-
based information dissemination schemes. Moreover, our model
highly influences the dynamics of the disseminated information in
a MSN.

Significant research in DTNs focuses on minimizing the latency
of data delivery. The model in [11] deals with optimal message
routing over certain mobility patterns. The model in [41] attempts
to minimize latency in data forwarding for real-time mobile tar-
get tracking problems. Moreover, the model in [14] copes with
the delivery delay of sensed data packets in Vehicular Sensor Net-
works (VSNs). The discussed model focuses on optimal data pack-
ets routing with minimum delay in a VSN making use of (a) vehi-
cle traffic statistics, (b) any-cast routing and (c) trajectory pattern
mining of vehicles. In addition, the model in [23] refers to a query-
driven data forwarding scheme for delay-sensitive WSNs. The dis-
cussedmodel solves the problems of void paths and isolated nodes
that are essential factors influencing the real-time performance
of delay-sensitive WSNs. Finally, the swarm intelligence scheme
in [24] exploits mobiles nodes’ perceiving and learning capability
to gather information of density and social tie during communica-
tion in MSoNs. Such scheme identifies MSoN communities based
on nodes’ interests and distinguishes data forwarding into situ-
ations of inter-community and intra-community. The discussed
scheme performs efficient message scheduling in terms of average
latency and message delivery ratio. The proposed quality-aware
CFD can be exploited by the abovementioned data delivery and for-
warding schemes given that the circulation of high quality pieces
of data in a MSN is required.

The authors in [25] proposed a probabilistic forwarding proto-
col in a delay-tolerant network based on the finite horizon ‘asset-
selling’ problem [28]. Through such amodel, one canmaximize the
‘delivery probability’ based on the knowledge about node mobil-
ity and mean inter-meeting times between nodes. However, the
model in [25] requires a training phase for learning the mobil-
ity patterns of nodes and the mean inter-meeting time distribu-
tion among nodes. Therefore, our scheme does not require any
training phase. In addition, our scheme assumes zero knowledge
on the identities of the sources and consumers, the mobility pat-
tern of nodes, and the type and volume of the contextual param-
eters sensed by each source. Moreover, it should be stressed that
the idea behind our model is that it takes into account the qual-
ity indicator of circulated data in order to proceed with a CFD;
this is not addressed in [25]. Even in the case, in which a con-
sumer is able to learn the mobility behaviour of their encountered
nodes, this has no impact on the proposed methodology for CFD.
That is because, our model focuses on the received quality values
at a consumer end, and is ‘blind’ to mobility patterns of the con-
sumers in the MSN. Finally, the authors in [13] proposed a mecha-
nism for adaptive optimal time horizon for acknowledgements at
the receiving node in delay-tolerant networks. However, the em-
pirical mechanism in [13] is based on experiments and does not
guarantee optimality. In our model, the consumers decrease the
transmission of redundant and possibly replicated contextual in-
formation in a MSN through a time-optimized, quality-aware in-
formation forwarding model.

1.4. Contribution & organization

The contributions of this paper include:

• a study on the scheduling problem of the CFD for consumers in
a MSN w.r.t. an ageing framework of context quality;
• the derivation of the optimal stopping rule for the discussed
problem;
• an optimal univariate context forwarding policy (CFP), through

which we obtain high quality of context with significant
reduction of the network load.

The paper is organized as follows. In Section 2we report on con-
text representation and quality, and describe the model dynam-
ics. Section 3 formulates the problem as an optimal stopping time
problem, while in Section 4 we propose the optimal CFP. Section 5
reports on the performance evaluation of the proposed model and
on the comparative assessment with the models in [8,22], and the
Flooding scheme. Section 6 provides a discussion in the casewhere
consumers locally store multiple pieces of context, thus dealing
with multivariate CFP. Finally, Section 7 concludes the paper with
a discussion on the on-going research agenda.

2. Rationale & preliminary

2.1. Context representation & quality

In this section we model the contextual information circulated
in a MSN. We consider a discrete time domain T = {0, 1, . . .}.
The set Y = {y1, y2, . . . , y|Y |} consists of types of contextual
parameters; |Y | is the cardinality of the set Y . A parameter y ∈ Y
represents an environmental parameter, e.g., y1 is temperature, y2
is sound, y3 is humidity, or inferred context/situation like y4 is ‘fire
event in a certain area’, y5 is ‘an entity accesses forbidden area’.
The parameter y ∈ Y at time t(t ∈ T) takes a value vt ∈ D. The
domain D relates to the parameter, e.g., D ⊆ R for environmental
parameter.We say that y is instantiated at time t with vt . We define
a piece of context p as the tuple:

p = ⟨y, v, f ⟩ (1)

where y ∈ Y , v ∈ D, and f is the quality value of the v value. The f
value can refer to temporal validity, freshness, and confidence on
a measurement [42]. In this paper, we assume that f = ft depends
on the time t atwhich the y parameter is instantiatedwith value vt .
The ft value represents the freshness of the vt value and ft ∈ [0, 1].
ft = 1 indicates that vt is of maximum quality. ft = 0 indicates
that the vt value is unusable for the node.

Formally, we adopt a function f : T→ [0, 1]with the following
characteristics:

• f is non-increasing in T;
• f0 = 1, where t = 0 is the instantiation time for y with v0;
• fζ = 0, for t ≥ ζ , with ζ > 0.

The value of ζ > 0 represents a (finite) time interval and depends
on the sensed context (variability). For example, for ambient
temperature, ζ assumes high values while, for wind speed, ζ is
treated conversely. ζ can also derive from context attributes like
the Hurst exponent [7]. In this paper, we adopt the linear form
ft = 1 − 1

ζ
t . At time t + 1, ft+1 = ft − 1

ζ
and, in general, we

have,

ft =

ft−1 −
1
ζ

, 1 ≤ t < ζ

0, t ≥ ζ .
(2)

A piece of context p at time t is called useable if ft > 0; otherwise p
is considered as unusable (obsolete). Fig. 1 shows the adopted qual-
ity function f . Alternative quality functions can be the rectangular
or inverse exponential functions. In Eq. (2), the (obsolescence) rate
at which context turns unusable with time t is dft

dt = −
1
ζ

< 0.
Hence, the interpretation of the relation ≻ refers to the freshness
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Fig. 1. A linear quality function ft for context with quality interval ζ .

Fig. 2. The MSN model of consumers and sources.

of context p. Specifically, context p (of type y) is better than context
q of the same type at time t as follows:

p≻t q⇔ f pt > f qt

i.e., the sensed value corresponding to p is more up-to-date than
that of q.

2.2. Model dynamics

We model a MSN by an undirected graph G = (V , E), where
V = V C

∪ V S consists of the set of consumers (V C ) and sources
(V S). There is an edge {i, j} ∈ E2 at time t if and only if i ∈ V and
j ∈ V can mutually receive each other’s transmission (this implies
that all the links between the nodes are bidirectional). In this case,
nodes i and j are neighbours at time t . The set of the neighbours
of a node i ∈ V at t is denoted by V i

t = {j ∈ V : {i, j} ∈ E}. A
source s senses and forwards always context ps with the highest
f value, i.e., ps = ⟨·, ·, 1⟩. A consumer c forwards only useable
context pc = ⟨·, ·, ft⟩ to its neighbours at time t with ft ∈ (0, 1].
Unusable copies of pieces of context are not forwarded by any
consumer. Different copies are forwarded independently without
any knowledge of the status of the other copies. Fig. 2 depicts a
MSN (snapshot) of consumer and sources. Each node broadcasts
messages only to its neighbours within a communication range;
one-hop communication.

