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Abstract—Online dynamic security assessment provides the
real-time situational awareness for assessing the impact of various
N-k contingencies, so that appropriate preventive/corrective con-
trols could be armed in a timely fashion. This task is challenging
due to the large number of possible contingencies, the massive
scale of power systems, and the multi-scale dynamics that occur
under varying operating conditions.

In this study, a data mining framework for online dynamic
security assessment using decision trees and a boosting technique
is developed, with the following multi-stage processing. 1) In
the offline training stage, classifiers consisting of multiple simple
decision trees are built based on a given collection of training
data, and an iterative algorithm is used to “boost” the accuracy of
the classifiers. 2) In the near real-time update stage, the simple
decision trees together with their voting weights are updated
when new data are available, enabling a smooth tracking of
the changes of decision regions. 3) In the online DSA stage,
real-time phasor measurements are used to locate the current
operating condition into a decision region and obtain timely
security decisions. The clustering of contingencies and data
preprocessing via dimension reduction of the attributes are also
discussed. Numerical testing based on a practical power system
demonstrates that the proposed approach works well under a
variety of realistic operating conditions.

I. INTRODUCTION

Many large-scale fault events in power systems, which led

to severe and cascading blackouts, have been attributed to

a lack of “situational awareness,” that is formally defined

as “understanding the current environment and being able

to accurately anticipate future problems to enable effective

actions” [1]. For instance, the 2005 Houston blackout could

have been prevented if the significant phasor angle differences

were understood; and indeed, during the 2008 Hurricane

Gustav event, effective corrective controls, based on the real-

time measurement of system frequency, were implemented

[2]. There is clearly an urgent need to enhance the situational

awareness by developing low-complexity algorithms for online

dynamic security assessment.

Dynamic security assessment (DSA) is an analysis tool

that can provide system operators with important information

such as voltage, thermal, and transient stability under various

probable contingencies. With the real-time or near real-time

measurements collected by phasor measurement units (PMUs),

online DSA can produce accurate decisions for current or

impending operating conditions (OCs). Recently, several ef-

forts have been directed towards cost-effective online DSA

schemes [3]–[6]. However, it remains a challenging task due

to the computational complexity incurred by the large size of

the contingency list and the massive scale of power systems.

First, the combinatorial possibilities of N − k (k = 1, 2, · · · )
contingencies makes it intractable to perform detailed analysis

(e.g., power flow analysis and time domain simulations) for

all contingencies. In practice, contingency screening schemes

(see [6] and reference therein) are used to select the active
contingencies that are likely to cause instability, so that de-

tailed analysis is performed only on those active contingencies.

However, the number of active contingencies can still be

very large (possibly over thousands for a regional power

system [6]). Another challenge for online DSA is the high

computational complexity of detailed analysis in processing

the high-dimensional measurement data.

To tackle the aforementioned challenges of online DSA,

the decision regions for the active contingencies are first in-

tensively studied offline. Then, security decisions are obtained

simply by locating the current OC to a specific region. Towards

characterizing the decision regions, data mining tools (e.g.,

decision trees (DTs) [7]) can effectively find the attributes

and thresholds that are critical to make accurate decisions,

provided that a knowledge base relevant to the current OC is

used in offline studies. In practice, a knowledge base can be

built offline, through the detailed analysis of the predicted OCs

generated from day-ahead load forecast and unit commitments,

recent OCs, and anticipated OCs generated from short-term

load forecast and dispatch.

A. Related Work

The efficacy of DT based approaches have been verified

through several recent studies on practical power systems

[3]–[5]. DTs were originally introduced into DSA by [3].

In the three-stage scheme proposed in [3], a DT is first

trained offline using a knowledge base, and then, both the

DT and the knowledge base are periodically updated, i.e.,

if the trained DT fails to classify new cases correctly, the

new data are incorporated into the knowledge base and a

new DT is thus rebuilt from scratch. Then, the updated DT

is used to produce prompt decisions in online DSA. In [4],

more attributes, including voltage magnitudes, phase angle

differences, current flows, and square of voltage magnitudes,

are used for DT training and help in making a more accurate
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prediction. The improvement in accuracy by using multiple

optimal DTs and corrective DTs is also discussed. In recent

work [5], four important post-contingency security issues, i.e.,

voltage magnitude violation, thermal limit violation, voltage

stability, and transient stability under N − k contingencies,

are studied using DTs, where the knowledge base is enriched

by new OCs generated by linear interpolation. Furthermore, a

group of randomly changed OCs are used to test the robustness

of the trained DTs.

