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a b s t r a c t

This paper introduces a method to combine the advantages of both task parallelism and fine-grained
co-design specialisation to achieve faster execution times than either method alone on distributed
heterogeneous architectures. The method uses a novel mixed integer linear programming formalisation
to assign code sections from parallel tasks to share computational components with the optimal trade-off
between acceleration from component specialism and serialisation delay. The paper provides results for
software benchmarks partitioned using the method and formal implementations of previous alternatives
to demonstrate both the practical tractability of the linear programming approach and the increase in
program acceleration potential deliverable.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

There are two main branches in the current computational ac-
celeration research domain: parallel partitioning and sequential
assignment. In parallel partitioning multiple coarse-grained tasks
are accelerated by executing them in parallel on parallel com-
putational components [6,19,35,56,47,55,12,52] and in sequential
assignment a single task is accelerated by dividing it into sec-
tions which are executed on components specialised for different
types of code in a heterogeneous architecture [48,30,29,40,5,45,46,
44]. The two branches have previously been considered distinct
with authors concerned with problems characterised by multiple
threads of largely independent tasks or single tasks with running
internal data dependencies focusing on one branch or another.

In this paper we seek to join these two branches to obtain the
benefits of both parallelism and code-sign specialism for general
software partitioning. To do this however is not quite as simple as,
say, just identifying the best sequential assignments then running
them in parallel — because such an isolated task approach could
violate hardware space constraints and would not try to optimise
task interactions on serial components. If we hope to join the
branches together in a way that optimises the use of shared
heterogeneous hardware, it soon becomes evident that we need
to deal with the problem of execution sequence uncertainty [46].

Sequence uncertainty is not an issue for parallel partitioning
where full sequence information is available or for sequential
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assignmentwhere components are not shared by parallel tasks and
in this paper we present our solution to the sequence uncertainty
problem for parallel partitioning using sequential assignment and
in so doing contribute:
1. a formal model for partitioning coarse-grained parallel tasks

to shared distributed hardware components using fine-grained
sequential assignment.

2. insights to simplify the formal model for solution using
standard solvers.

3. experimental results demonstrating the performance improve-
ments possible over previous approaches for a suite of software
benchmarks.
The paper begins with an overview of related work in Section 2.

In Section 3 our formal model is presented along with simplifying
insights. Section 4 then provides results that demonstrate the
performance improvements achievable over previous methods
together with quality bounds and solution timing information to
demonstrate the practical utility of the formal model. The paper
concludes with a high-level review and areas for future work in
Section 5.

2. Related work

Previous software partitioning work can be classified as either
parallel or sequential in focus based on the characteristics of
Table 1. Parallel methods deliver their program acceleration
by executing multiple code sections simultaneously on parallel
execution units to exploit data independence and sequential
partitioning methods execute one code section at a time on
different hardware locations to exploit component specialism in
heterogeneous architectures.
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Table 1
Characteristics of parallel and sequential partitioning methods compared with
those of our approach. The Code Sections Executing row lists to the number of code
sections (at the assignment granularity) that can be executing at any one time with
the methods.

Parallel Sequential This paper

Code sections executing Multiple 1 Multiple
Graph type partitioned DAG CDFG DAG and CDFG
Granularity Coarse Fine Multi-level

A typical example of parallel partitioning work is [52] in
which data dependent processes are assigned to distributed
components for parallel execution. Parallel techniques require
detailed dependency sequence information to take advantage
of temporal assignment flexibility in parallel architectures. The
problem that parallel techniques face is that the dependency
sequence information they require must be provided at the
same granularity as the assignment they hope to achieve and,
at excessive granularity, loops and cycles can expand out fine-
grained sequence traces to the point where analysis quickly
becomes intractable [41,42,47]. To make parallel partitioning
practically tractable, implementations tend to work at a coarse-
grained Directed Acyclic Graph (DAG) level consolidating data
dependent branches and cycles into a dependent sequence
of assignable coarse-grained ‘‘tasks’’ [6] at the process [52],
thread [19], function [12] or loop [35,55] level. Although it is
often possible to achieve some benefits through careful task
placement [52,35,24,49,26,55], the consolidation of fine-grained
program parts into coarse-grained tasks means that traditional
parallel assignment approaches cannot take full advantage of
the fine-grained computational specialisation present in modern
heterogeneous architectures [56].

A typical example of sequential partitioning work is [40]
in which program basic blocks are assigned to heterogeneous
components for sequential execution. Sequential techniques
require detailed execution timing information for each component
in an architecture to take advantage of component specialism [44].
The problem facing sequential techniques is that component
specialism advantages are often only applicable to small code
segments which is why sequential implementations typically
work at the fine-grained Control/Data Flow Graph (CDFG) level.
CDFGs compress out sequence information from traces rather
than sacrificing graph granularity like DAGs and allow sequential
assignment to be performed at the program kernel (tight loop)
[48,30], the basic block [40] and even at the assembly code [5] level.
While it is clear that a set of tasks could be executed one after
another on heterogeneous hardware to accelerate multiple tasks
with sequential assignment, the loss of parallel task execution
advantages and the added overhead of hardware reconfiguration
times [53] can outweigh the benefits of component specialism for
some architectures as we will show in Section 4.

In this paper we present a hybrid partitioning technique called
Multi-level Assignment Partitioning (MAP). Multi-level assign-
ment techniques have proved beneficial in various fields of com-
puting recently [28,19,18,38,8,32] and in this paper we introduce
a formal multi-level approach to assign sets of coarse-grained
tasks for parallel execution on shared distributed heterogeneous
hardware components. Our multi-level approach uses coarse-
grained DAG level task sets like parallel partitioning [6,19,35,52,
55,12,56,47] as well as fine-grained CDFG level computation and
communication information like sequential techniques [48,30,29,
40,5,45,46,44] and in so doing is able to produce better execution
times for static task assignments [1,24,7] than either of the previ-
ous methods alone as we will demonstrate in Section 4 after we
detail our multi-level approach in Section 3 next.
3. Methodology

3.1. The Multi-level Assignment Problem

Our Multi-level Assignment Partitioning (MAP) approach is
summarised in Fig. 1. Like traditional parallel partitioning we
start with a set of coarse-grained tasks that can run in parallel.
However unlike traditional parallel partitioning we use fine-
grained timing information to assign subsections of the tasks to
shared heterogeneous components to achieve benefits from both
parallelism and component specialism. The problem of identifying
parallel task sets has been dealt with elsewhere [20,6,26,13] and
in this paper we focus on the last steps of the MAP process: the
assignment of parallel coarse-grained tasks to shared components
using fine-grained characteristics.