The main objective is the forwarding of local context pwith the
highest possible f value in the MSN. A consumer i has to make a
CFD, i.e., forward the local context pi at some time t , within time
horizon N , 1 ≤ t ≤ N and N ≥ 1. At each time instance τ ,
1 ≤ τ ≤ t , the consumer

• receives a piece of context pj from each neighbour j ∈ V i
τ and,

• replaces pi with pj, if pj ≻ pi.

2 Due to mobility, the set E can change over time.
Fig. 3. The mean quality value 1
|VC |


i∈VC (f it ) corresponding to the forwarded

pieces of context by the consumers, if they deterministically forward context at each
time t .

A ‘waiting’ cost is induced to the consumer i for each time instance
τ until forwarding pi. This cost is associated with the rate− 1

ζ
. The

problem is to determine how many time instances the consumer
will passby until receiving better context than the local context
and, then, forward it to the MSN with the constraints that (a) the
consumer can wait no more than N and (b) the f decreases over
time. Moreover, the consumer i starts a new CFP right after the pi
forwarding.

Consider a consumer i with context pi = ⟨y, vi
t , f

i
t ⟩ at time

t and its neighbours V i
t . If, at time t + 1, the consumer receives

from its neighbours the pieces of context pj, j ∈ V i
t+1, then it

considers the contextwith themaximum f jt+1 value taking also into
consideration its local context with quality value f it+1 decreased by
1
ζ
, i.e.,

f it+1 = max

f it −

1
ζ

, 0


. (3)

Hence, the consumer i at time t + 1 replaces its local context pi
based on the following ‘context replace’ rule:

pi ← argmax

{f jt+1}j∈V i

t+1
f it+1


. (4)

If, for some j ∈ V i
t+1, the pj is obsolete then node j does not forward

pj to consumer i. In addition, regardless of the fact that V i
t = ∅

or V i
t ≠ ∅, at time t + 1, the quality f it+1 of the local context pi is

updatedw.r.t. Eq. (3). If at some time t the context pi turns unusable
(i.e., f it = 0) then the consumer has the null context notated by
p⊥. It is worth noting that p⊥ is never forwarded, even horizon N
reaches at end.

Fig. 3 depicts the dynamic nature of the quality of the circulated
pieces of context in aMSN. One can observe themean quality value
of all pieces of context that are deterministically forwarded by each
consumer at time t; i.e., each consumer forwards its local context at
each time t . Nonetheless, a consumer couldwait before forwarding
its local context in light of receiving context of better quality.
This policy can enhance the quality of the disseminated context
in the MSN. Specifically, the consumer should define an optimal
CFP in order to maximize the expected quality of the disseminated
context within N time horizon. Through such policy, the consumer
avoids flooding the MSN with pieces of context constantly and
attempts to disseminate context with the highest quality.

2.3. Optimal stopping theory

The theory of optimal stopping [30,34] is about the problem of
choosing the best time to take a given action based on sequentially
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observed random variables in order to maximize an expected
payoff. The optimal stopping problem is defined by a sequence of
random variables X1, X2, . . .whose joint distribution is known and
a sequence of real-valued payoff functions J0, J1(x1), J2(x1, x2), . . ..
Let (Ω, B, P )be theprobability space, andFt be the sub-σ -field of
B generated by X1, . . . , Xt .We have a sequence of σ -fields asF0 ⊂

F1 ⊂ · · · ⊂ Ft ⊂ · · · ⊂ B. A stopping time is defined as a random
variable T ∈ {0, 1, . . . ,∞} such that the event {T = t} is in Ft .
Our goal is to choose an optimal stopping time t∗ to maximize the
expected payoffE{Jt∗}. If there is no bound on the number of stages
atwhich one has to stop, this is an infinite horizon problem and the
optimal return can be computed via the optimality equation.When
there is a known upper bound on the number of stages, it is a finite
horizon problemand the optimal return can be solved by backward
induction [10]. Representative optimal stopping time problems are
the ‘asset-selling problem’ [28], the ‘secretary problem’ [33], the
‘odds-algorithm’ [36], and the ‘maximizing the rate of return’ [20].
Details on this topic can be found in [20].

3. Problem formulation

In this section we formulate the discussed scheduling problem
as an optimal stopping time problem. Let tCURRENT ∈ T be the
current absolute discrete time. The consumer attempts to forward
as fresh context as possible in the interval [tSTART , tSTART + N];
tSTART ∈ T. We use below the time index t defined as t =
tCURRENT − tSTART and, thus, 1 ≤ t ≤ N . Without loss of generality,
the decision time horizon N is the same for all consumers, since
the CFP is independently adopted by each consumer. We assume
that the consumer follows the context update and replace rules in
Eqs. (3) and (4), respectively. The consumer could immediately
forward context to its neighbours at t = 1, thus, no delay would
have been experienced. This means that the consumer floods the
MSNwith the available context. However, the consumer can delay
its CFD in order to receive possibly better context than the local
context. As the consumer moves around, it communicates with
neighbouring consumers and/or sources. Yet, the delay of the
consumer in the CFDmakingmay render the locally stored context
obsolete. But, on the other hand, there might be a high likelihood
of receiving pieces of context of better quality.

At each time instance t , the consumer i first updates the quality
of pi using Eq. (3) and then considers themaximumquality value f ∗t
of the received pieces of context from its neighbours V i

t including
its local context, i.e.,

f ∗t = max

f 1t , f 2t , . . . , f |V

i
t |

t , f it


(5)

where |V i
t | is the number of neighbours of consumer i. The con-

sumer i (at time t) replaces its local context pi using Eq. (4) and,
thus, it

• either forwards pi to its neighbours with quality f ∗t , or
• continues the CFP to the next time instance t + 1.

Hence, the consumer deals with the finite horizon optimal stop-
ping problem with ‘waiting’ cost as follows:

J(f ) = sup
1≤t≤N

E

f −

1
ζ
t


(6)

where quality f ∈ [0, 1] and the supremum is taken over all (stop-
ping) times t . J(f ) is themaximumexpected payoff obtained by the
proposed optimal stopping rule (defined below). The consumer i
forwards pi with quality f ∗t at t , at which the supremum in Eq. (6)
is attained. In our case we obtain the σ -fields

Ft = {f ∗1 ; f
∗

2 ; . . . ; f
∗

t }.
If t = N then the consumer i should forward pi to its neighbours
provided that pi is useable. The problem is to find an optimal stop-
ping time t∗ for context forwarding, whichmaximizes the expected
payoff E{f ∗ − 1

ζ
t∗}. That is, the consumer makes a decision on

whether or not to forward local context (stop the CFP) based on
Ft in order to maximize the expected payoff.