B. Summary of Main Results

In this study, a data mining framework for online dynamic

security is proposed, as shown in Fig.1, with the basic idea

summarized as follows. In the offline training stage, a group

of NOC predicted OCs are generated for each period T1 in

the next day, based on load forecast and generation sched-

ules. Then, through offline studies on the predicted OCs for

a given contingency list C, a knowledge based consisting

N = NOC × |C| training data is used to train the classifiers,

where |C| is the number of active contingencies. In the near

real-time update stage, new data are incorporated into the

classifier to refine the decision regions as needed, e.g., when

the day-ahead prediction turns out to be inaccurate and new

stressed conditions are expected to occur. These new data are

created by using past and anticipated OCs, together with new

active contingencies. Through the previous two stages, the

decision regions for the OCs of the period T1 can be accurately

characterized by the classifiers. In the online DSA stage, the

PMU measurements of the critical attributes are collected for

each period T2, and security decisions are obtained by locating

current OC to a decision region. Generally, T1 is at the scale

of hours, and the timescale of T2 can be on the same order as

that of PMU measurements.

The proposed scheme differs from those of existing works

[3]–[5] in the following aspects. 1) The classifier is obtained

through boosting multiple simple DTs instead of a single

fully-grown DT. 2) The simple DTs are gracefully updated

by incorporating new cases one at a time, whereas rebuilding

DTs is used in [3]–[5]. 3) Training data are assigned with

different sets of data weights for training the simple DTs. 4)

The DTs and the knowledge base are updated only when the

new cases are misclassified in [3]–[5]. However, it is observed

that when handling noisy training data, the cases correctly

classified can also contain valuable information and enhance

the accuracy of the classifier. Therefore, all the new cases are

incorporated into the classifier and the knowledge base. 5) The

active contingencies are partitioned into different clusters, and

a classifier is built for each cluster.

The clustering of active contingencies is adopted mainly for

two reasons: 1) the complexity of DTs when splitting over

the index of the active contingencies is exponential in the

number of them, and 2) it is observed that the impact of some

contingencies is captured by the same subset of attributes. For

each cluster of the active contingencies, a classifier is obtained

via boosting simple DTs. Specifically, in the offline training

stage, the simple DTs are sequentially trained using training

Fig. 1. A data mining framework for online DSA

data with adaptive weights. The misclassified cases by the

previous simple DTs are reassigned with higher weights, so

that correct decisions can be obtained by subsequent simple

DTs for those misclassified cases. For the classifier, by choos-

ing proper voting weights for the simple decision trees, its

classification error can be bounded above. In the near real-time

update stage, when the classifier obtained so far misclassifies

a new case, a higher weight is assigned to the new case to

update the subsequent simple DTs, so that the final classifier

can smoothly track the change of decision regions. Compared

to existing works [3]–[5], the proposed scheme can mitigate

the overfitting of the classifiers and produce more accurate

decisions. Further, new data corresponding to new OCs or

new active contingencies can be incorporated with much lower

complexity.

The rest of the paper is organized as follows. A brief

introduction to DTs and their application to DSA is presented

in Section II, and the possible overfitting of DTs in online DSA

is also commented on. In Section III, a classifier via boosting

simple DTs is proposed. Specifically, the iterative algorithms

for both classifier training and updating are presented, and

the computational complexity is also investigated in detail.

The clustering of active contingencies and dimension reduction

for online DSA is discussed in Section IV. Numerical results

are presented in Section V. Finally, Section VI concludes this

paper.



<

<

Fig. 2. A subtree of a trained DT: leaf nodes and the corresponding decision
regions

II. BACKGROUND ON DECISION TREES

Among various machine learning methods, DTs have good

interpretability [7], in the sense that the decision regions

generated by DTs can be characterized by several critical

attributes. For a DT, only a few tests on the critical attributes

are necessary to make a decision. Therefore, DTs can be a

good choice for building the classifier of online DSA. In this

study, a Decision tree is a tree-structured model that maps an

observation on the attributes x = (x1, x2, · · · , xP )T to a pre-

dicted value ŷ ∈ {±1} [7]. In a DT, each internal node tests an

attribute and decides which child node to drop the observation

into, and each leaf node is assigned with a predicted value.