Before we begin detailing our methodology, let us note that
we will be introducing variables at various points throughout
this paper the most important of which we have summarised
in Table 10 for your reference convenience. Let us now start by
defining X as the set of feasible assignments of a group of static
parallel tasks to locations that:
1. assign every code section for every task exactly once some-

where (see [46,21] for the alternative).
2. do not violate hardware size constraints.
3. assign code sections that are called by or call external code (for

example system libraries) to appropriate locations (e.g. CPUs
running an OS).
If we define p ∈ Pi to be an assignable code unit in a task i, Pi

e
to be the set of assignable code sections that require external code
in task i, δi

pl to be the size of the assignable unit p on location l ∈ L
and∆l to be the total size capacity of location l, the three feasibility
constraints above can be expressed in Linear Programming (LP)
form as:

l

xipl = 1 ∀i ∈ T, p ∈ Pi (1)
i∈T,p∈Pi

xiplδ
i
pl ≤ ∆l ∀l ∈ L (2)


le∈Lp

e

xiple = 1 ∀i ∈ T, p ∈ Pi
e (3)

with xipl ∈ {0, 1} task code section level location assignment indi-
cators andLp

e the set of computational locations classified as having
access to the external code section p ∈ Pi

e.
Now, with reference to Fig. 1(d), it is clear that the total

execution time for a particular parallel assignment x from the set
of feasible assignments X can be defined as:

tx = max
i∈T

t ix (4)

that is, the task group’s execution time is the time t ix required for
the slowest task i in the parallel DAG task set T to complete for the
assignment x.

Our aim in multi-level partitioning is to find a multi-task
assignment x∗

∈ X that produces the minimum execution time
for the set of parallel tasks. To find x∗ we need to solve the
problem of Definition 1 below which takes advantage of the outer
minimisation to convert Eq. (4) to the set of constraints (6).

Definition 1 (Multi-level Assignment Problem).

min
x∈X

tx (5)

s.t. tx ≥ t ix ∀i ∈ T (6)

whereT is the parallel task set, i a task identifier, t ix the time task i takes
to execute given the multi-task assignment x from the set of feasible
assignments X.
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(a) Coarse-grained parallel task DAGs are identified. (b) Fine-grained CDFG information is obtained for each coarse-grained
task.

(c) Feasible fine-grained task assignments to shared sequential (⊥
e.g. CPU core) and parallel (∥ e.g. GPU or FPGA) locations x ∈ X are
examined.

(d) The assignment execution times (including potential serialisation
delays) tx are used to identify the optimal assignment x∗ for the
combined task set.

Fig. 1. The Multi-level Assignment Partitioning (MAP) approach of combining coarse-grained parallel task partitioning with fine-grained sequential assignment. In the
absence of sequence information, the fine-grained assignment time has to take into account all feasible serialisation conflicts across the task set as discussed in the text.
Concentrating for a moment on constraints (6) of Definition 1,
we see from Fig. 1(c) that an individual task’s execution time t ix for
a particular assignment x ∈ X is at least the sumof the code section
execution times t ipl|x for each of the task’s code sections p running
on their assigned execution location l. For example, for task 1 of the
assignment x shown in Fig. 1(c) we have:

t1x ≥ t1a⊥ + t1b∥ + t1c⊥

which can be generalised to:

t ix ≥


pl

xiplt
i
pl|x (7)

where t ipl|x is the time for code section p from task i to execute
at location l including appropriately proportioned communication
costs (we expand this statement in Section 3.3) between the task’s
code sections given the assignment x.
The inequality of Eq. (7) reflects the fact that serialisation
conflicts on sequential execution components such as CPU cores
can increase a task’s elapsed execution time. Re-writing Eq. (7) to
include an explicit slack variable for task level serialisation delays
t i
⊗

≥ 0 we have:

t ix =


pl

xiplt
i
pl|x + t i

⊗
. (8)

Referring again to the three-task assignment example of
Fig. 1(c) we see that task 2 has no serialisation delays because it
does not spend any time on a shared serial component or serial
communications channelwith the assignment. Tasks 1 and3on the
other hand could experience serialisation delays. Any serialisation
delays for tasks 1 and 3 will depend on the exact execution
sequence which is compressed out of the CDFG for practical
complexity reasons as discussed in Section 2 (note Fig. 1(c) does
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not define whether task 3 has the sequence a → b → c or
a → b → a at points in its execution path).

As sequence information is compressed out of CDFGs, the best
we could hope forwhen estimating t i

⊗
for an assignment is a robust

solution based on feasible sequence paths. However obtaining
such a feasible sequence aware robust solution is complex in
both formulation and computation time as the authors have
already shown in [46]. Consequently, in this work we use a
path unaware robust bounding approach for t i

⊗
which we will

show produces efficient multi-level assignments while remaining
practically tractable with current solvers for a wide range of
problems in Section 4.

The ultimate lower bound on a task’s possible serialisation
delayswould clearly be t i

⊗
= 0which assumes there are no clashes

on sequential components for the task. The corresponding upper
bound, and the robust form we use in this paper, would assume
that the task is delayed by all other task executions on shared
sequential components in a similar manner to [1], which can be
defined algebraically as:

t i
⊗

=


j≠i


r∈Pj


l∈L⊥

αi
l|xx

j
rlt

j
rl|x (9)

where i and j are task identifiers with j ≠ i, r is an assignable
code section in the task j, l is a location in the set of sequential
execution locations L⊥ and t jrl|x is the time for code section
r of task j to execute on the sequential component l (with
appropriately proportioned communication times). αi

l|x is a new
indicator variable that is 1 if any codeunit of i is assigned to location
l and 0 otherwise. Taking advantage of the minimising objective of
Definition 1, αi

l|x ∈ {0, 1} can be defined in LP form with:

αi
l|x ≥ xipl ∀p ∈ Pi (10)

which can only be 0 if no part of i is assigned to location l (i.e. ∃xipl =

1 H⇒ αi
l|x = 1).

With our t i
⊗

upper bound now defined in terms of isolated
task execution times in Eq. (9) we only need to detail the isolated
fine-grained task execution timing contributions t ipl|x and the set
of sequential locations L⊥ in order to quantify Eq. (8) and use
Definition 1 to identify optimal robust parallel partitions with our
fine-grained intra-task assignment approach.

