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Abstract—The optimal power flow is the problem of deter-
mining the most efficient, low-cost and reliable operation of a
power system by dispatching the available electricity generation
resources to the load on the system. Unlike the classical optimal
power flow problem, the security-constrained optimal power flow
(SCOPF) problem takes into account both the pre-contingency
(base-case) constraints and post-contingency constraints. In the
literature, the problem is formulated as a large-scale non-
convex nonlinear programming. We propose two decomposition
algorithms based on the Benders cut and the alternating direction
method of multipliers for solving this problem. Our algorithms
often generate a solution, whose objective function value is
smaller than conventional approaches.

I. INTRODUCTION

As the power grids evolve to smart grids in the future,
it will become increasingly challenging for independent sys-
tem operators (ISOs) and/or regional transmission operators
(RTOs) to optimally manage such a complex system of sys-
tems. The tasks facing ISOs/RTOs are multitudinous, ranging
from deciding which generation units (including renewable
sources) to be on and off at what specific time, determin-
ing the proper pricing signals to achieve desired demand
response, configuring the network topologies to ensure power
flow without violating power lines physical constraints and
voltage collapse, to when to replace an aging asset (such as
transformer or breaker) and how to dispatch repair crew for
network maintenance. All these tasks need to be optimized to
fully realize the potential benefits offered by smart grids.

At the heart of the future smart grid lie two related chal-
lenging optimization problems: unit commitment and optimal
power flow. Both problems are most relevant to ISOs/RTOs
daily operation as they need to be solved on a daily ba-
sis, and both are computationally intensive tasks that re-
quire significant performance improvement to meet real-time
operational requirements. Although these two problems are
intermingled with each other, most of the current theoretical
and practical efforts treat them separately because of the
computational difficulty of solving a single unified problem.
The unit commitment problem takes place in a day-ahead
market and decides which bulk generation sources (typically
thermal, nuclear and hydro sources) are awarded contracts to
supply energy in the next day. This base generation capability
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is augmented by additional smaller capacity peaker thermal
generators and external sources of energy (spot markets)
connected to a subset of the grids nodes, to hedge against
un-planned excess demand. The second planning stage, the
optimal power flow problem, i.e., economic dispatch, which
is the problem of this paper’s interest, is at a smaller time-
scale, typically five to fifteen minutes. It decides how the active
generators are dispatched (e.g., set the level at which bulk
generators produce energy) and how the produced energy is
routed through the grid to consumption (or load) nodes. The
primary purpose of the problem is to minimize the total cost
of generation while ensuring the electrical networks balance
[1]. Contingency analysis is performed in current economic
dispatch practices, making sure that the load at each node of
the network can be satisfied in the case of a failure of one of
the generators, transmission lines, or other devices, which is
called N − 1 criterion. This problem is often regarded as a
security-constrained optimal power flow problem [2].

Linear direct current (DC) approximation of the (nonlinear,
non-convex) AC power flow equation is mostly used in the
existing power systems [3], [4] [1, 2]. The main drawback of
the DC formulation is that it does not capture the physical
power flow more realistically than its AC counterpart, it
is desirable to incorporate AC-based formulation (that is,
nonlinear models) into existing power system optimization
problems. In this work, we focus on the AC formulations. The
SCOPF has been widely modeled into two groups: preventive
[5] and corrective [6].

The preventive model minimizes some generation cost func-
tion by acting only on the base-case (such as, contingency-
free) control variables subject to both the normal and abnormal
operating constraints. For k contingency scenarios, the prob-
lem size of the preventive SCOPF is roughly k+1 times larger
than the classical (base-case) economic dispatch problem.
Solving this problem directly for large-scale power systems
with numerous contingencies would lead to prohibitive mem-
ory requirements and execution times. In real-world applica-
tions, however, many post-contingency constraints are redun-
dant, that is, their absence does not affect the optimal value
[7]. Consequently, a class of algorithms based on contingency
filtering techniques has been developed [5], [6], [7], [8], [9],
[10] that identify and only add those potentially binding con-
tingencies into the formulation. For example, the contingency
ranking schemes from [9] are achieved by investigating a re-
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laxed preventive SCOPF problem, where a single contingency
along with the base-case is considered one at a time. The rank-
ing methods rely on the information of Lagrangian multipliers
or the decrease factor of penalized objective function values,
and then select contingencies with a severity index above some
threshold for further consideration. Other contingency filtering
methodologies [7] aim to efficiently identify a minimal subset
of contingencies to be added based upon the comparison of
post-contingency violations. In addition, an approach using the
generalized Benders decomposition to construct the feasibility
cut from the Lagrangian multiplier vector of constraints is
introduced in [11]. It showed a significant speedup in terms
of computation time.