Consequently, the path from the root to a leaf node specifies

a decision region in the attribute space corresponding to that

leaf, as illustrated in Fig. 2. Given a collection of training

data {xn, yn}N
n=1, drawn from an unknown distribution P of

the attribute vector X and the corresponding decision Y , the

objective of decision tree learning is to find a DT that can

fit the training data, and accurately predict the decisions for

new cases. Practical state-of-the-art DT learning algorithms

are often based on greedy search. For example, in CART [7],

the DT fully grows by recursively splitting the given set of

training data, and choosing the attributes and tests with the

minimum costs, until some predefined stopping criterion (e.g.,

the minimum node size is 10) is satisfied. Typical metrics for

the cost of splitting include classification error, Gini index,

etc. [7].

Computational complexity and accuracy are two major

metrics when the classifiers of online DSA are designed. For

DSA, the attribute vector X consists of a large number of nu-

merical attributes and one categorical attribute, and the binary

decision Y represents the security decision of an OC when a

hypothetical active contingency occurs (Y = +1 denotes the

insecure case). Specifically, the numerical attributes include

the voltage magnitudes at buses, active/reactive power flows,

and phasor angles; and the index of the active contingencies is

considered as the categorical attribute. In practical DT learning

algorithms [7], when a node spits over an numerical attribute,

the N observations of that attribute are first sorted, and then

the optimal threshold can be found in one pass over the N
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Fig. 3. Classifier via boosting simple DTs

observations. If the node splits over a categorical attribute, the

number of possible splitting is exponential in the number of

different values of the N observations. In this scenario, the

clustering of active contingencies can be adopted.

For online DSA, one potential drawback of using a single

DT is the proneness to overfit noisy training data, as pointed

out in [7]. Since a DT grows by greedy search, for each

splitting, it focuses on only a subset of the training data,

and thus, may neglect some global features. Fig. 2 illustrates

an example of overfitting in the decision region {x2 ≤ S2,
x1 ≤ S1}. In particular, for online DSA, this can happen

when the cases with wrong decisions (the points in circle)

overwhelms a local decision region. Apparently, this results

in an unnecessary splitting, and thus a false decision region.

In order to mitigate the overfitting of a fully-grown DT and

improve the accuracy of the classifier of online DSA, an

approach different from existing works [3]–[5] is considered.

In the proposed scheme, the classifier for online DSA is

obtained via boosting simple DTs. Roughly speaking, the term

“boosting” [8] refers to the process of training multiple simple

DTs sequentially using adaptive data weights, and combining

the simple DTs with proper voting weights to boost the

accuracy of the classifier. In this study, simple decision trees
are defined as a collection H of DTs uniformly with a smaller

height J than a single fully-grown DT. Generally, an individual

simple DT might have a relatively lower prediction accuracy,

but can be less prone to overfitting compared to a fully-

grown DT [9]. Further, the classifiers obtained from boosting

algorithms are shown to be quite resistant to overfitting [10].

Therefore, boosting simple DTs can produce more accurate

classifiers than a single DT.

III. CLASSIFIER VIA BOOSTING SIMPLE DTS

A primary objective is to find a function FL : X → R as a

weighted voting of L simple DTs, i.e.,

FL(x) =
L∑

l=1

alhl(x), (1)



where al ∈ R+ is the voting weight1 of simple DT hl ∈ H,

l = 1, 2, · · · , L, and the corresponding binary classifier H :
X → {±1}, obtained by:

HL(x) = sign(FL(x)),

so that the classifier H could fit the given data.

A. Offline Training

In order to quantify the performance of the classifier in

fitting the training data {xn, yn}N
n=1, first define the cost

function of FL as follows:

ĈN (FL) =
1
N

N∑
n=1

log2(1 + e−ynFL(xn)). (2)

Then, the offline training problem is formulated as follows:

PF : min
h1,··· ,hL∈H
a1,··· ,aL∈R+

ĈN (
L∑

l=1

alhl). (3)

The above cost function is chosen for the following reasons:

1) The cost function lies strictly above the training error, i.e.,

ê(FL) � 1
N

N∑
n=1

1{yn �=HL(xn)} ≤ ĈN (FL).