3.2. Execution timing contributions

From the preceding discussion we know that MAP selects the
shared hardware assignment with the minimum overall execu-
tion time taking into account possible serialisation delays. The
MAP approach can be used with existing parallel task identifi-
cation schemes [20,6,26,13] and sequential assignment methods
[48,30,29,40,5,45,46,44] provided the fine-grained isolated intra-
task execution times t ipl|x are available.

Approaches to obtain t ipl|x values, sometimes termed Expected
Times to Compute (ETC) [2,39], include direct measurement [11]
with a specific sequential assignment implementation for an
architecture and general models [42] and in the remainder of this
workwewill expand t ipl|x using theWrite-Only Architecture (WOA)
model [45]. The WOA provides the following general formula to
quantify ETC figures which includes appropriately proportioned
communication costs:

t ipl|x = µi
pl +


qm

xiqmc
i
pqlm (11)

where µi
pl is the total computation time of code section p on

location l, xiqm is 1 if code section q from the task i is instantiated at
location m and 0 otherwise and c ipqlm is the total communication
time for activations sent from components p on l to q on m.
Eq. (11) can be used to model a range of sequential methods
through appropriate selection (ormeasurement) ofµi

pl and c ipqlm as
discussed in [45] and implies that the time summations


pl x

i
plt

i
pl|x

of Eq. (8) and (9) will generally need to include a quadratic
communications cost component to quantify the |x dependency in
t ipl|x as we will see when we expand the MAP formulation next.

3.3. Expanding MAP with timing paradigm and architecture specifics

In this section we expand the MAP problem of Definition 1
using the general WOA execution timing contribution equation
from Section 3.2 and sequential hardware classifications.

Referring to the original timing equations of Section 3.1, we see
that our initial analysis assumed execution times included ‘‘appro-
priately proportioned communication costs’’ together with core
computation times. The assumption of associated communication
costs simplified our initial analysis but it left us with an x depen-
dency on our fine-grained assignment timing function t ipl|x. How-
ever, the WOA execution paradigm [45] introduced in Section 3.2
provides us with a means to expand the communication costs in
t ipl|x in terms of the assignment variables x which we can now use
to detail t ipl|x in the execution timing Eq. (8) associated with Defi-
nition 1 as shown below:

t ix =


pl

xiplµ
i
pl +


pqlm

xiplx
i
qmc

i
pqlm + t i

⊗
(12)

where xipl is 1 if code section p of task i is instantiated at location l
and 0 otherwise and µi

pl and c ipqlm are the linear computation and
quadratic communication cost constants which can be obtained
through various means [42,45,11] for a specific problem instance.
We canuse a similar approach to expand the t jrl|x in the t i

⊗
definition

of Eq. (9) to obtain:

t i
⊗

=


j≠i,r,
l∈L⊥

αi
l|xx

j
rlµ

j
rl +


j≠i,r,s,

(l,m)∈M⊥

β i
lm|xx

j
rlx

j
smc

j
rslm (13)

with r and s communicating code sections in task j ≠ i and lm
shared communication channels from the (newly required) set of
shared channels M⊥ ⊆ L × L on which link contentions could
arise [22]. β i

lm|x is a new communications channel usage indicator
similar in concept to αi

l|x which is 1 if any code section in task i
communicates over the shared channel lm in an assignment and
0 otherwise. Taking advantage of the minimisation objective of
Definition 1 once again, β i

lm|x ∈ {0, 1} can be expressed as:

β i
lm|x ≥ xiplx

i
qm ∀p, q ∈ Pi

: χ i
pq + ηi

pq > 0 (14)

where χ i
pq and ηi

pq are the control and data flows between code
sections p and q of task i which can be statically determined using
characterisation frameworks such as 3S [41] as detailed in [42].
Note that β i

lm|x will be dragged to 0 outside of the inequality
set (14) by the minimising objective (all our time contribution
constants are positive) and sowedonot need to specify the implied
constraints:

β i
lm|x = 0 ∀p, q ∈ Pi

: χ i
pq + ηi

pq = 0. (15)

The other variables in Eq. (13) are as previously described for
Eq. (9) and detailed in Table 10.

The final piece of information required to make Definition 1
concrete is to define the L⊥ and M⊥ used in the expanded t i

⊗
of

Eq. (13). This involves the classification of hardware components
and communication channels into sequential or parallel setswhich
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is relatively easy to do as a one-off manual process for most
architectures.

For example, the Imperial Axel architecture [50] consists of
CPU, GPU and FPGA computational components interconnected
by PCIe and Gigabit Ethernet communication channels. The CPU
cores can be classified as sequential as they can be expected
to run only one task at a time while the GPUs and FPGAs
are parallel by nature [10,53] and all the inter-component
communication channel types are shared/sequential [16,51]. It
is worth noting that we need to also classify intra-component
communications and for the Axel architecture, all variants of the
internal CPU↔CPU communications can be considered sequential
while the GPU↔GPU and FPGA↔FPGA internal communications
can take place for each task over a dedicated task internal bus
simultaneously and so can be considered parallel. For other
hardware architectures, thread limits can be modelled as multiple
sequential cores or location-wise parallel task limit constraints,
shared links and component group interactions can be modelled
using appropriate mapping functions (see the Φ clash indicator in
Section 4.3 for an example) and ∆l dimensions can be added along
with other minor modifications to the basic feasibility constraints
of Eqs. (1)–(3) if required.

All that remains to complete this section is to collate the
equations and definitions presented to generate the expanded
formal model for MAP given in Definition 2 below. Note that
Definition 2 has quadratic and cubic terms combining xipl, α

i
l|x and

β i
lm|x. However as these variables are binary, their products can be

linearised as shown in Section 3.4 to solve ExpandedMap Problem
instances directly with standard linear solvers if required.