The corrective SCOPF makes use of the assumption that
post-contingency constraint violations can be endured up to
several minutes without damaging the equipment [6]. The
corrective SCOPF allows post-contingency control variables
to be rescheduled, so that it is easier to eliminate violations
of contingency constraints than the preventive SCOPF. The
optimal value of corrective SCOPF is often smaller than that
of preventive SCOPF, but its solution is often harder to obtain,
since it introduces additional decision variables and nonlinear
constraints. Monticelli et al. [6] tackled the optimization prob-
lem by rewriting it in terms of only the contingency-free state
variables and control variables, while constraint reductions
are represented as implicit functions of these contingency-
free state and control variables, which in turn are related to
the infeasibility post-contingency operating subproblems. The
solution algorithm then becomes an application of the general-
ized Benders decomposition [12] that iteratively solves a base-
case economic dispatch and separate contingency analysis.
Moreover, an extension of a contingency filtering technique
from [7] was studied in [13], which features an additional
optimal power flow module to verify the controllability of
post-contingency states.

In this paper, we are concerned with the corrective SCOPF,
which is formulated as follows [6]:

min f(u0)
s.t. hc(xc, uc) = 0

gc(xc, uc) ≤ 0
|ui

c − ui
0| ≤ Δumax

i , i ∈ G, c = 0, 1, . . . , C,

(1)

where c = 0 represents the normal case (i.e., no occurrence
of contingency constraint), index c = 1, ..., C represents a
contingency, xc is the vector of state variables (e.g., complex
voltages) for the c-th configuration, uc is the vector of control
variables (e.g., the active and reactive powers), the generation
cost f defined by

f(u0) =
∑
i∈G

(
c0i(ui

0)
2 + c1iu

i
0 + c2i

)
,

with cost parameters c0i, c1i, c2i ≥ 0, (G - the set of gener-
ators), C is the number of contingencies. Δumax

i is the pre-
determined maximal allowed variation of control variables, h c

and gc are operational constraints including the AC power

flow balance equations. Note that the model allows post-
contingency control variables rescheduling so as to eliminate
contingency constraint violations. Typically, (1) is a very
large-scale nonconvex nonlinear optimization problem, which
requires to be solved in real-time.

The computational challenge of SCOPF is due to the size of
problem caused by a large number of contingencies. In this pa-
per, we handle this issue by decomposition techniques, which
treat each contingency separately. We introduce two different
algorithms to solve the optimization problem (1). The first
one is based on the Benders decomposition, which exploits
nicely the special structure of the problem. An adaptive cut
is proposed to improve the quality of solution. The second
algorithm is an application of the alternating direction method
of multipliers. These distributed algorithms are able to run on
parallel computers.

II. BENDERS DECOMPOSITION ALGORITHM

We will show how to use the Benders decomposition to
efficiently solve the problem. The main idea of the method
is that it decomposes the SCOPF into a master problem and
subproblems, where subproblems check the solution feasibility
for the master problem. We introduce feasibility cuts that are
different from the standard technique in the literature.

A. Cut generation

Let Ω be the feasible set of the SCOPF problem and assume
Ω is nonempty. An immediate result can be deduced is that Ω
is a compact, nonconvex set. It is easy to see that the problem
(1) can be expressed as the general nonlinear nonconvex
optimization problem

min F (x)
s.t. x ∈ X

G(y) ≤ 0
H(y) = 0
Ax + By + b ≤ 0
yL ≤ y ≤ yU ,

(2)

where X ∈ R
n and y ∈ R

m, A and B are matrices. In
our applications, F is convex, whereas G, H and X are
nonconvex. The initial master problem is of the form

min F (x)
s.t. x ∈ X.