Therefore, the error of classifier can be bounded above by

minimizing the cost function ĈN (FL). Moreover, different

from the indicator functions, the cost function is differentiable

w.r.t. FL, making it possible to solve PF in a gradient descent

manner. 2) The term yFL(x) is named as the “margin” of

FL on the case {x, y} [7]. Essentially, the cases with negative

margins, i.e., both the miss-detection cases (when FL(xn) < 0
but yn = +1), and false alarm cases (when FL(xn) > 0 but

yn = −1), are penalized. 3) The cost function is shown to

be more robust to noise, compared to the exponential cost

functions in other boosting algorithms (e.g. Adaboost) [7].

It can be seen from (2) that the cost function is convex and

lower-bounded. This fact motivates the usage of a multi-stage

optimization strategy, similar to the line search approach [11].

Specifically, initially with F0 as a zero function, a simple DT

hl ∈ H is identified together with a voting weight al ∈ R+,

and added to Fl−1, i.e.,

Fl = Fl−1 + alhl, (4)

iteratively for l = 1, 2, · · · , L.

1) Simple DTs: hl = [− � ĈN (Fl−1)]H is chosen as the

descent direction of ĈN (Fl−1), where

�ĈN (Fl−1)(x) = − 1
N

N∑
n=1

yn1{x=xn}
1 + eynFl−1(xn)

, (5)

and [·]H denotes the projection onto H. Following the ap-

proach in [8], hl is thus the simple DT which maximizes the

1Since −h ∈ H for any h ∈ H, we restrict al to R+

inner product 〈h,−�ĈN (Fl−1)〉. Then, the simple DT hl can

be obtained by solving the following problem:

P(l)
DT : min

hl∈H
1
N

N∑
n=1

w(l)
n 1{yn �=hl(xn)}, (6)

with

w(l)
n =

1
1 + eynFl−1(xn)

.

For P(l)
DT , the objective is exactly to find the simple DT that

has the least weighted classification error on the training data.

Then, based on (6), the optimal simple DT hl can be trained

through recursive splitting.

2) Voting Weights: The voting weight of simple DT hl is

obtained by solving the following problem:

P(l)
a : al = argmin

a∈R+
ĈN (Fl−1 + ahl).

Define gl(a) � ĈN (Fl−1 + ahl). Under the condition that hl

is a descent direction of ĈN (Fl−1), it is easy to see g′l(0) < 0.

Further, since g′′l (a) > 0 holds for a ∈ R+, gl(a) has a unique

minimum in R+.

Proposition 3.1: The classifier via boosting L simple DTs

is obtained by solving P(l)
DT in (6) for l = 1, · · · , L, and the

data weights and voting weights are given by

⎧⎨
⎩

w
(l)
n = 1

1+e
ynFl−1(xn) n = 1, · · · , N

al = argmin
a∈R+

gl(a) l = 1, · · · , L . (7)

According to (7), the cases with smaller margins ynFl−1(xn)
are reassigned with higher weights when used for training the

simple DT hl. Therefore, for the simple DT hl, it is trained

so that correct decisions could be obtained for those cases

which are misclassified by previous simple DTs. And for the

classifier, by choosing a proper voting weight al for hl, it

tries to reduce the overall classification error. In this sense, the

classifier generated by the boosting process can fit the training

data better as more simple DTs are used. Boosting simple

DTs algorithm relates to the multiple optimal DTs algorithm

in [4]. Both algorithms aim to enhance the accuracy by using

multiple DTs. The major differences are: 1) for boosting, the

simple DTs are trained sequentially, in a gradient descent

manner, while DTs are usually trained independently in [4];

2) a weighted voting is adopted in boosting and the voting

weights are chosen so that the cost function is minimized,

while a majority voting is used in [4]. Therefore, the proposed

algorithm can produce much simpler DTs, and meanwhile,

guarantee the accuracy of the classifier.