4. Optimal context forwarding policy

In this section, we propose a CFP which results to an optimal
stopping rule for the problem in Eq. (6). Let zt be the quality value
seen by the consumer i. Since consumer i takes a CFD with respect
to the quality value, we refer that consumer i is at state zt at time
t . Let also z⊤ be the terminating state for the CFD process. Hence,
based on this notation, we obtain that:
• a state zt = z⊤ at t ≤ N indicates that the consumer forwards

pi with f ∗t quality value.
• a state zt ≠ z⊤ at t indicates that the consumer has not yet

forwarded pi. In such case, the state zt refers to the quality value
of the previous time t − 1, i.e.,

zt = f ∗t−1.

In addition, we consider the fictitious state z1 = 0. The decision at
time t , dt , takes two values: D1 = ‘stop and forward context’ and
D2 = ‘continue and do not forward context’. Hence, the system
equation of the consumer is:

zt+1 =

z⊤ if zt = z⊤ or (zt ≠ z⊤ and dt = D1)
f ∗t otherwise; dt = D2.

(7)

At each time t , the quality value of the local context decreases by
1
ζ
. Jt(zt) denotes the optimal payoff value function if the consumer

is at state zt (i.e., quality value) and takes the decision dt . Then, for
the Nth time, we obtain:

JN(zN) =

zN −
1
ζ
N if zN ≠ z⊤

0 if zN = z⊤
(8)

and for time t = 1, . . . ,N − 1

Jt(zt) = max

zt −

1
ζ
t, E{Jt+1(f ∗t )}


(9)

with

zt+1 = f ∗t .

A continuously high quality value f ∗t as t → N indicates that the
consumer is more confident on forwarding pi to its neighbours.
On the other hand, the cumulative decrease in the quality value
prompts the consumer not to ‘delay’ its CFD, since it has to make a
decision within N .

The E{Jt+1(f ∗t )} denotes the expected payoff if the consumer
continues the CFD process and receives the pieces of context from
its neighbours at the time instance t + 1. Hence,
• it is optimal to stop at state zt if zt ≥ E{Jt+1(f ∗t )} + 1

ζ
t with

f ∗t = zt+1;
• else, it is optimal to continue.

If at = E{Jt+1(f ∗t )} + 1
ζ
t then

Jt(zt) = max

zt −

1
ζ
t, at −

1
ζ
t

= max(zt , at)−

1
ζ
t.

This indicates that the optimal choice, when the consumer eval-
uates the zt = f ∗t−1, is made according to the following optimal
stopping rule:
forward context with zt quality, if zt > at
continue and do not forward context, if zt < at .

(10)
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If zt = at thenbothdecisions are optimal. FromEq. (10) it is derived
that the optimal CFP is determined by the sequence of the scalar
(decision) values a0, a1, . . . , aN−1 throughwhich the consumer de-
cides either to forward context or continue the CFD process.

Lemma 1. The decision values a0, a1, . . . , aN−1 for the consumer are
inductively obtained for t = N − 1 down to 0 through the following
equation

at = at+1P∗(at+1)+
 1

at+1
f dP∗(f )−

1
ζ

. (11)

The terminal condition in the recursive Eq. (11) is

aN−1 = E{f ∗} −
1
ζ

and P∗(f ) = Prob(f ∗ ≤ f ) is the cumulative distribution function
(CDF) of f ∗.

Proof of Lemma 1. We have that Jt(f ∗) = max(f ∗, at) − 1
ζ
t . For

t = 0, . . . ,N − 1 we obtain

at = E{Jt+1(f ∗)} +
1
ζ
t = E{max(f ∗, at+1)} −

1
ζ

.

For at+1 ∈ [0, 1]we obtain

at =
 at+1

0
at+1 dP∗(f )+

 1

at+1
f dP∗(f )−

1
ζ

= at+1P∗(at+1)+
 1

at+1
f dP∗(f )−

1
ζ

and, the terminal condition in the above recursive equation is

aN−1 = Ef ∗{JN(f ∗)} +
1
ζ

(N − 1) = E{f ∗} −
1
ζ

. �

Lemma 2. For the decision values at it holds that at ≥ at+1, that is,
the consumer relaxes its CFD as t → N.

Proof of Lemma 2. Note that from Jt(f ∗) = max(f ∗, at) − 1
ζ
t we

have JN−1(f ∗) ≥ JN(f ∗) for all f ∗ ∈ [0, 1]. Now, if Wt(f ∗) =
Jt(f ∗) + 1

ζ
t , then we obtain Wt(f ∗) = max(f ∗, E{Wt+1(f ∗)} − 1

ζ
)

and, thus,WN−1(f ∗) ≥ WN(f ∗). Hence, for t = N−2 we also have,
for all f ∗

WN−2(f ∗) = max

f ∗, E{WN−1(f ∗)} −

1
ζ


≥ max


f ∗, E{WN(f ∗)} −

1
ζ


= WN−1(f ∗).

In the same manner, for all f ∗ ∈ [0, 1] and t , we see thatWt(f ∗) ≥
Wt+1(f ∗) and Jt(f ∗) ≥ Jt+1(f ∗). Hence, since

at = E{Wt+1(f ∗)} −
1
ζ
≥ E{Wt+2(f ∗)} −

1
ζ
= at+1

we obtain at ≥ at+1, as originally stated. �

The calculation of the P∗(f ) has as follows. Consider at time t
that the consumer i has |V i

t | neighbours. Hence, we have that f ∗t =

max

{f jt }j∈V i

t
, f it

, that is f ∗t is the maximum of the nt = |V i

t | + 1
i.i.d. variables. If the maximum value is lower than f ∗, that means
all f kt , k = 1, . . . , nt are, thus,

P∗(f ∗) = P(f 1t ≤ f ∗, . . . , f ntt ≤ f ∗) =
nt
k=1

P (k)(f kt )
where P (k)(f ) is the CDF of f k. We assume that for each time t ,
consumer i has number of neighbours equals to the mean degree
of connectivity, i.e., 1

N

N
t=1 |V

i
t | = λ. Hence, we obtain nt =

λ + 1 = n; 1 ≤ t ≤ N . Moreover, we assume that the f k
variables are uniformly distributed in [0, 1] with CDF Pk(f ) = f
and E{f k} = 1

2 . The knowledge of optimal policies in this case is
sufficient to obtain an optimal stopping rule for any continuous
P∗(f ) as one applies results obtained for the uniform distribution
in [0, 1] to the sequence P∗(f ∗1 ), P∗(f ∗2 ), . . . , P∗(f ∗N ) [19]. Hence,we
obtain that P∗(f ) =

n
k=1 P

(k)(f ) = (f )n and, by having probability
density function n(f )n−1, then

E{f ∗} = E{max(f 1, . . . , f n)} =
n

n+ 1
.

It is worth noting that, for completeness reasons and make
the paper self-contained, we provide, in the Appendix A, an
incremental learning method for estimating the P∗(f ) and the
corresponding E{f ∗} on a consumer. From Eq. (11) we obtain the
recursive equation for the at values for t = N − 1 down to 0:

at =
1

n+ 1
(an+1t+1 + n)−

1
ζ

(12)

with 1
ζ
≤

n
n+1 and aN−1 = n

n+1 −
1
ζ
. Indeed, for 0 ≤ aN−1 ≤ 1 and

0 ≤ at+1 ≤ at ≤ 1 (see Lemma 2) we obtain that 0 ≤ E{f ∗}− 1
ζ
≤

1 or 1
ζ
≤

n
n+1 .