Definition 2 (Expanded MAP Problem).

min
x∈X

tx (16)

s.t. tx ≥ t ix ∀i ∈ T (17)

t ix =


pl

xiplµpl +

pqlm

xiplx
i
qmc

i
pqlm + t i

⊗
(18)

t i
⊗

=


j≠i,r,
l∈L⊥

αi
l|xx

j
rlµ

j
rl +


j≠i,r,s,

(l,m)∈M⊥

β i
lm|xx

j
rlx

j
smc

j
rslm (19)

αi
l|x ≥ xipl ∀p ∈ Pi (20)

β i
lm|x ≥ xiplx

i
qm ∀p, q ∈ Pi

: χ i
pq + ηi

pq > 0 (21)

with x ∈ X an assignment of fine-grained code sections to locations
for all coarse-grained tasks i ∈ T satisfying the feasibility constraints
of Section 3.1 with variables as detailed in Table 10.

3.4. Simplifying the formulation for practical software

In this section we draw on several insights from practical
software partitioning problems to reformulate MAP. The MAP
problem of Definition 2 is easily recognised as a strongly NP-
hard problem through its quadratic communication costs c ipqlm and
binary assignment variables xipl [42,15,36] and the reformulation
presented in this section for practical problems does not alter the
theoretical complexity. However, the reformulation does reduce
the number of binaries in the problem considerably and allows
problem instances to be solved to optimality using CPLEX [9] in
just a few seconds as we will see in Section 4.3 demonstrating
the practical utility of the MILP formulation and that it is not
always necessary to resort to heuristics for problem instances in
the software partitioning domain [52,25,26,29,17,44,40,7].

Let us start by defining what we mean by a practical software
partitioning problem in this work.
Definition 3 (Practical Software Problems). A practical software
partitioning problem is an assignment of software sections to
hardware with the following characteristics:

1. all computations and cross-component communications require
some time to complete.

2. intra-component communication times are negligible (i.e. can be
considered 0) in comparison to other costs.

3. sequential communication channels connect sequential compo-
nents.

With the characteristics of Definition 3 we have:

µi
pl > 0 ∀i, p, l

c ipqlm


> 0 ∀i, p, q ∀l ≠ m
= 0 ∀i, p, q ∀l = m

M⊥ ⊇ {(l,m) : l ∈ L⊥ ∨ m ∈ L⊥} .

Now let us start our practical reformulation exercise by defining
two convenience variables. Firstly let us define t ilm|x to be the time
task i would spend on lm in isolation (i.e. without serialisation
delays) for an assignment which is given by:

t ilm|x =


p

xiplx
i
pmµpl +


pq

xiplx
i
qmc

j
pqlm (22)

noting that, for singly instantiated code [46], xiplx
i
pm = 0 ∀l ≠ m

and so:

t ix =


lm

t ilm|x + t i
⊗
. (23)

Next let us define a new auxiliary binary γ i
lm|x ∈ {0, 1} as:

γ i
lm|x ≥

t ilm|x

M i
lm

(24)

withM i
lm a constant quantified later in this section to ensure

t ilm|x

M i
lm

≤

1 ∀lm and note that for practical software partitioning problems
with a minimising objective:

αi
l|x = γ i

ll|x

β i
lm|x =


γ i
lm|x ∀l ≠ m

0 otherwise,

in accordance with the characteristics of Definition 3.
Looking again at Definition 2 we see that we can use γ i

lm|x to
reformulate Eq. (19) for practical software partitioning problems
to:

t i
⊗

=


j≠i,

(l,m)∈M⊥

γ i
lm|xt

j
lm|x (25)

using characteristic 3 of Definition 3. Eq. (25) is a sum of binaries
γ i
lm|x multiplied by dependent variables t jlm|x (not constants) and

we cannot solve this problem form with standard linear solvers.
However there is a simple reformulation to obtain:

t i
⊗

=


(l,m)∈M⊥

t i
lm⊗

(26)

t i
lm⊗

≥


j≠i

t jlm|x − N i
lm(1 − γ i

lm|x) (27)

which is solvable with t i
lm⊗

≥ 0 and N i
lm a task and location depen-

dent big-M large enough to ensure t i
lm⊗

= 0 whenever γ i
lm|x = 0.

We can now substitute the above equations into Definition 2 to
obtain the practical MAP problem form of Definition 4.
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Definition 4 (Practical MAP Problem).

min
x∈X

tx (28)

s.t. tx ≥ t ix ∀i ∈ T (29)

t ix =


lm

t ilm|x + t i
⊗

(30)

t ilm|x =


p

xiplx
i
pmµpl +


pq

xiplx
i
qmc

i
pqlm (31)

t i
⊗

=


(l,m)∈M⊥

t i
lm⊗

(32)

t i
lm⊗

≥


j≠i

t jlm|x − N i
lm(1 − γ i

lm|x) (33)

γ i
lm|x ≥

t ilm|x

M i
lm

(34)

with the feasibility constraints of Section 3.1 and big-Ms as defined
below.

Definition 4 of MAP is a Mixed Integer Quadratically Con-
strained Program (MIQCP) with |T||L⊥| less auxiliary variables
than Definition 2. However, the real benefit of the reformulation
only becomes apparent when we transform the problem for solu-
tion with standard linear solvers.

To solve problem instances of quadratic and higher-order
formal models using standard linear solvers we need to linearise
variable products. This can be performed by replacing each
unordered combination of unique binary products x1x2 . . . , xK in
the problem instance with a new linearisation variable y{1,2,...,K} ∈

[0, 1] using the method presented in [43,33] generalised to:

y{1,2,...,K} ≥

K
k=1

xk − K + 1. (35)

For the MIQCP of Definition 4 we only need to linearise the
unique indicator combinations in the quadratics of Eq. (31). For
Definition 2 on the other hand, we need to linearise quadratic
combinations of xipl, α

i
l|x and β i

lm|x in Eqs. (18), (19) and (21)
together with cubic xipl and β i

lm|x combinations in Eq. (19). The
result is that Definition 4 has the order of |T|

2
|P|

2
|L⊥|

2 less
linearisation variables than Definition 2 (where |P| is the number
of code sections in a ‘‘representative’’ task such that |T||P| =

i∈T |Pi
|).

The benefit of the reduction in linearisation variables in
Definition 4 comes at the expense of the introduction of sets of big-
M constantsM i

lm and N i
lm. The big-Ms extend the range of values in

problem instances, particularly asM i
lm is used as a divisor andN i

lm a
multiple, and care must be taken to avoid solution accuracy issues
as discussed in [43]. Solution accuracy issues can be avoided for
practical problem instances by setting the big-Ms to tight bounds
using, for example, Definition 4 with the objective modified as
illustrated below1:

M i
lm ≥


max
x∈X

t ilm|x


N i

lm ≥


max
x∈X


j≠i

t jlm|x


or by using numerical emphasis or implementing the constraints
of (33) and (34) with indicators where available in the solver [9].