3) Convergence of FL: According to (2), it is clear that ĈN

is lower-bounded and convex in FL. Further, as suggested in

(5), the gradient �ĈN (FL) is Lipschitz continuous with a

Lipschitz constant no greater than 1/N . Then, based on [8],

either the above iterative process obtains a global optimum

F ∗
N of ĈN at stage L∗ with 〈�ĈN (FL∗−1), hL∗〉 = 0, or FL



converges to F ∗
N as L → ∞. Further, as N → ∞, ĈN (FL)

converges to

C(FL) =
∑

{x,y}∈X×{±1}
PXY (x, y)log2(1 + e−yFL(x)),

which achieves the minimum at

F ∗(x) = ln
Pr(Y = +1|X = x)
Pr(Y = −1|X = x)

.

It can be seen from (2) ĈN is continuous for N ∈ N .

Therefore, F ∗ is a limit point of F ∗
N , and H∗

N , i.e., sign(F ∗
N ),

converges to the maximum a posterior probability (MAP)

decision rule of (X, Y ).
The process for boosting simple DTs in the offline training

stage is summarized in Algorithm 1. Due to the tradeoff

between the accuracy of HL and the number of simple

DTs used for boosting, a stopping criterion is employed in

Algorithm 1. Another reason for using a stopping criterion, as

pointed out in [10], is to avoid overfitting. Based on the line

search strategy [11], the stopping criterion is that the Euclidean

norm of [�ĈN (Fl−1)]H is below some level ε0, i.e., when the

gain in the reduction of the cost ĈN by adding a new simple

DT is limited.

Algorithm 1 Train a classifier via boosting simple DTs

1: Input: Training data {xn, yn}N
n=1, ε0 ∈ (0, 1)

2: Initialization: F0 = 0, ε = 1, l = 1.

3: while ε ≥ ε2
0 do

4: Compute the data weights according to (III-A1)

5: Find the optimal simple DT hl by solving (6)

6: ε ← 1
N

∑N
n=1 w

(l)
n ynhl(xn)

7: Find the voting weight al according to (7)

8: Fl ← Fl−1 + alhl

9: l ← l + 1
10: end while

B. Near Real-time Update

Suppose that L simple DTs are obtained based on the

training data, and in the near real-time update stage, K new

case are used to update the classifier one at a time. The

algorithm for updating the classifier can be developed in a

similar way to the offline training. Specifically, for the k-th

new case {xN+k, yN+k}, k = 1,2,· · · ,K, the classifier is

updated by incorporating {xN+k, yN+k} with weight w
(l)
N+k

into the simple DT hl, computing the new voting weight al,

and then adding it to the classifier as in (4), iteratively for

l = 1, 2, · · · , L.

1) Incorporating a New Case into Simple DTs: The N +k
data weights at the l-th stage are first computed according

to (7). Then, the simple DT hl is updated using only the

new case {xN+k, yN+k} with weight w
(l)
N+k. Incremental tree

induction algorithms has been extensively studied (see [12]

and the references therein), which can continually modify

the DT obtained so far by incorporating new cases without

rebuilding a new DT. Simply put, in the algorithm proposed

by [12], the DT remains unchanged if a new case is classified

correctly. Otherwise, the nodes along the path from the root to

the leaf where the new case falls into are iteratively updated,

so that optimal test is adopted for each internal node. In

this study, the idea of [12] is adopted for updating simple

decisions with two modifications. 1) When the leaf node

which the misclassified new case falls into has depth J , it

stays unchanged. 2) When a new case corresponding to new

active contingencies encounters a test on the index of active

contingencies, the node and all the nodes below are forced

to be updated, since the new case cannot be located in any

leaf node in this scenario. When updating the simple DTs,

the metric for splitting is the weighted classification error as

defined in (6). By using this algorithm, the updated simple

DTs can have comparable accuracy to the one rebuilt from

scratch, and the average computational cost of updating a

well-trained simple DT using a new case is much lower than

rebuilding, and is shown to be independent of the number

of past cases [12]. The above two features guarantee that

the overall computational complexity of online DSA would

be greatly reduced, without degrading the accuracy of the

classifier, if the classifier and the simple DTs are updated in

the above fashion.