Finally, for t = 0,wehavenoprevious estimation for the quality
value f ∗. If the consumer does not wait at all, the payoff is zero. On
the other hand, if the consumer waits for the first estimation of f ∗1 ,
the expected payoff will be 1

0
J1(f ) dP∗(f ) =

 1

0
max(f , a1) dP∗(f )−

1
ζ
= a0 −

1
ζ

.

Hence, we obtain a rule which determines the optimal initial
choice, as follows:
do not adopt the CFP if a0 <

1
ζ

initiate the CFP if a0 ≥
1
ζ

.

This means that the expected payoff obtained using the proposed
optimal stopping rule is max(a0, 1

ζ
). Fig. 4 shows the at decision

values for N = 10 and diverse n, ζ values.3 The ‘area’ above the
curve defined by the at values relates to positive CFD, i.e., deci-
sion D1. The area below this curve relates to negative CFD, i.e., de-
cision D2. That is, a consumer forwards its local context at time t if
f ∗t ≥ at . Otherwise, it waits for the next time instance to make a
CFD. Moreover, if the consumer has not forwarded context up to N
then it mandatorily forwards context. Note also that at ≥ at+1 as
indicated by Lemma 2.

The proposed mechanism of the CFP is depicted in Fig. 5. The
consumer executes the algorithm shown in Fig. 6 for a specific type
of contextual parameter. The input to the algorithm is 1

ζ
, N , and

at , 1 ≤ t ≤ N . The decision values at are calculated once with
O(N) time and space using Eq. (12), and stored in the consumer.
At each time t , the consumer receives the quality values from its
neighbours V i

t . Once the consumer decides to forward context at
some t∗ (optimal stopping time; 1 ≤ t∗ ≤ N) then it initiates a
new CFD process immediately. Moreover, the consumer forwards
context with a (variable) frequency of 1

t∗ ∈ [
1
N , 1].

3 The ζ →∞ indicates always useable context.
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Fig. 4. The at decision values for diverse n and ζ values with N = 10.
Fig. 5. The context forwarding mechanism for a consumer.

5. Performance and comparative assessment

The objective of the performance assessment is to verify that
the consumer adopting the proposed CFP (a) forwards useable
context, (b) demonstrates a robust behaviour when operatingwith
high obsolescence rate values and long decision time horizons,
and (c) is less energy consuming in data transmission compared to
the models in [8,22] and the Flooding scheme assuming pertinent
context quality. Notably, we experiment with diverse values of N
depicting the impact of the decision horizon to useable context
dissemination.

5.1. Performance metrics

In this section,we report on certain performancemetrics for the
performance and comparison assessment. Let I it be the indicator
function, which indicates whether a consumer i ∈ V C forwards
context pi at t , i.e., the optimal stopping time t∗i = t or the
Fig. 6. The consumer algorithm for the optimal CFP.

consumer i reaches at the end of time horizon N and has not yet
forwarded pi, as follows:

I it =

1 if (t = t∗i ) or (t = N),
0 otherwise.

The V F
t = {i ∈ V C

: I it = 1} is the set of consumers that makes
the decision to forward context pi at time t with f ∗(i)t . We refer
to the average quality value of forwarded pieces of context of all
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consumers in V F
t at t as

f̄t =
1
|V F

t |


i∈V F

t

f ∗(i)t , |V F
t | ≠ 0.

The f̄t ∈ [0, 1]metric should assume as high value as possible.
We also consider the network load for context forwarding for

each consumer. We denote as

mt =
1
|V C |


i∈VC

I it

the percentage of consumers that transmits context at time t . That
is,mt |V C

| = |V F
t | indicates the number of context transmissions at

time t . We require that mt assume a low value, thus, reducing re-
dundant and replicated data transmission. It is of high importance
to investigate whether the forwarded context pi from consumer i
at time t were actually useable for some neighbour j ∈ V i

t , that is,
whether it holds true that pi ≻ pj. Let VU

t ⊆ V F
t ⊆ V C be the set

of consumers that forwards at least one piece of useable context to
their neighbours, i.e.,

VU
t = {i ∈ V F

t : ∃pj(pi ≻ pj), j ∈ V i
t }.

Hence, we define as degree of usability µt ∈ [0, 1] the percentage
of consumers that transmits useable pieces of context at time t , i.e.,

µt =
|VU

t |

|V F
t |

, |V F
t | ≠ 0.

The µt quantifies the capability of a CFP to disseminate useable
pieces of context in a MSN. The µt ∈ [0, 1] and a µt value close to
unity indicates that the forwarded context is of high usability for
the MSN.

We also have to take into account the delay of the CFD making
for each consumer in order to achieve dissemination of useable
context.Wedefine as average percentage delay δN

t of all consumers
in V F

t the delay t∗i (1 ≤ t∗i ≤ N) for the forwarding decision of the
consumer i, which forwards context at t . That is,

δN
t =

1
|V F

t |


i∈V F

t

t∗i , |V
F
t | ≠ 0

with δN
t ∈ [0, 1]. A high δN

t value indicates that a consumer delays
its CFD, i.e., t∗i → N . However, this might result to the forwarding
of high quality context. On the other hand, if the disseminated
pieces of context that circulate in the MSN are of high quality then
the consumer forwards context at an early stage.

We performed several simulations for evaluating the discussed
performance metrics. We assume a finite simulation time T and
obtain the corresponding mean values of the above mentioned
metrics, i.e., f̄ = 1

T


t≤T f̄t , m = 1

T


t≤T mt , µ = 1

T


t≤T µt ,

and δN
=

1
T


t≤T δN

t .
Finally, we define as forwarding rate gi the frequency of the

context forwarding decisions that a consumer makes up to T , i.e.,

gi =
1
T


t≤T

I it .

A high gi value denotes that the consumer i does not delay its
CFD. A consumer by adopting the proposed CFP delays its CFD for
searching better context within a fixed time horizon N . If time
horizonN expires and the consumer has not yet forwarded context,
then it deterministically forwards context, if the latter is not null.
It is worth noting that at each time t the consumer either makes
one CFD or not. Hence, gi ≤ 1, ∀i ∈ V C . The average forwarding
rate for all consumers is denoted by g = 1

|VC |


i∈VC gi. We define

as efficiency ϵ of a CFP the capability to forward useable context
with the best quality as soon as possible, i.e., with high forwarding
Table 1
Simulation parameters and notation.

Parameter Notation Value/range

|V S
| Number of sources {5, 10, 15, 20}

|V C
| Number of consumers 100− |V S

|

ζ Quality interval {10, 20, 30}
N Decision time horizon [3, 200]
ρ Communication range 20 m
vmin, vmax Minimum speed, maximum speed for RWP 2 m/s, 5 m/s
pmin, pmax Minimum pause, maximum pause for RWP 0 s, 5 s

rate. The proposed CFP has to forward as much useable context as
possible up to horizon N . Therefore, if the CFP could achieve the
best quality values with a short delay, this would also be of high
importance under certain conditions (e.g., the application specifies
certain deadlines). We assess a CFP on how to forward context
while incurring delay in the CFD. The efficiency metric for a CFP
is defined as follows:

ϵ = ωf f̄ + ωµµ+ ωgg

where ωf , ωµ, ωg ∈ [0, 1] are weight factors for balancing the
quality, usability and forwarded rate of the forwarded context such
that ωf + ωµ + ωg = 1. A CFP should assume ϵ value close
to unity (ϵ ∈ [0, 1]) denoting that such policy forwards high
quality/useable context with a short delay.