(3)

Let x̄ be a solution of the master problem (3). Then we need
to check if the following subproblem is feasible

G(y) ≤ 0
H(y) = 0
Ax̄ + By + b ≤ 0
yL ≤ y ≤ yU .

(4)

If (4) is feasible for the given x̄, we terminate the algorithm.
Otherwise, we will generate a linear cut, which is added to the
master problem (3) to enforce the feasibility of the problem
(4). Note that each contingency constraint associated with each
c in the problem (1) may be written in the form of problem
(4). Therefore, it suffices to work with the general form (4).



We now show how to construct a feasibility cut if (4)
is infeasible. For the given x̄, we consider the feasibility
subproblem

miny,α

∑
i αi

subject to:
G(y) ≤ 0
H(y) = 0
Ax̄ + By + b − α ≤ 0
yL ≤ y ≤ yU

α ≥ 0,

(5)

by adding slack variables αi’s.
Assume that the optimal function value of (5) is strictly

positive, i.e. (4) is infeasible, and (ȳ, ᾱ) is an optimal solution.
Let us substitute z := y − yL and use the Taylor expansions
of G(y) and H(y) at ȳ − yL, we obtain the relaxed linear
programming

minα,z

∑
i αi

subject to:
G(ȳ) + ∇yG(ȳ)(z − (ȳ − yL)) ≤ 0
H(ȳ) + ∇yH(ȳ)(z − (ȳ − yL)) = 0
Bz − α + Ax̄ + b + ByL ≤ 0
z ≤ yU − yL

α, z ≥ 0.

(6)

Since the optimal function value of (5) is strictly positive,
it follows that the optimal function value of (6) associated
with any optimal solution α̂ is also strictly positive. We will
generate a linear cut based on the Lagrange multipliers arising
from the linear programming (6).

The Lagrange dual problem of (6) is as follows:

max
π≥0,μ≥0,η

min
0≤α
0≤z≤yU−yL∑

i

αi + πT(Bz − α + Ax̄ + ByL + b) +

ηT
(
H(ȳ) + ∇yH(ȳ)(z − (ȳ − yL))

)
+

μT
(
G(ȳ) + ∇yG(ȳ)(z − (ȳ − yL))

)
= max

π≥0,μ≥0,η
min

0≤α

0≤z≤yU−yL∑
i

αi(1 − πi) +
(
BTπ + ∇T

y H(ȳ)η + ∇T
y G(ȳ)μ

)T
z +

πT(Ax̄ + ByL + b) − ηT∇yH(ȳ)(ȳ − yL) +
μT(G(ȳ) −∇yG(ȳ)(ȳ − yL))

= max
0≤πi≤1,μ≥0

πT(Ax̄ + ByL + b) − ηT∇yH(ȳ)(ȳ − yL) +

μT(G(ȳ) −∇yG(ȳ)(ȳ − yL)) +
∑

i

�i(π),

where

�i(π) =

{
0 if

[
BTπ + ∇T

y H(ȳ)η + ∇T
y G(ȳ)μ

]
i
≥ 0[

BTπ + ∇T
y H(ȳ)η + ∇T

y G(ȳ)μ
]
i
[yU − yL]i o.w.

Suppose that (π̂, η̂, μ̂) is the optimal solution to the dual
problem. Since the strong duality holds for (6), we have

π̂T(Ax̄ + ByL + b) − η̂T∇yH(ȳ)(ȳ − yL)+
μ̂T(G(ȳ) −∇yG(ȳ)(ȳ − yL)) +

∑
i �i(π̂) =

∑
i α̂i.