2) Voting Weights: After the simple DT hl is updated, the

corresponding voting weight al is re-computed as in (7), by

using

gl(a) � 1
N + k

N+k∑
n=1

log2(1 + e−yn(Fl−1(xn)+ahl(xn))). (8)

The process of updating the classifier is summarized in

Algorithm 2. Based on (III-A1), it is clear that the weights

of the past N + k − 1 cases can change slightly after Fl−1

is updated. As a result, the updated simple DTs, except

h1, might not be the optimal solutions to (6), because the

objective function, i.e., the weighted classification error of the

N + k cases, has changed by taking into account the new k
cases. Therefore, an extra step is used to test the condition

that the updated simple DT hl is a descent direction of the

cost function, i.e., 〈�ĈN+k(Fl−1), hl〉 < 0. Specifically, if∑N+k
n=1 w

(l)
n ynhl(xn) < 0, the simple DT is modified simply

by sign inversion. Because, under this condition, −hl is a

descent direction of the cost function ĈN+k(FL). This sce-

nario can happen when new cases with the opposite decisions

overwhelm the decision regions of hl, e.g., when a lot of

new cases with correct decisions are added into the region

{x2 ≤ S2, x1 ≤ S1} in Fig. 2.

C. Complexity Analysis

The reduction of the computational complexity is of

paramount significance to online DSA. In what follows, the

complexity of the algorithms for classifier updating and offline

training is discussed for the proposed scheme, with a compar-

ison to those of existing works. For the scheme based on a

single DT [5], let J ′ be the height of the single DT, and K ′ be

the number of updates. For fair comparison, assume that each



Algorithm 2 Update the classifier

1: Input: A new case {xN+k, yN+k}
2: Initialization: F0 = 0
3: for l = 1 to L do
4: Compute the data weights according to (III-A1)

5: Incorporate {xN+k, yN+k} with weight w
(l)
N+k into

simple DT hl.

6: Compute ε = 1
N+k

∑N+k
n=1 w

(l)
n ynhl(xn).

7: if ε < 0 then
8: hl ← −hl

9: end if
10: Find the voting weight al according to (7)

11: Fl ← Fl−1 + alhl

12: end for

simple DT is also updated for K ′ times on average. Further,

assume the single DT and simple DTs are well-balanced.

After clustering, the values of the categorical attribute can

be very small. It is clear that N can be very large. Therefore,

the complexity for a splitting over the categorical attribute can

be much lower than that over a numerical attributes. For sim-

plicity, only the P−1 numerical attributes are considered in the

complexity analysis. Specifically, a splitting over all the P −1
attributes with N training data has complexity O(PN logN).
Further, under the assumption that the DT is well balanced,

i.e., the total number of training data at each level of the tree

is O(N), the complexity for building a single DT with height

J ′ is O(J ′PN logN). Therefore, the complexity of rebuilding

DTs with height J ′ using an incremental knowledge base for

K ′ times is O(K ′J ′PN logN). In the proposed algorithm,

the cost of incorporating a new case into the simple DTs is

independent of the number of past cases. Whenever an update

is made, the cost is incurred by searching for the optimal test

of the P − 1 attributes, for at most J levels.Therefore, the

complexity for updating a single DT is O(JP ). Therefore, the

overall complexity for updating L simple DTs for K ′ times

is O(K ′LJP ). Further, the complexity of evaluating FL(x)
for a case x is independent of P and L. This is because the

classifier uses only the critical attributes, and the function FL

itself can be reduced into a simple function. Based on (7), the

complexity of updating the data weights and voting weights are

both O(KLN). Based on the above analysis, the complexity

of offline training can be obtained in a similar way. The above

analysis is summarized in Table I.

In order to explore the relationship between J and J ′, it is

observed that the capability of a DT to fit the training data

depends on the number of the decision regions it generates.

For boosting simple DTs, since each simple DT is built by

using different sets of data weights, thus the subsets of critical

attributes of the simple DTs can be regarded as disjoint. Under

the assumption that the simple DTs are well balanced, the

total number of the decision regions generated by boosting

L simple DTs is O(2LJ). Therefore, O(LJ) = O(J ′) when

both classifiers fit the training data. Then, a conclusion can be

TABLE I
COMPLEXITY OF UPDATE AND TRAINING ALGORITHMS

A single DT [5] Boosting simple DTs
Update O(K′J ′PN logN) O(K′LJP )

Training O(J ′PN logN) O(LJPN logN)

drawn as follows.

Proposition 3.2: The proposed scheme reduces the compu-

tational complexity in near real-time update stage by a factor

of O(N logN), compared to the algorithm in [5].