5.2. Simulation set-up

The simulation set-up has as follows:we consider aMSN,which
consists of a set of consumer V C and a set of sources V S . Each
source iS ∈ V S carries a sensor which corresponds to a contextual
parameter y ∈ Y . At each time t , each source iS instantiates the
pieces of context from Y with the current contextual values, and
propagates them to the local neighbours with f iSt = 1. A consumer
i ∈ V C receives disseminated pieces of context from the current
neighbours V i

t (sources and consumers) at time t , updates local
context using Eq. (4), and forwards pi to V i

t based on the optimal
stopping rule in Eq. (10). We performed 1000 simulation runs.
Each run involves sequences of horizon N with simulation time
T = 1000. At each sequence, each consumer applies the proposed
policy. In each run we construct a random MSN of |V C

| + |V S
| =

100 nodes with ν =
|V S
|

|V S |+|VC |
% ∈ {5, 10, 15, 20}%. All nodes

adopt the same mobility model, which is the random waypoint
(RWP) [29]with a 500m×500m terrain and communication range
ρ = 20 m. The simulation parameters are summarized in Table 1.

5.3. Performance assessment

5.3.1. Quality context forwarding
Fig. 7 shows the probability density function PDFf̄ ∗ of the

average f ∗ from all consumers for simulation time T , N = 10 and
diverse ν% values. The PDFf̄ ∗ density estimate is based on a normal
kernel function and evaluated at 100 equally spaced points that
cover the range of the f ∗ values. Evidently, themore sources aMSN
has the higher quality of context is circulated. In the remainder
we set ν = 10%. Figs. 8–10 show the PDFf̄ ∗ for diverse ζ values
(N = 10), the PDFf̄ ∗ for diverse N values (ζ = 10), and the CDFf̄ ∗
for diverse N values (ζ = 10), respectively. It is worth noting the
impact of the rate that context turns obsolete − 1

ζ
in Fig. 8. The

proposed CFP achieves relatively high quality values with mean
value close to 0.7 for all rates and N = 10. Moreover, in Fig. 9
we observe that the proposed CFP achieves high quality values as
the decision time horizon N gets relatively long. This means that
the consumers can delay their CFDs in order to wait for more fresh
pieces of context.
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Fig. 7. The PDFf̄ ∗ of all consumers for simulation time T with N = 10 and diverse
ν% values.

Fig. 8. The PDFf̄ ∗ of all consumers for simulation time T with N = 10 and diverse
ζ values.

Fig. 9. The PDFf̄ ∗ of all consumers for simulation time T with ζ = 10 and diverse
N values.

Fig. 10. The CDFf̄ ∗ of all consumers for simulation time T with ζ = 10 and diverse
N values.
Fig. 11 shows the f̄ and δN vs. N ∈ [3, 200] for diverse ζ values.
Obviously, the longer the horizon N gets the more likely is for a
consumer to receive better context. However, it is worth mention-
ing that as N becomes long then there in no significant improve-
ment on the average quality value of the disseminated context in
the MSN; see Fig. 11(left). This is due to the fact that the circulated
context turns obsolete with time. Moreover, Fig. 11(right) shows
the mean delay in CFD making. We can observe that for N > 100
we obtain quite constant delay in the CFD making, i.e., from 12%
to∼16% of the time horizon N , especially for high ζ value. That is,
there is no need to prolong the horizon N since the CFDs result to
relatively high quality values (over 0.9) and N > 100. In the case
where ζ is low then the consumers attempt to delay the CFD in
high hopes of receiving better context. In addition, the higher the
ζ value is, the higher the f̄ values are obtained. That is, the con-
sumers are aware of the quality of context and intelligently make
CFDs for forwarding high quality context.

5.3.2. Useable context forwarding
Fig. 12 shows the µ andm vs. N ∈ [3, 200] for diverse ζ values.

We obtain useable context as the consumers delay their CFD. This
denotes the applicability of the proposed CFP inMSNswhere nodes
are in need of useable context and avoid reception of unusable
information. Specifically, in Fig. 12(left) the proposed CFP achieves
high degree of usability especially for longN . It is worth noting that
as ζ gets high thenµ decreases. This is due to the fact that: a high ζ
value (low obsolescence rate) renders consumers to make a CFD at
early stages since high quality of context is seen to the consumers;
see Fig. 11(left). This, however, comes at the expense of increasing
the frequency of the CFDs, thus, the forwarded context (already
of high quality) is not so useable to neighbouring consumers,
which are more likely to store context of evenly high quality. The
high frequency of CFDs, due to high ζ value, is also depicted in
Fig. 12(right). Specifically, Fig. 12(right) shows the percentage of
consumers that forward context vs. N . For a low ζ value, a low
percentage of consumers forward context since they are delaying
their CFDs. Moreover, as N gets long, a small number of consumers
make a CFD, thus, increasing the lifetime of the MSN, by avoiding
redundant context transmission. This can also be observed in
Fig. 13. Fig. 13 shows the |V F

| vs. N ∈ [3, 200] for diverse ζ values.
The number of context transmissions decreases with N . That is
because, asN gets longer, the consumers are given the opportunity
to delay their CFDs, thus, reducing redundant data transmission in
light of high quality context forwarding. However, forN > 100 the
|V F
| assumes a quite constant value since the consumers are urged

to forward context due to the obsolescence rate − 1
ζ
. Moreover,

observe that as ζ assumes a high value then we obtain higher
|V F
| values comparing with low ζ value. The reason is the same

as explained above in the case of the low µ in Fig. 12(left).

5.4. Comparative assessment

We investigate the performance of the proposed model against
the epidemic-based SaIS model in [8], the spatial Gossip model
in [22], and the Flooding scheme.

5.4.1. Models under comparison
The SaIS model [8] exploits the semantic ≻ relation for multi-

epidemic [17] dissemination in a MSN. In our case, the interpre-
tation of ≻ refers to context quality. Hence, in order to adopt the
SaIS model in our problem, we have to define the ℓ-level context
pℓ (epidemic of level ℓ in [8]) as follows:

pℓ
=


y, v,

ℓ

ζ


, ℓ ∈ [0, ζ ].
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Fig. 11. The (left) f̄ and (right) δN vs. N ∈ [3, 200] for diverse ζ values.
Fig. 12. The (left) µ and (right)m vs. N ∈ [3, 200] for diverse ζ values.
That is, pℓ
≻ pk iff 0 ≤ k < ℓ ≤ 1, which means that a consumer

replaces the local context with incoming context of higher quality.
The sources forward ζ -level pieces of context. In the SaIS model,
all nodes disseminate context at time t with constant probability
β ∈ (0, 1].