Note that, because of the definition of �i(π), we have∑
i �i(π̂) ≤ 0. Together with the strict positiveness of

∑
i α̂i,

it follows that

π̂T(Ax̄ + ByL + b) − η̂T∇yH(ȳ)(ȳ − yL)+
μ̂T(G(ȳ) −∇yG(ȳ)(ȳ − yL)) > 0.

Hence, we should impose the inequality (7) to the master
problem

π̂T(Ax + ByL + b) − η̂T∇yH(ȳ)(ȳ − yL)+
μ̂T(G(ȳ) −∇yG(ȳ)(ȳ − yL)) ≤ 0,

(7)

which is a linear function of x acting as a cut. Notice that
the construction of the cut (7) is achieved by solving both
optimization problems (5) and (6). However, (6) is a linear
program, the existing solvers, e.g. CPLEX [14], can handle
this problem very efficiently.

Remark 1. For a general optimization problem of the form
(5), it can be still infeasible if we only introduce the auxiliary
variable α for constraint Ax̄ + By + b− α ≤ 0. To construct
a new optimization problem whose feasible set is definitely
nonempty, we also have to deal with the constraints G(y) ≤ 0
and H(y) = 0. However, when designing an electric power
grid, the architecture needs to guarantee that the system will
be able to be adjusted to a new state that is stable and meets
the demand if one contingency occurs. Mathematically speak-
ing, for α is large enough, (5) is feasible in our application.

Motivated by the previous analysis, we present here another
valid cut provided that the optimal value of (5) is strictly
positive, i.e., (4) is infeasible. Denote (π̄, η̄, μ̄) by the Lagrange
multipliers corresponding to the constraints Ax̄+By+b−α ≤
0, H(y) = 0 and G(y) ≤ 0, respectively, in the nonlinear
subproblem (5). From the complementary slackness condition,
it implies μ̄TG(ȳ) = 0. From (7), we claim that

Theorem 1. For a given x̄, if (4) is infeasible, then the
following is a cut for x̄

π̄T(Ax + ByL + b) − η̄T∇yH(ȳ)(ȳ − yL)−
μ̄T∇yG(ȳ)(ȳ − yL) ≤ 0.

(8)

Proof: We argue by contradiction. Assume that

π̄T(Ax̄ + ByL + b) − η̄T∇yH(ȳ)(ȳ − yL)−
μ̄T∇yG(ȳ)(ȳ − yL) ≤ 0.

(9)

Denote Ω = {(y, α) : yL ≤ y ≤ yU , α ≥ 0}. We apply the



Karush-Kuhn-Tucker conditions for (5):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∑

j π̄j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bj:

0
...

−1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∑

j η̄j

⎛
⎜⎜⎜⎝

∇yHj(ȳ)
0
...
0

⎞
⎟⎟⎟⎠+

∑
j μ̄j

⎛
⎜⎜⎜⎝

∇yGj(ȳ)
0
...
0

⎞
⎟⎟⎟⎠ +

(
uy

uα

)
= 0,

(10)
where Bj: is the j-th row of matrix B, (uy, uα) is a vector in
the normal cone N(ȳ,ᾱ)(Ω) of Ω at (ȳ, ᾱ), that is,(

uy

uα

)T (
ȳ − y
ᾱ − α

)
≥ 0,

for all (y, α) ∈ Ω. Now we select (y, α) = (yL,0) and then
multiply (10) by (ȳ − yL, ᾱ), which yields∑

i ᾱi + π̄TB(ȳ − yL) − π̄Tᾱ + η̄T∇yH(ȳ)(ȳ − yL)+
μ̄T∇yG(ȳ)(ȳ − yL) ≤ 0.

Note that π̄Tᾱ = π̄T(Ax̄ + Bȳ + b), then we have∑
i ᾱi − π̄T(ByL + Ax̄ + b) + η̄T∇yH(ȳ)(ȳ − yL)

+μ̄T∇yG(ȳ)(ȳ − yL) ≤ 0.
(11)

Combining
∑

i ᾱi > 0 with (9) and (11) we obtain the
contradiction.

Notice that our feasibility cut (8) is different from the cut
in [6]. Our cut makes use of not only the information of the
Lagrange multipliers of the linear constraints but also that of
nonlinear ones as well as the bounds on the variables.