IV. DISCUSSION ON PREPROCESSING

A. Clustering of Active Contingencies

Define Zc � (yc,1, yc,2, · · · , yc,NOC
) as the decision se-

quence of an active contingency c ∈ C as, where yc,n is the

security decision of the n-th OC for contingency c. Intuitively,

the Hamming distance between Zc1 and Zc2 , i.e.,

d(Zc1 , Zc2) =
NOC∑
n=1

1{Zc1,n �=Zc2,n}, (9)

quantifies the dissimilarity between the impact of contin-

gencies c1 and c2 on the same set of OCs. Particularly,

d(Zc1 , Zc2) = 0 implies that contingency c1 and c2 have

the same impact on all the predicted OCs, and thus can be

characterized by the same decision regions. With this insight,

a clustering algorithm, which utilizes the Hamming distance

of the decision sequences, is proposed based on the k-modes

algorithm [13]. In Algorithm 3, K represents the target number

of clusters, and D0 is the size of largest cluster that DTs would

handle.

Algorithm 3 Clustering of active contingencies

1: Input: The number of target clusters K, a threshold D0,

and the decision sequences Zc (c = 1, 2, · · · , |C|)
2: Initialization: Randomly choose K contingencies c′1,

· · · , c′K , set the corresponding decision sequences as the

centroid Z ′
k of the clusters Ck (k = 1, 2, · · · , K).

3: for c = 1 to |C| do
4: Choose k′ = argmin

k
d(Zc, Z

′
k)

5: if |Ck′ | ≥ D0 then
6: K ← K + 1
7: Set Zc as the centroid of cluster CK

8: else
9: Ck′ ← Ck′ ∪ {c}

10: for n = 1 to NOC do
11: Z ′

k′,n = 1{ 1
|C

k′ |
∑

c∈C
k′

Zc,n≥1/2}

12: end for
13: end if
14: end for
15: Ck ← Φ for k = 1, 2, · · · , K
16: Repeat steps 3-15 until the centroids of clusters do not

change



When a new active contingency is to be incorporated in the

near real-time update stage, the security decisions of the new

contingency on all the NOC predicted OCs are first obtained.

Then, based on the Hamming distance between the decision

sequence of the new active contingency and the centroids of

the clusters, the new active contingency is either assigned to

an existing cluster or used to create a new cluster. For the latter

case, a new classifier is trained for this new active contingency

using the NOC cases.

B. Dimension Reduction

Among the numerical attributes, i.e., voltage magnitudes,

active/reactive power flows, and phasor angles, there are

two kinds of correlations: 1) the attributes measured at the

same bus or transmission line are correlated; 2) the attributes

measured at adjacent buses and transmission lines are cor-

related, as described by the Kirchhoffs laws. Therefore, the

high dimensional measurement data of the attributes reside

in a much lower space, compared to the original attribute

space. Based on this observation, principal component analysis

(PCA) is utilized to reduce the number of numerical attributes

used for classifier training.

Define x̄′
n � x′

n− 1
NOC

∑NOC

m=1 x′
m, and A = (x̄′

1, x̄
′
2, · · · ,

x̄′
NOC

), where x′
n is the measurements of the P −1 numerical

attributes of the n-th OC, n = 1, 2, · · · , NOC . One challenge

in performing PCA is that the number of numerical attributes

P − 1 can be so large that the computational complexity of

the eigen-analysis of the matrix AAT is too high. Generally,

NOC ≤ P − 1 holds for large-scale power systems. Under

this condition, the non-zero eigenvalues and the correspond-

ing eigenvectors of AAT can be obtained from those of

AT A [14]. Specifically, let λi and ui (i = 1, · · · , NOC) be

the eigenvalues of AT A, organized in a descending order,

and the corresponding normalized eigenvectors. Then, the M
eigenvectors corresponding to the M largest eigenvalues are

chosen as the principal components, based on the ratio of

the cumulative sum of those M eigenvalues to that of all

the eigenvalues. Therefore, for any data x, the corresponding

measurements of the M transformed attributes is x̃′ = VT x′,
where V = (Au1, · · · ,AuM ).