Moreover,we experimentwith theGossip algorithmwhich falls
in the same broader category of information dissemination algo-
rithms. The Gossip algorithm is characterized by its distributed na-
ture and robustness to dynamic network conditions. In a Gossip
algorithm, each node picks, according to some underlying (deter-
ministic or random) rule, another neighbour and exchanges infor-
mation with it. Two basic schemes are discussed in the literature
for neighbour selection: the uniform gossip, in which each node
chooses to communicate with a randomly chosen node at each
step [18], and the standard gossip, in which a node picks, accord-
ing to a probabilistic distribution, one of its immediate neighbours
[12,39]. In addition, the authors in [22] propose the spatial Gossip
algorithm,where node selection is based on a probability inversely
proportional to the distance between nodes. In our case, the ex-
act knowledge on the entire MSN structure is not known to each
node. Instead, each node i (consumer/source) can only locally com-
municate with its neighbouring nodes (V i

t ) at time t and forward
context to them. We compare our model with the local (uniform)
Gossip model. In local Gossip, a node i uniformly chooses to for-
ward context to one neighbour j ∈ V i

t . Finally, in the Flooding
scheme, a node i communicates deterministically with all neigh-
bours, that is, at each time t , node i forwards context to its neigh-
bours.
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Fig. 13. The |V F
| vs. N ∈ [3, 200] for diverse ζ values.

Fig. 14. The PDFf̄ ∗ for all models with ζ = 10.

Fig. 15. The CDFf̄ ∗ for all models with ζ = 10.

5.4.2. Quality context forwarding
Figs. 14 and 15 show the PDFf̄ ∗ and the CDFf̄ ∗ , respectively, for

the Gossip, Flooding, SaIS (β ∈ {0.1, 0.5, 0.9}) models, and our
model (N ∈ {10, 20, 50}) with ζ = 10. For all models we assume
ν = 10%.

The proposed CFP (referred to as ‘model’ in all figures) obtains
the highest quality values compared to all models for N > 10. We
Fig. 16. The f̄ vs. N for all models with ζ = 10.

Fig. 17. The percentage increase in µ vs. N for all comparison models with respect
to our model; ζ = 10.

can observe that even for a short delay in CFDmaking, i.e., N = 10,
ourmodel achieves better context compared to a scheme that does
not delay the CFD. Specifically, in the case of the Flooding scheme,
in which there is no delay, we obtain a mean quality of 0.25.
This denotes that the consumers flood the MSN most of the time
with context of low quality, if not unusable. The SaIS and Gossip
models achieve even less quality context w.r.t. our model. Such
models stochastically forward context in the MSN in an attempt to
decrease redundant data transmission (as will be demonstrated in
the remainder). Nevertheless, they defy the fact that local context
turns obsolete. Fig. 16 shows the f̄ value for all models against N
with ζ = 10. For a very low N value (N = 3) our model achieves
marginally greater f̄ compared to the Flooding scheme. ForN = 10,
our model achieves 33% higher context quality than the Flooding
scheme. As N gets long, our model significantly outperforms the
comparison models in f̄ value.

5.4.3. Useable context forwarding
Fig. 17 shows the percentage increase of the µ metric that our

model achieves compared with all models against N and ζ = 10.
The proposed CFP is 62% more useable in terms of µ than all
comparison models. Even for low N values, our model guarantees
dissemination of 47%–54% more useable context in the MSN. This
demonstrates the applicability of the proposed CFP to significantly
decrease redundant/unusable data transmission in a MSN.

Moreover, we have to compare the network load of the pro-
posed CFP w.r.t. comparison models. Fig. 18 shows the cumulative

τ≤t |V
F
τ |, 1 ≤ t ≤ T for all models against t with ζ = 10. We

can observe a 80% reduction of the transmitted messages achieved
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Fig. 18. The cumulative


τ≤t |V
F
τ |, 1 ≤ t ≤ T for allmodels against t with ζ = 10.

Fig. 19. The percentage decrease in |V F
| vs. N for all comparison models with

respect to our model; ζ = 10.

by our model compared to the Flooding scheme. In addition, our
model forwards 75% more context than the SaIS model (β = 0.1)
but it achieves 240% and 63% higher quality and usability values
than the corresponding model. In order to better demonstrate the
reduction of data transmission obtain from ourmodel, we examine
the percentage decrease of the |V F

| achieved by our model com-
pared with all comparison models. Fig. 19 shows this percentage
againstN for all comparisonmodelswith respect to ourmodel hav-
ing ζ = 10. We obtain 20%–60% reduction in context transmission
for very short horizonN . Evidently, asN increaseswe obtain higher
percentage reduction in data transmission, since our model delays
the CFDs. However, this delay has to be taken into consideration in
evaluating the efficiency of the models under comparison.

We examine the performance of eachmodel with the capability
of forwarding high quality and useable context with high
frequency. Fig. 20 shows the distribution of the forwarding rates
of all consumers for our model, SaIS, and Gossip. In the Flooding
scheme, we obtain gi = 1, since the consumer at each time t
deterministically forwards its local context; the forwarding rate
for Flooding scheme is not shown in Fig. 20, since it is constant.
In the SaIS model, the consumer makes a CFD with rate β , while
in the Gossip model, the consumer makes a CFD at time t with
probability one assuming that |V i

t | > 0. In our model, the gi
depends on the decision horizon N , the stopping time t∗i , and the
dynamics of theMSN. Evidently, we obtain a low gi for long horizon
N . Moreover, Fig. 21 shows the efficiency ϵ of all models against
N with ζ = 10 and ωf = ωµ = ωg =

1
3 . Overall, we observe

that our model demonstrates higher efficiency values than the
Gossip and the SaIS model with β ∈ {0.1, 0.5}. Comparing with
the SaIS model having β = 0.9 and the Flooding scheme, our
model is more efficient for N > 30 and N > 40, respectively. This
denotes that the quite deterministic SaIS model (β = 0.9) and the
deterministic Flooding model achieve high forwarding rates, but
the corresponding degrees of usability and context quality are low.
On the other hand, forN < 30, ourmodel increases the forwarding
rate, thus, increasing the probability of forwarding relatively low
quality context (due to short decision time horizon) or low degree
of usability. To sum up, a delay in CFD results in dissemination
of high quality context, high useable context, thus, reduction of
redundant information. On the other hand, such delay leads to a
low forwarding rate. For delay-tolerant consumers in a MSN the
proposed CFP demonstrates efficient behaviour in terms of context
quality and usability, and energy efficiency.

6. Discussion

In this section we elaborate on a CFP, which proceeds with
optimal CFD based on multiple local pieces of context, hereinafter,
referred to as Multiple CFP (MCFP). The MCFP is based on M
optimal CFPs, running in parallel, corresponding to the top-M local
pieces of context in terms of quality. In this case, consumer i (1)
stores, at each time instance t , a list of the top-M local pieces of
context, (2) updates their corresponding quality values using Eq.
(2), (3) re-evaluates this list at the next time instance taking also
into account the pieces of context received from its neighbouring
nodes. The MCFP is based on M order statistics from the top-M
list. Consider that consumer i stores M local pieces of context
(f 1, f 2, . . . , f M). The order statistics (f (1,M), f (2,M), . . . , f (M,M))
are random variables defined by sorting the realizations of
(f 1, f 2, . . . , f M) in increasing order. For instance, the minimum
value of the top-M list is the order statistic (1,M) associated with
the variable f (1,M)

= min{f 1, f 2, . . . , f M}, the maximum value
of the top-M list is the order statistic (M,M) associated with
the variable f (M,M)

= max{f 1, f 2, . . . , f M}, and the (k,M) order
statistic, i.e., f (k,M), is the kth smallest value of the top-M list.