1 Actually, the big-M bounds can often be improved further than those shown
above by setting all M i

lm and N i
lm values to any known upper-bound of min tx with

the domain of γ i
lm|x changed from B to Z+ .
Table 2
Characteristics of the six software tasks partitioned in this work. The figures are
summaries of 3S version 2.10 [41,42] measurements made at the basic block level
of granularity for code compiled to x86 CPU instructions with gcc-O3 and running
with representative program inputs. The symbols correspond to Table 10 with |Pi

|

the number of basic blocks in the task,


δi
pf the total size of the tasks on an FPGA

component of Fig. 2 in x86 Instruction Equivalents,


µi
pc the total execution cycles

(inms) for the task on a single CPU in Fig. 2,


χ i
pq the sumof the inter-block control

flows and


ηi
pq the sumof thenon-cached inter-block data flows (in bytes) for each

task.

Task |Pi
|


δi
pf


µi

pc


χ i
pq


ηi
pq

dijkstra 117 295 292 9864826 26750704
fft 130 438 200 3670310 11470084
ispell 1033 3242 188 5856315 35981124
jpeg 1776 7657 134 4406038 12414004
sha 68 816 203 6609432 82246556
susan-e 249 2491 164 4719519 28121940

4. Results

4.1. Experimental configuration

This section compares the execution performance of parallel
tasks partitioned for multi-component architectures using MAP
and alternative approaches. The parallel tasks were selected to
cover the six MiBench benchmark categories [14] and intra-
task software characteristics were obtained using 3S version 2.10
[41,42] at the fine-grained basic block level as summarised in
Table 2.

The tasks will be partitioned for execution on the architec-
ture illustrated in Fig. 2 which is based on the Imperial Axel [50]
heterogeneous computational cluster. We will be assigning to
the CPU and FPGA components of the Axel nodes which will
be sufficient to demonstrate the benefits of MAP over alterna-
tive approaches for specific design-points as in previous work
[19,35,52,24–26,47,48,30,40,5,31] and we will discuss the general
significance of our specific experimental results in Section 4.3.

Task assignments for seven configurations of the detailed two-
node cluster illustrated in Fig. 2(a) will be examined along with
assignments for the high-level cluster of Fig. 2(b) with three,
four, five and six full nodes activated. The seven configurations
of Fig. 2(a) will be labelled depending on which components are
active. The C1 configuration has only the first Axel node’s CPU
active in Fig. 2(a), configurations C1F1 and C1F2 add the first and
second node’s FPGA to represent the tightly and loosely coupled
architectures of [45] respectively, configuration C1F1F2 has only
the first CPU active and both FPGAs, C1C2 has both CPUs active but
no FPGAs, C1F1C2 adds the first FPGA and configuration C1F1C2F2
represents the full four computational location, two-node Axel
architecture illustrated in Fig. 2(a). Note that the seven detailed
configurations represent the complete valid configuration set for
the two-node architecture because of symmetry and because these
software tasks all have external library access that requires at least
one CPU be present in a feasible configuration. The M⊥ describing
the sequential parts of the architecture is constructed with:

M⊥ = {(l,m) : l ∈ LCPU ∨ l ≠ m} (36)

where LCPU is the set of active CPU locations i.e. CPU components
and all communications to and from different components are
sequential.

Wewill be comparing assignment results for theMAP approach
presented in Definition 4 against the following alternatives:

1. homogeneous CPU-only execution.
2. parallel coarse-grained heterogeneous partitioning.
3. sequential fine-grained heterogeneous assignment.



S. Spacey et al. / J. Parallel Distrib. Comput. 73 (2013) 207–219 213
(a) Details of the two-node cluster. (b) Full six-node heterogeneous cluster.

Fig. 2. Theheterogeneous architecture considered in this paper. The CPU components are 2.3GHzAMDPhenomCPUcores [3] and the FPGAs areXilinx LX330T reconfigurable
fabrics [53] operating at an effective frequency of 266.67 MHz with a capacity of 2560 x86 integer Instruction Equivalents (IEs) [45]. Communications between components
in the same Axel node take place over local PCIe WOA buses with latencies of 89 ns [16] and we will assume communications between components in different nodes take
place over virtual dedicated Gigabit Ethernet WOA/UDP connections with latencies of 48 µs [51] in this paper. See [45,50] for more details on the architecture.
To ensure our comparisons are fair, we will be solving optimal
versions of each approach rather than using the (potentially
suboptimal) heuristic assignment methods of specific previous
parallel coarse-grained [52,24–26] and sequential fine-grained
[40,48,30,5,34] implementations using the same sequential exe-
cution timing figures and constants for each approach which we
obtain from the WOA execution paradigm [45]. We will label our
three formal alternativemodels H O M, P AR and S E Q andwewill
refer to the formal MAP model of Definition 4 as MAP for conve-
nience.

For our formal homogeneous model H O M we simply need to
restrict all assignments to CPU locationswhichwe candoby adding
the following constraint set to MAP:

xipl = 0 ∀l ∉ LCPU.

Note that as all inter-location communications take time in our
practical problem, there can be no benefit in splitting a single task
over symmetric sequential CPUs and so the above constraint will
produce task level assignments.

To represent the ideal general parallel task partitioning
implementation, we will assume coarse-grained assignment on
any feasible location with necessary exceptions for operating
system function calls which we will say have to be executed
on the same CPU for a task. We call our model of this
parallel implementation P AR which is constructed by adding the
following constraints to MAP:

xipl =


xil if p ∉ Pi

e

xial otherwise.
∀i ∈ T, p ∈ Pi, l ∈ L

l∈L

xil = 1 ∀i ∈ T

with xil ∈ {0, 1} a new coarse-grained task based assignment
location indicator and a the start node of a task which will be
assigned to a CPU capable of accessing all the external code
required by the task i in this work (i.e. a ∈ Pi

e and La
e = Lp

e =

LCPU ∀p ∈ Pi
e here).

To represent the ideal general sequential implementation, we
assume tasks can execute in parallel as long as no other task is
running on any of their assigned components in the architecture,
that components are configured before each task executes and that
configuration times are based on the assigned sizes [54] rather than
total device capacity [17] (i.e. partial reconfiguration). We call our
formal model of this implementation S E Q which we construct by
redefining terms in MAP .