B. Description of Benders decomposition algorithm

We have introduced the feasibility cut (8). The utilization
of the cut leads to the following Benders decomposition
algorithm. The master problem is of the form:

min f(u0)
s.t. g0(x0, u0) ≤ 0

h0(x0, u0) = 0
Pu0 + q ≤ 0,

(12)

where Pu0 + q ≤ 0 consists of the feasibility cuts, P is a
matrix and q is a vector.

BENDERS DECOMPOSITION ALGORITHM

1. Solve the following to get (x(1)
0 , u

(1)
0 ):

min f(u0)
g0(x0, u0) ≤ 0
h0(x0, u0) = 0

2. For k = 1, 2, . . .

(a) For c = 1, . . . , C:
Check the feasibility of the
subproblem

hc(xc, uc) = 0
gc(xc, uc) ≤ 0
|ui

c − ui
0
(k)| ≤ Δumax

i , i ∈ G.

This can be done by solving
a problem of form (5), where
(x(k)

0 , u
(k)
0 ) is in place of x̄.

∗ If
∑

i αi > 0, then add the cut (7)
or (8) into the master problem
(12).

∗ If
∑

i αi = 0 for all c = 1, . . . , C,
terminate the algorithm.

(b) Solve the master problem (12) to
obtain (x(k+1)

0 , u
(k+1)
0 ).

Remark 2 (Adaptive cuts). It is known that SCOPF is a
nonconvex optimization problem, if we use the conventional
Benders cut without care, the optimal solutions will likely be
pruned. Furthermore, it also deletes subregions of the feasible
domain containing good feasible points, which follows that
the generated solution is often far from the optimum. To ease
this phenomena, we propose to utilize the cut in an adaptive
manner. Suppose that c(x) ≤ 0 is a valid cut for x̄, it is plain
to see that

c(x) − τc(x̄) ≤ 0, for any τ < 1 (13)

is also a cut. By choosing τ adaptively based on a constraint
infeasibility measure for x̄, we might improve the quality
of the solution. For example, the measurement can be the
optimal function value of the problem (5). The idea is that
if the constraint infeasibility is large, we select τ close to
1, otherwise τ is close to 0. We will show later in the
numerical experiments, this approach greatly improves the
solution quality.

III. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

This section investigates an approach that also helps to
decompose the large-scale problem (1) into smaller subprob-
lems. By reformulating the original problem, we can apply
the alternating direction method of multipliers (ADMM) [15],
[16], [17] to derive our algorithm. ADMM belongs to the
class of first-order primal dual algorithms, that updates both
primal and dual variables at each iteration. The method has
been successfully applied to solve for various real-world
applications, including image and signal processing [18], [19],
[20], statistics and machine learning [21], and analytical target
cascading in system design [22]. In power system analysis, to
solve the classical optimal power flow problem without the
security constraints, in [23], [24], Kim and Baldick split the
power grid into a number of separate regions. By duplicating
the variables in overlap regions, they were able to solve the
distributed OPF problem by the ADMM. We now show how
we can apply the method to solve for SCOPF.



Consider the general optimization problem with block sep-
arable structure

min
x,y

{F (x) + G(y) : Mx + Ny = d, x ∈ X, y ∈ Y }, (14)

where X ⊂ R
n, Y ⊂ R

m, M ∈ R
p×n, N ∈ R

p×m and d ∈
R

p. We assume that F and G are closed, proper, convex and
differentiable.

We form the augmented Lagrangian

Lβ(x, y, λ) =F (x) + G(y) + λT (Mx + Ny − d)+
1
2
β‖Mx + Ny − d‖2,

(15)

where β > 0.
The classical augmented Lagrangian multiplier method [25],

[26] involves a joint optimization and multiplier update step:

(xk+1, yk+1) = argminx∈X,y∈Y Lβ(x, y, λk)
λk+1 = λk + β(Mxk+1 + Nyk+1 − d).