Let, at time instance t , consumer i receive λ = |V i
t | pieces

of context from its neighbours f jt , j ∈ V i
t and its local pieces of

context correspond to K quality values f i1t , f i2t , . . . , f iKt after being
updated using Eq. (2). Consumer i then dealswithM quality values,
M = K +λ, associated with the received pieces of context from its
λ neighbours and its K local pieces of context, i.e.,

f (1,M)
= min({f jt }

λ
j=1, f

i1
t , f i2t , . . . , f iKt )

f (2,M)
= 2ndmin({f jt }

λ
j=1, f

i1
t , f i2t , . . . , f iKt )

· · · = · · ·

f (M,M)
= Mthmin({f jt }

λ
j=1, f

i1
t , f i2t , . . . , f iKt )

= max({f jt }
λ
j=1, f

i1
t , f i2t , . . . , f iKt ).

The notation kthmin(A) refers to the kth smallest element of set A.
It is worth noting that the (single) CFP stores only the maximum
quality value f ∗ of (λ + 1) pieces of context (i.e., only the (λ +
1, λ + 1) order statistic) while, MCFP stores all order statistics
(k,M), k = 1, . . . ,M . In the case where K = 1, thus, M = λ + 1,
MCFP stores all (k, λ+1) order statistics (k = 1, . . . , (λ+1)), thus,
including also the (λ + 1, λ + 1) order statistic, corresponding to
that of CFP, i.e., f (λ+1,λ+1)

= f ∗.
The MCFP consists of M parallel optimal CFPs each one

corresponding to the (k,M) order statistic, k = 1, 2, . . . ,M , such
that CFP1, CFP2, . . . , and CFPM deal with theminimumquality value,
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Fig. 20. The distribution of the forwarding rates of the consumers for our model, SaIS, and Gossip models with ζ = 10; in Flooding we obtain gi = 1.
Fig. 21. The efficiency ϵ of all models against N with ζ = 10.

second minimum quality value, . . . , and maximum quality value,
respectively, out of M quality values. Each CFPk associates with
an optimal context forwarding decision for (k,M) order statistic,
CFDk, i.e., it has its own scalar decision values, a(k,M)

t , t = 1, . . . ,N
(see Lemma 1). Hence, consumer i, at time instance t , makes a CFDk
for forwarding the local piece of context which corresponds to the
kth smallest quality value f (k,M), k = 1, 2, . . . ,M . That is, in a CFPk
the decision at time t takes two values
• Dk

1 = ‘stop and forward the kth smallest piece of context of the
M stored pieces of context in terms of f (k,M)

t ’
• Dk

2 = ‘do not forward the kth smallest piece of context and
continue observing f (k,M)

t+1 ’.
For completeness reasons, Appendix B provides the formulae for
scalar decision values a(k,M)

t , t = 1, . . . ,N , k = 1, . . . ,M
corresponding to CFDk.

In MCFP, consumer i needs O(M) = O(K + λ) space, while
in the single CFP, requires O(λ) space. Obviously, in MCFP more
pieces of context are circulated/exchanged in theMSNwith diverse
quality values, since consumers forward also pieces of context
which do not correspond to high quality values. Evidently, this
decreases the average percentage delay in forwarding context,
and increases the frequency of the context forwarding decisions.
Specifically, consider the indicator J (k,M)

t = 1, when the CFDk for
(k,M) order statistic is Dk

1 at time t with probability θk; otherwise
J (k,M)
t = 0 with probability 1 − θk. If, for simplicity reasons, we
assume that θk = θ for all k = 1, . . . ,M , then the expected
number of forwarded pieces of context at time t per consumer is
(K +λ)θ . This denotes that the forwarding rate gMCFP and network
load mMCFP for MCFP are K times higher than those attained by
the single CFP. In addition, we obtain O(1/K) less delay δMCFP w.r.t.
δCFP . Since consumers always store and forward the top-M highest
quality values, the circulated context inMSN is, on average, of high
quality, thus, the consumers forward context at an early stage.
Appendix C provides a statistical quantification of the quality of
context obtained from MCFP compared to CFP. The idea of storing
and optimally forwarding of the top-M pieces of context might be
useful for MCAS which is in need of context of moderate quality
but cannot tolerate high delays. In such case, MCFP can support
time-constrained/low delivery latency MCAS. On the other hand,
the single CFP can support delay-tolerant MCAS, which are in need
of context of very high context quality. Hence, there is a trade-
off between forwarding/circulating quality context and latency in
CFD, which can be tuned either by increasing or decreasing K .
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7. Conclusions

We study an approach for distributed, optimal scheduling of
CFDs in a MSN. We assume that a consumer is delay-tolerant in
the sense that context forwarding can be postponed in search for
context with highest quality. We treat such scheduling problem as
an optimal stopping problem. The constraint of the problem is the
specified decision horizon N , in which the consumer has to make a
CFD.Moreover, we consider an ageing linear function of the quality
of context. We provide a CFP with the corresponding optimal
stopping rule. We present a performance assessment and compare
our CFPwith contextual information dissemination schemes found
in the literature. For certain decision time horizons, our model is
proved efficient for context dissemination in terms of high context
quality and usability while keeping the communication overhead
in relatively low levels.

The proposed CFP focuses on univariate context forwarding,
that is, all consumers are interested in context of the same type.
Moreover, we provide a discussion in the case where a consumer
is capable of locally storingmultiple pieces of context. Our research
agenda deals with the problem of forwarding multivariate context
of high quality and usability in a MSN. In this direction, the
consumer could perform a parallel realization of the CFPs for each
type of context based on a generic quality indicator or, more
intelligently, exploit possible correlations (e.g., spatio-temporal
relations) among pieces of context of different type in order to
make a CFD.
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Appendix A

In this appendix we provide a mechanism, complementary to
our model, which can be adopted by a consumer in order to learn
the probability density functions of the received context quality
values by its encountered consumers. Once such functions are es-
timated, then the consumer can produce the CDF P∗(f ), E{f ∗}, and,
in turn, the scalar decision values a0, a1, . . . , aN−1 for making op-
timal CFDs.