First we redefine the isolated task execution time of Eq. (31) to
include configuration overheads with:

t ilm|x =


p

xiplx
i
pmµpl +


pq

xiplx
i
qmc

j
pqlm + Ri

lm|x

where Ri
lm|x is the time to configure lm for task i to execute

under the assignment x which will be considered negligible for
the communication channels (l ≠ m) and the CPU components
(l = m ∧ l ∈ LCPU) and a linear function of assigned component
size for the reconfigurable components of Fig. 2 obtained from [54]
for the results of this work. Next we define a task level interaction
variable Γ

ij
x ∈ [0, 1]:

Γ ij
x ≥ γ i

lm|xγ
j
lm|x ∀(l,m) ∈ L × L

which will be 1 if tasks i and j share any of the same components
or channels (i.e. ∃(l,m) ∈ L × L : γ i

lm|x = 1 ∧ γ
j
lm|x H⇒ Γ

ij
x = 1)

and can be linearised using Eq. (35). We then redefine Eq. (32) of
MAP to use task level serialisation overheads t ij

⊗
≥ 0 which we

construct with Γ
ij
x and new big-Ms Oij:

t i
⊗

=


j≠i

t ij
⊗

t ij
⊗

≥


lm

t jlm|x − Oij(1 − Γ ij
x ).

Note that t ij
⊗

will be the entire isolated execution time of task
j (not just the parts on M⊥) if task j shares any channel or
component with task i (i.e. when Γ

ij
x = 1) which models the

dedicated hardware access characteristic of our ideal sequential
implementation.

We complete the sequential model by replacing the temporally
shared size constraints


i,p x

i
plδ

i
pl ≤ ∆l of Eq. (2) included in MAP

with:
p∈Pi

xiplδ
i
pl ≤ ∆l ∀i ∈ T, l ∈ L
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Table 3
Execution times (in ms) for the task set, detailed architecture configurations and
models of Section 4.1. All execution times are optimals for the models. The 185 ms
C1F1C2F2 MAP execution time is the absolute minimum possible for this task set
and architecture from [45] as discussed in the text of this section.

Approach Configuration
C1 C1F2 C1F1 C1F1F2 C1C2 C1F1C2 C1F1C2F2

HO M 1180 1180 1180 1180 591 591 591
P AR 1180 1092 789 642 591 402 322
S E Q 1180 1057 682 682 591 388 360
MAP 1180 859 345 322 591 192 185

Table 4
Performance accelerations for the task set, detailed architecture configurations and
models of Section 4.1. The accelerations are simply the single CPU execution time
for the tasks (1180 ms) divided by the corresponding model and configuration
execution times from Table 3 as defined in Eq. (37). The 6.378 times C1F1C2F2
MAP acceleration is the absolute maximum possible for this task set and
architecture from [45] as discussed in the text.

Approach Configuration
C1 C1F2 C1F1 C1F1F2 C1C2 C1F1C2 C1F1C2F2

HO M 1.000× 1.000× 1.000× 1.000× 2.000× 2.000× 2.000×
P AR 1.000× 1.081× 1.496× 1.838× 2.000× 2.935× 3.665×
S E Q 1.000× 1.116× 1.730× 1.730× 2.000× 3.041× 3.278×
MAP 1.000× 1.374× 3.420× 3.665× 2.000× 6.146× 6.378×

Table 5
The percentage of the available FPGA space used by the assignments of Table 3 in
accordancewith Eq. (38). The CPU only configurations of C1 and C1C2 have no FPGA
capacity and so Eq. (38) is undefined for these columns (signified by a blank).

Approach Configuration
C1 C1F2 C1F1 C1F1F2 C1C2 C1F1C2 C1F1C2F2

HO M 0.0% 0.0% 0.0% 0.0% 0.0%
P AR 30.8% 40.7% 75.9% 40.7% 75.9%
S E Q 41.8% 45.0% 22.5% 22.0% 22.5%
MAP 100.0% 100.0% 97.4% 100.0% 56.8 %

to allow tasks to use all of the space on the hardware they are
assigned to while they sequentially execute.

4.2. Assignment results

Tables 3 and 4 show the execution times and performance
accelerations for the six task set of Table 2 assigned to different
configurations of Fig. 2(a) using MAP and the three alternate
assignment approaches discussed in Section 4.1. The times of
Table 3 are quoted in milliseconds and the accelerations shown in
Table 4 were calculated using the equation:

Acceleration =
tC1
t∗

(37)

where tC1 is the time for the task set to execute on a single CPU and
t∗ is the optimal execution time for the corresponding model and
configuration from Table 3.

Perhaps the first point to note in Table 3 is that all the
approaches give the same results for the homogeneous CPU only
C1 and C1C2 configurations. This is as expected because there
is no code-sign flexibility to take advantage of. The CPU only
configuration results thus act as model confirmation points.

The second point to note in Table 3 is that the MAP execution
times are never worse than the alternative approaches. Indeed, the
MAP model results are better than every alternative approach for
all the heterogeneous configurations and deliver up to 2.021 times
better performance than the best of the alternatives (i.e. 388 ms

192 ms for
the C1F1C2 configuration).

Thehomogeneous H O M results are theworst overall in Table 3.
This is because the homogeneous approach only assigns to the CPU
components of the heterogeneous configurations, in effect limiting
itself to the one and two CPU C1 and C1C2 configurations as we
add FPGAs. If we replaced the FPGAs by CPUs rather than simply
not using the FPGAs, the corresponding homogeneous execution
times would be 591, 591, 426, 426 and 352 ms for the modified
C1F2, C1F1, C1F1F2, C1F1C1 and C1F1C2F2 configurations which
would beat the parallel and sequential results of Table 3. The
heterogeneous MAP results would still however be better than the
higher CPU homogeneous results for all but the high latency C1F2
configuration [45]. Remember though that by comparing C1F2 for
MAP with the homogeneous approach for a configuration with F2
replaced by a CPUwe are actually comparing C1F2 MAP against a
C1C2 H O M which is not exactly fair because MAP would identify
the same partition as H O M for C1C2 if allowed to as shown in
Table 3.

Table 5 shows the percentage of the available FPGA space used
by each of the optimal assignments of Table 3 which we define as:

Utilisation =


i,p,f

xipf δ
i
pf

f
∆f

(38)

where f is a location from the set of space constrained FPGA
locations and the other symbols are as described previously and
summarised in Table 10.