In many applications, the first optimization problem is difficult
to solve. To deal with the issue by using a Gauss-Seidel
step, the alternating direction method of multipliers [15], [16]
consists of the iterations

xk+1 = argminx∈X Lβ(x, yk, λk)
yk+1 = argminy∈Y Lβ(xk+1, y, λk)
λk+1 = λk + β(Mxk+1 + Nyk+1 − d).

(16)

We observe that the optimization problem (1) can be reformu-
lated by introducing auxiliary variables u0c in a form suitable
for ADMM as

min f(u0)
s.t. h0(x0, u0) = 0

g0(x0, u0) ≤ 0

hc(xc, uc) = 0
gc(xc, uc) ≤ 0
|ui

c − ui
0c| ≤ Δumax

i , i ∈ G,

ui
0 − ui

0c = 0, c = 1, . . . , C.

(17)

Let us consider

x � (x0, u0),
y � (x1, u1, . . . , xC , uC),
F (x) � f(u0), G(y) � 0,

X � {(x0, u0) : h0(x0, u0) = 0, g0(x0, u0) ≤ 0},
Y � (Y1, . . . , YC),
where
Yc � {(xc, uc, u0c) : hc(xc, uc) = 0, gc(xc, uc) ≤ 0,
|ui

c − ui
0c| ≤ Δumax

i , i ∈ G}, c = 1, . . . , C,

Mx + Ny = d � u0 − u0c = 0, c = 1, . . . , C,

then the Lagrangian becomes

Lβ(x, y, λ) = f(u0)+
C∑

c=1

λc(u0 −u0c)+
β

2

C∑
c=1

‖u0−u0c‖2.

The resulting ADMM algorithm is the following:

ADMM ALGORITHM

Initialize u
(1)
0c , λ

(1)
c , c = 1, . . . , C

For k = 1, 2, . . .

(a) (x(k+1)
0 , u

(k+1)
0 ) = argmin(x0,u0)∈X f(u0)+∑

c λ
(k)
c (u0 − u

(k)
0c ) + β

2

∑
c ‖u0 − u

(k)
0c ‖2

(b) For c = 1, . . . , C :

(x(k+1)
c , u

(k+1)
c , u

(k+1)
0c ) = argmin(xc,uc,u0c)∈Yc∑

c λ
(k)
c (u(k+1)

0 − u0c) + β
2

∑
c ‖u(k+1)

0 − u0c‖2,

λ
(k+1)
c = λ

(k)
c + β(u(k+1)

0 − u
(k+1)
0c ).

The algorithm is terminated either the number of iterations
exceeds a pre-specified limit, or some stopping criterion is
met. A widely used such stopping criterion [21] is

‖u(k+1)
0 − u

(k+1)
0c ‖ ≤ ε1,

‖u(k+1)
0c − u

(k)
0c ‖ ≤ ε2, c = 1, . . . , C.

At each iteration, we break the SCOPF into C +1 subprob-
lems with roughly the same size of the conventional optimal
power flow problem, which, in turn, is well-suited for parallel
computers. Note that the feasible sets of subproblems in the
ADMM algorithm have not been modified over iterations, a
significant computation effort can be saved by using warm-
start techniques for the subproblems.

IV. NUMERICAL EXPERIMENTS

We use the following test electric power systems to demon-
strate the efficiency of our proposed algorithms. Their charac-
teristics are described in Table I.

- CH9: the 9 bus example from [27, p.70]
- NE39: the New England system [28]
- IEEE14, IEEE30, IEEE57, IEEE118 and IEEE300:

the five IEEE systems, they can be found at
http://www.ee.washington.edu/research/pstca/

Test system Buses Generators Lines # Contingencies
CH9 9 3 9 3
IEEE14 14 5 20 5
IEEE30 30 6 41 10
NE39 39 10 46 14
IEEE57 57 7 80 18
IEEE118 118 54 186 25
IEEE300 300 69 411 30

TABLE I: Test systems characteristics

The first column shows the abbreviations of the systems,
while the second and third columns show the total number
of buses and the number of generators in each system. The
fourth column reports the number of lines interconnecting the
buses. We artificially generated the list of contingencies, whose
numbers of scenarios are presented in the remaining column.
The contingency corresponds to the failure of a transmission



line in these experiments; every active generator is able to
reschedule up to 5% of its maximum power output.