Consider a consumer i, which at time t stores local context
with quality f it and receives from its n neighbours quality values
f 1t , f 2t , . . . , f nt . Consumer i wants to learn for each of the encoun-
tered consumers the corresponding probability density function
Qm(f ) for the f m quality,m = 1, . . . , n. Let us focus on an encoun-
tered consumer j. Given the sequence of f j1, f

j
2, . . . , f

j
t , the probabil-

ity density estimation up to t is indicated by Q̂ j
t (f ); the subscript j is

omitted in the remainder for readability reasons. The Kernel Den-
sity Estimation (KDE) method is a widely adopted non-parametric
density estimation method, thus, the Q̂t(f ) based on t quality val-
ues f1, f2, . . . , ft is

Q̂t(f ) =
1
t

t
k=1

Kh(f − fk)

with Kh(u) is a kernel function, which is a unimodal, symmetric,
non-negative function that centres at zero and integrates to unity.
The window h controls the degree of smoothing of the estimation.
An optimal selection for h is provided by [35]. The expected value
of f , E(t)

{f }, is based on the sequence f1, f2, . . . , ft and is calculated
by
 1
0 f Q̂t(f ) df . Interestingly, we can incrementally evaluate the

Q̂t(f ), that is, calculating Q̂t(f ) based on Q̂t−1(f ) and the observed
quality value ft at t > 1. Hence, consumer i does not need to store
all received quality values from each encountered consumer up to
time t . Specifically, we estimate the density function in the follow-
ing incremental manner:

Q̂t(f ) =
1
t

t
k=1

Kh(f − fk)

=
1
t


t−1
k=1

Kh(f − fk)+ Kh(f − ft)



=
t − 1
t

Q̂t−1(f )+
1
t
Kh(f − ft)

with Q̂1(f ) = Kh(f − f1). Hence, for the expected value E(t)
{f }, we

obtain:

E(t)
{f } =

t − 1
t

E(t−1)
{f } +

1
t

 1

0
fKh(f − ft) df . (13)

When ft is received, only the evaluation of gt(ft) = 1
t

 1
0 fKh(f −

ft) df is needed, with E(1)
{f } = g1(f1). We adopt the Gaussian ker-

nel function Kh(u) = 1
√
2πh

e−
1
2 ( u

h )2 and, thus,

gt(f ) =
1

√
2πht

 1

0
ue−

1
2 (

u−f
h )2 du

=
1

√
2πht

1.253fh


erf

√
2

2h
f


− erf

√
2

2h
(f − 1)


+ h2


e−0.5(

f
h )2
− e−0.5(

f−1
h )2


with erf(u) = 2

√
π

 u
0 e−z

2
dz (the error function). Hence, the CDF

of the jth encountered consumer up to tth reception of the quality
value is obtained directly from Q̂t(f ), i.e., P̂t(f ) =

 f
0 Q̂t(u)du. The

P∗(f ) up to time t is then
n

m=1 P̂
(m)
t (f ). Finally, the expectation

of f ∗ up to time t , E(t)
{f ∗}, can be estimated incrementally in the

samemanner (see Eq. (13)) we estimate E(t)
{f } for an encountered

consumer, since f ∗t is calculated at each time t .

Appendix B

In this appendix we provide the recursion for determining the
scalar decision values a(k,M)

t , t = 1, . . . ,N corresponding to the
(k,M) order statistic inMCFP. Based on Lemma1, in order to obtain
the recursive equation for a(k,M)

t , we have to calculate the cumula-
tive distribution function P (k,M)(f ) and expectation E[f (k,M)

] of the
(k,M) order statistic. P (k,M)(f ) is calculated based on the probabil-
ity

Prob(f (k,M)
≤ f , f (k+1,M) > f , . . . , f (M,M) > f )

=


M
k


(1− f )M−kf k

based on the assumption that quality values are uniformly dis-
tributed in [0, 1]; see Section 4. In this case, the (k,M) order statis-
tic has a Beta(k,M − k+ 1) distribution, thus, we obtain

P (k,M)(f ) =
M
j=k


M
j


(1− f )M−jf j

and

E[f (k,M)
] =

k
M + 1

.
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The a(k,M)
t values at time t , t = 1, . . . ,N , are given by Lemma 1

and, in the case of MCFP, are as follows

a(k,M)
t = a(k,M)

t+1 P (k,M)(a(k,M)
t+1 )+

M!
(k− 1)!(M − k)!

×


B1(k+ 1,M − k+ 1)− Ba(k,M)

t+1
(k+ 1,M − k+ 1)


with terminal condition

a(k,M)
N−1 =

k
M + 1

−
1
ζ

where Bx(a, b) = xa

∞

r=0
(1−b)r
r!(a+r)x

r is the incomplete Beta function
and (1 − b)r = (1 − b)((1 − b) + 1) · · · ((1 − b) + (r − 1)); the
Pochhammer symbol. Hence, the optimal stopping rule for CFPk is:
• Dk

1 if f (k,M)
t−1 > a(k,M)

t

• Dk
2 if f (k,M)

t−1 < a(k,M)
t .

If f (k,M)
t−1 = a(k,M)

t then both decisions are optimal. Finally, as also re-
ported in the single CFP, a consumer adopts the CFDk iff a

(k,M)
0 ≥

1
ζ
.

Appendix C

In this appendix we examine the expectation of quality values
of context that are locally stored by a consumer adopting either
CFP or MCFP. Note that, we focus only on the locally stored quality
values of CFP andMCFP in order to quantify the advantage obtained
from MCFP compared with CFP. An analysis on the expectation
inequalities of the forwarded quality values (corresponding to the
optimal stopping values) involves ‘prophet inequalities’ of optimal
stopping theory, which is beyond of the scope of this paper.4

The MCFP with K = 1 stores all order statistics (1, λ +
1), . . . , (λ + 1, λ + 1), while CFP stores only the (maximum)
(λ+ 1, λ+ 1) order statistic. In this specific case, the expectations
of the twomaximumorder statistics (f (λ+1,λ+1) forMCPF and f ∗ for
CFP) for both policies are the same with E[f (λ+1,λ+1)

] = E[f ∗] =
λ+1

(λ+1)+1 . For K > 1, we obtain that

E[f (λ+K ,λ+K)
] =

λ+ K
λ+ K + 1

>
λ+ 1
λ+ 2

= E[f ∗].

This means that, a consumer, by adopting MCFP, stores locally
context (associated with the maximum order statistic) of higher
quality value than that of CFP. If we assume that a consumer
communicates with a high number of neighbours, i.e., large λ, for
instance, a high-density MSN, then
lim

λ→∞
E[f (λ+K ,λ+K)

] = lim
λ→∞

E[f ∗] = 1.

In such case, we obtain the same expected quality values by both
policies for context associated with the maximum order statistic.
In addition, if we store a high number of quality values of pieces
of context, i.e., large K , in MCFP, then we obtain expected value
E[f (λ+K ,λ+K)

] = 1 as K → ∞. Finally, the mean value of
the expected values of the order statistics (1, λ + K), (2, λ +
K), . . . , (λ + K − 1, λ + K), i.e., excluding the maximum order
statistic, in MCFP is

1
λ+ K − 1

λ+K−1
k=1

E[f (k,λ+K)
] =

1
λ+ K − 1

λ+K−1
k=1

k
λ+ K + 1

=
1

(λ+ K − 1)(λ+ K + 1)

λ+K−1
k=1

k

=
λ+ K

2(λ+ K + 1)
=

1
2

E[f (λ+K ,λ+K)
].

4 The interested reader could refer to T.P. Hill, R.P. Kertz, ‘A survey of
prophet inequalities in optimal stopping theory’, Contemporary Mathematics,
125(1):191–207, Jan., 1992.
This quantifies the additional quality value of pieces of context that
are circulated in a MSN when consumers adopt MCFP. In CFP, we
obtain only quality values that correspond to the maximum order
statistic.
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