The CPU-only configurations have no FPGA capacity and so
Eq. (38) is undefined for the C1 and C1C2 columns which are left
blank in Table 5. The H O M row is zero for all configurations
because the homogeneous approach does not use the FPGA
components by definition. All the remaining configurations and
models use the available FPGA space to some extent and we will
now detail that usage for the interested reader.

Referring to the parallel capacity utilisation row of Table 5,
the P AR model assigns all code sections of the sha task
(excluding system calls) to the FPGA with the C1F2 configuration
and with the lower latency C1F1 and C1F1C2 configurations the
approach assigns all non-system call code for the dijkstra and
sha tasks to the FPGA. With the higher capacity C1F1F2 and
C1F1C2F2 configurations the P AR model assigns the non-system
call sections of dijkstra, fft and sha to F1 and of susan to F2.

For the sequential capacity utilisation results of Table 5, the
S E Q model assigns parts of all tasks except dijkstra to the
reconfigurable hardware with the C1F2 configuration and with
the C1F1, C1F1F2 and C1F1C2F2 configurations, the S E Q model
uses the FPGAs to accelerate parts of all the tasks. The reason
why dijkstra is not selected for acceleration with the C1F2
configuration is that the inter-node latency, which is over 500
times larger than the intra-node latency for this architecture,
cannot be offset by the code-sign benefits as explained in [45].
For the C1F1C2 configuration, the single FPGA represents a
dedicated execution bottleneck for the S E Q model and with this
configuration S E Q does not accelerate the fft and ispell tasks
which it places on C2 alone rather than delaying the other tasks
which it accelerates by placing parts of them on both the C1 and
F1 components. If we ran the S E Q model for the heterogeneous
configurations of Table 5 ignoring reconfiguration costs (i.e. Ri

lm|x =

0 ∀i, lm, x), the capacity utilisations of the optimal sequential
assignments selected by CPLEX would increase to 192.5%, 314.7%,
160.1%, 213.3% and 157.3% (remember the sequential method re-
uses the FPGA space) and the optimal execution times decrease to
906, 545, 545, 334 and 277 ms which you will note are still far
worse than the MAP execution timings of Table 3.

For the MAP results of Table 5 we see that the MAP model
is able to use most of the available hardware with all but
one configuration. For the high-latency C1F2 configuration MAP
assigns parts of all but the dijkstra benchmark to the FPGA like
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Table 6
Execution times (in ms) for the task set and multi-node architecture configurations
of Section 4.1. The rowentries stop at theminimumpossible time for each approach.
The absolute minimum time is 185 ms for the task set and architecture from [45]
which is only achieved by the MAP model. The 1 and 2 Axel node figures below
correspond to the C1F1 and C1F1C2F2 configurations of Table 3.

Approach Axel cluster nodes
1 2 3 4 5 6

HO M 1180 592 426 352 298 292
P AR 789 322 256 200
S E Q 682 360 263 196 187
MAP 345 185

Table 7
The optimal performance accelerations for the execution times of Table 6. The
accelerations are simply the single CPU execution time for the tasks (1180 ms)
dividedby the correspondingmodel execution time fromTable 6 in accordancewith
Eq. (37). The 1 and 2 Axel node figures below correspond to the C1F1 and C1F1C2F2
configurations of Table 4.

Approach Axel cluster nodes
1 2 3 4 5 6

HO M 1.000× 2.000× 2.770× 3.352× 3.960× 4.041×
P AR 1.496× 3.665× 4.609× 5.900×
S E Q 1.730× 3.278× 4.487× 6.020× 6.310×
MAP 3.420× 6.378×

Table 8
The optimal percentage of the available FPGA space used by the assignments of
Table 6 calculated in accordance with Eq. (38). The 1 and 2 Axel node figures below
correspond to the C1F1 and C1F1C2F2 configurations of Table 5.

Approach Axel cluster nodes
1 2 3 4 5 6

HO M 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
P AR 40.7% 75.9% 50.6% 34.1%
S E Q 45.0% 22.5% 15.0% 11.3% 9.0%
MAP 100.0% 56.8%

the S E Q model and for the other configurations, parts of all tasks
are accelerated with the FPGAs. For the full two-node C1F1C2F2
configuration theMAP approach has a lower FPGAutilisation factor
than the parallel approach. This is because the P AR model works
at a coarse-grained level and assigns all of a task’s non-system
call code to an FPGA if the net effect is beneficial whereas the
MAP model has the extra dimension of fine-grained assignment
flexibility which results in a 42% faster execution time with over
25% less of the reconfigurable space used.

Less than 14% of the second FPGA is used with the C1F1C2F2
MAP configuration which would seem to suggest that there is
little serialisation removal benefit to be obtained by adding more
parallel components to the two-CPU architecturewithMAP. In fact,
the 185 ms execution time for the C1F1C2F2 MAP configuration
quoted in Table 3 is actually the absolute minimum for the six
task set running on any number of Axel nodes which we can
confirm by examining the results of [45] where it can be seen
the fft benchmark cannot be accelerated by more than 1.081
times

 200 ms
1.081x = 185 ms


and is thus largely CPU bound on this

architecture which explains why MAP places the fft task on C2
alone with the C1F1C2F2 configuration.

We conclude this section with Tables 6–8 which provide
the minimum execution times obtainable with the different
approaches for the task set along with their corresponding
accelerations and utilisations as we activate additional nodes in
Fig. 2(b). It can be seen thatMAP is the only approach to deliver the
true absolute minimum of 185 ms as mentioned above, that MAP
is consistently better than the other approaches and that all the
other approaches require considerably more hardware resources
(Axel nodes) to reach their respective minimums.
4.3. Bounds and complexity

The results of Section 4.2 showed that the MAP approach
consistently performed at least as good as the alternatives for the
tasks and architecture configurations considered. In this sectionwe
generalise the specific results provided to obtain bounds for MAP
performance improvements and provide practical solution timing
information.

Let us start by referring back to Section 4.1 where we
constructed our formal homogeneous model H O M by adding
constraints to MAP that ensured only the CPU components of a
configuration could be used. By doing this we made the feasibility
set of the H O M model more restrictive than that of MAP and, as
we used the same objective function for both models, this implies
the MAP optimalswill be at least as good as H O M nomatterwhat
set of tasks or architecture/configuration we use [33]. Or, stated in
first-order logic:

XHO M ⊆ XMAP H⇒ ∃x∗
∈ XMAP : tx∗ ≤ min

x∈XHO M
tx.