The code was written in Matlab and all experiments were
carried out on a PC using Matlab 7.10 with an Intel Xeon
X5570 2.93 GHz under the Linux operating system. We
terminated the ADMM algorithm when

‖u(k+1)
0 − u

(k+1)
0c ‖ ≤ 10−3,

‖u(k+1)
0c − u

(k)
0c ‖ ≤ 10−3.

We use a fixed parameter of β = 1 for the iterations.
First, we report the performance of the Benders decom-

position using the cut (8) and the adaptive cut (8) with the
following rule for selecting τ in (13):

if the optimal function value of (5) is larger than 1, then we
choose τ = 0.8; otherwise τ = 0.4.

We omit to present the results for the cut (7) since it
essentially gave a similarity with those of (8).

TABLE II: The performance of the Benders decomposition
algorithms. CPU time in seconds

Benders Adaptive Benders
Cases Base Cost It Time Cost It Time
CH9 42.1 56.8 4 0.39 42.2 6 0.66
IEEE14 80.8 84.1 3 0.57 81.1 4 1.39
IEEE30 89.0 97.2 5 1.34 92.5 20 3.52
NE39 361.5 418.8 5 1.55 391.5 18 3.51
IEEE57 417.3 432.6 3 2.01 427.9 9 4.38
IEEE118 1296.6 1402.7 7 5.81 1332.9 18 13.97
IEEE300 7197.2 7325.2 5 11.38 7197.3 17 32.46

In Tables II and III, the base OPF cost “Base” represents
the cost of the OPF problem without contingencies. The total
generation cost from each solution method is denoted by
“Cost”, “Time” is the CPU time in seconds, and “It” is the total
number of the required iterations. From Table II, we see that
the regular Benders decomposition algorithm achieves a fast
convergence rate (up to 7 iterations and 11.38 (s)); however
it generates low quality solutions. Theoretically, the difficulty
with this sub-optimality is understandable since hyperplanes
from the feasibility cuts often prune the optimal solution from
the non-convex feasible set. The adaptive scheme produces a
much better solution; however it requires more iterations to
converge. Its complexity grows linearly with the nodes on the
system and the number of contingencies.

In Table III, the generated solutions from the adaptive
Benders decomposition and ADMM are comparative; however
ADMM is more robust, i.e., often obtains a lower generation
cost. The execution time of the adaptive Benders decomposi-
tion is faster than ADMM for small-sized instances, but slower
for large-sized ones. Finally, it shows that both algorithms
are scalable, they are suitable for solving large-scale power
systems with large numbers of contingencies.

TABLE III: The comparison of the adaptive Benders decom-
position and ADMM. CPU time in seconds

ADMM Adaptive Benders
Cases Base Cost It Time Cost It Time
CH9 42.1 42.2 19 1.02 42.2 6 0.66
IEEE14 80.8 81.1 35 2.17 81.1 4 1.39
IEEE30 89.0 89.3 71 7.16 92.5 20 3.52
NE39 361.5 391.5 31 4.35 391.5 18 3.51
IEEE57 417.3 419.5 12 4.53 427.9 9 4.38
IEEE118 1296.6 1333.0 29 10.69 1332.9 18 13.97
IEEE300 7197.2 7197.4 16 23.86 7197.3 17 32.46

V. CONCLUSIONS

We have presented distributed algorithms based on the
Benders decomposition and the alternating direction method
of multipliers for solving the security-constrained optimal
power flow problem. We have shown that if we use the
conventional Benders cut without care, the generated solution
will be rather far from the optimal operating point. By taking
the non-convexity into account properly, our adaptive Benders
decomposition often produces a solution with high quality.
Furthermore, the ADMM algorithm is also able to yield
a robust solution. These proposed techniques tackle each
contingency individually, therefore they are able to solve for
large-scale problems and can be done in parallel.
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