V. NUMERICAL STUDIES

A. A Testing Power System

The system model used in the numerical studies, which

consists of over 600 buses, 700 transmission lines, and 100

generators, is a part of the Western Electricity Coordinating

Council (WECC) system. In this study, the active contingen-

cies are chosen from a contingency list consisting of 89 N −1
and 183 N−k (k = 2, 3, · · · ) contingencies. The OCs used in

the numerical studies are based on the realistic data of power

flows, bus load and generations, which were recorded every

15 minutes during a representative summer day. The overall

load profile is illustrated in Fig. 4. Based on the variation of

the aggregated load, each period T1 is chosen to span 4 hours,

and the peak load period 12:00PM-16:00PM is investigated.
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Fig. 4. Aggregated load profile of a day

1) OC Generation: Based on the 17 realistic OCs, more

OCs are generated for training and testing purposes. Following

the approach [5], 64 OCs are generated by interpolating the

bus loads and generator outputs. Then for each of those 81

OCs, 7 new OCs are generated by randomly changing the bus

loads within 90% to 110% of their original values. All the

generated OCs are tested to make sure they confirm the pre-

contingency secure criteria. Among them, 405 are used for

training, and the other 162 are used for testing.

2) Active Contingency Selection: To demonstrate the ef-

ficacy of the proposed scheme, the thermal stability issue

is studied in detail, so that any potential overload could be

detected during this peak load period. DSAToolsTM [15] are

used as the offline security assessment software. After power

flow analysis 2 of all the 272 contingencies, 86 of them

which cause thermal limit violations are chosen as the active

contingencies.

B. Performance Evaluation

1) Dimension Reduction: Based on the placement of PMUs

in the testing system, 270 quantities which are directly mea-

sured by the PMUs are chosen as the original numerical

attributes. For PCA, the number of transformed attributes

is chosen so that the ratio of the cumulative sum of the

corresponding eigenvalues to that of all the eigenvalues is over

99.99%. Then, M = 24 transformed attributes are chosen for

classifier training, as illustrated in Fig. (5).

2) Clustering, Offline Training and Testing: After cluster-

ing, the 86 active contingencies are partitioned into 6 clusters.

For each cluster, a classifier is built through boosting simple

DTs with a height J = 3. The scheme based on a single

DT [5] is used as a benchmark for accuracy analysis. For fair

comparison, the number of simple DTs are chosen so that LJ
is not greater than the height of the single DT before pruning.

To evaluate the robustness to noise, 5% of the 405 OCs used

for training are randomly assigned with wrong decisions.

The result of testing are summarized in Table. II. For each

cluster, boosting simple DTs outperforms the single DT in

testing accuracy, which verifies that the classifier via boosting

simple DTs is more robust to noisy data. Roughly speaking,

the classification error is reduced by half, if boosting simple

2In practice, screening schemes can be utilized instead
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Fig. 5. Dimension reduction of the attributes

TABLE II
CLASSIFICATION ERROR ON TESTING DATA

Cluster
No. of Boosting simple A single DT(%)

contingencies DTs (%)
1 9 1.68 3.54
2 12 3.49 6.75
3 14 3.64 4.61
4 16 2.72 6.17
5 17 4.26 6.42
6 18 4.70 5.94

DTs is utilized instead of a single DT. For N−k contingencies,

this improvement in decision accuracy can have a significant

impact on the reliability and economics of practical power

systems.

3) Incorporating a New Active Contingency: In this study,

a classifier is first trained for 8 contingencies of cluster 1.

Then, the 402 new cases of the 9th contingency of cluster

1 are used to update the classifier one at a time. For each

update, the accuracy of the classifier is evaluated using the 162

testing cases. The classifier achieves an accuracy over 60%,

even when the number of new cases is small, as illustrated in

Fig. 6, which verifies that the contingencies of the same cluster

are correlated and captured by the same subset of numerical

attributes. As more cases are used for update, the classifier

performs better on the new contingency.

VI. CONCLUSION

In this study, a data-mining framework for online DSA is

developed. The proposed scheme focuses on the accuracy and

the complexity reduction of the classifier built from boost-

ing simple DTs, and the improvement over existing works

is demonstrated through complexity analysis and numerical

studies on a practical power system. The proposed scheme

is tested for the post-contingency thermal stability issue, and

can be used for other security issues, including voltage limit

violation, transient stability, etc.
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