Looking next at the parallel approach we see from Section 4.1
that we added constraints to the MAP model again, this time to
force assignment on a coarse-grained basis. Thus, we have:

X∗

HO M ⊆ XP AR ⊆ XMAP

as every coarse-grained assignment is a possible MAP assignment
and every optimal homogeneous (CPU only) assignment is a
possible parallel assignment2 and, because we used the same
objective with these three models, we have the relation:

t∗HO M ≥ t∗P AR ≥ t∗MAP ∀T ∈ S, A ∈ H

where T is a set of tasks from the set of all possible software task
sets S and A is an architecture from the set of all possible hardware
architectures H. In other words, MAP is guaranteed to produce at
least as good execution times as the homogeneous model H O M
and the parallel model P AR for all tasks and architectures.

Now let us turn our attention to the sequential model. The
sequential model S E Q was also constructed from the MAP model
in Section 4.1, but our approachwas different. Firstly, the objective
time was increased with reconfiguration costs and a more coarse
definition of t i

⊗
which, on their own, would mean t∗S E Q ≥ t∗MAP

however we then went on to modify the space constraints from:
i∈T,p∈Pi

xiplδ
i
pl ≤ ∆l ∀l ∈ L

to:
p∈Pi

xiplδ
i
pl ≤ ∆l ∀i ∈ T, l ∈ L

to allow tasks to use all the hardware they are assigned to while
they execute sequentially. This modification (not addition) of
constraints means that the MAP feasibility set is actually a subset
of the S E Q feasibility set i.e. XMAP ⊆ XS E Q not the other way
round and so while the S E Q objective can never be better than
the MAP objective for the same assignments, the S E Q model can
choose from additional assignments where the S E Q objectivemay
be better than the best available for the MAP model.

In fact, it is easy to conceive an example where t∗S E Q < t∗MAP .
To do this, consider a task set T ∈ S with just two tasks where each
task has only three code sections as illustrated in Fig. 3(a), the first

2 Remember that we did not formally restrict our HO M model to be coarse-
grained in Section 4.1, however characteristic 1 of Definition 3 means that every
optimal HO M assignment will be coarse-grained and so X∗

HO M ⊆ XP AR for
practical problems.
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(a) Two tasks with three code sections
each.

(b) The feasible assignments for the MAP and sequential approaches
labelled XMAP and XS E Q respectively.

Fig. 3. Two tasks with one freely assignable code section each (labelled 1b and 2b) which is more than half the size of the available space constrained co-processor labelled
F1 and the associated MAP and sequential feasibility sets labelled XMAP and XS E Q respectively. With the MAP method, it is not possible to place both 1b and 2b on the
co-processor at the same time because this would violate the space constraints. The sequential method however has an additional feasible assignment where 1b and 2b are
both placed on the space constrained hardware because the co-processor is dedicated to task 1 first then re-used for task 2 in isolation.
and third of which (the start and end nodes) must be assigned to a
CPU. Next, let us select a two-location heterogeneous architecture
A ∈ H where the second node of each task is larger than half the
available co-processor space and where the co-processor’s code-
sign benefits far exceed its reconfiguration costs and we have our
example because S E Q could re-use the hardware to get up to twice
(n times for n tasks) the speed-up of MAP using the additional
feasible sequential assignment shown in Fig. 3(b).

We cannot relate the parallel and sequential optimals for the
same reason we could not relate the MAP and sequential optimals
(i.e. while the P AR model has lower costs than S E Q for the same
assignments the S E Q model has a larger feasibility set), however
we can say that:

t∗HO M ≥ t∗S E Q ∀T ∈ S, A ∈ H

because keeping all the code on the CPU is a feasible assignment
for both the homogeneous and sequential approaches and such an
assignment does not have significant reconfiguration costs (at least
in this paper) so:

tHO M = tS E Q

∀x ∈ XHO M ⊆ XS E Q H⇒ ∃x∗
∈ XS E Q : t∗HO M ≥ t∗S E Q.

Bringing all this together we have the following general
bounding relations for the optimal MAP assignment compared
with the optimals possible for the other approaches:

t∗HO M ≥


t∗P AR ≥ t∗MAP
t∗S E Q

∀T ∈ S, A ∈ H (39)

and it is the subject of future work to bring together the MAP and
sequential benefits to rationalise the above relations for all task
sets and architectures.

Let us now turn our attention to practical MAP solution
complexity. As already mentioned in Section 3.4, MAP is easily
recognised as being a strongly NP-hard problem through its
quadratic communication costs c ipqlm and binary assignment
variables xipl [42,15,36]. In fact, the combinatorial complexity of the
MAP solution space is:

O(|L|
|P||T|) (40)

where |L| is the number of assignment locations, |P| the number
of assignable code sections in a representative task and |T| the
number of tasks to be assigned in the parallel task set.

Eq. (40) shows that the MAP solution space complexity is
particularly sensitive to the number of assignable locations |L|, and
we see the effect of this sensitivity when we look at the solution
times for the detailed configurations shown in Table 9. While it
is perhaps worth stressing that the solution times of Table 9 are
for the assignment of 3,373 code sections


i |P

i
| from Table 2


which is over 146 times the 23 code sections considered for the
3-location problem of [46] which takes over 26 hours to solve,
the L sensitivity still prevented the C1F1C2F2 configuration from
completing within our 24 hour cut-off on CPLEX 12.2 in this work.
To get the C1F1C2F2 MAP optimals and utilisation figures of
Section 4.2 we used the C1F1C2 MAP assignments as a starting
point and the solution polishing feature of CPLEX 12.2 [9] which
we were able to terminate after around 1 hour when an integer
solution with the known minimum optimal value of 185 ms for
this task set and architecture [45] was found.

Table 9 also shows that the additional constraints on the
H O M and P AR models generally shorten their practical solution
times with respect to MAP . However, the different objective and
constraints on the S E Q model resulted in increased solution times
over MAP for themultiple CPU configurationswith even the three
location C1F1C2 S E Q problem not solving to optimality in our 24
hour time limit.
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Table 9
Practical solution times for the assignments of Table 3. The solution times were
measured on a 2.13 GHz Intel Core 2 Duo Apple Mac with 4GB of memory using
the default configuration of 64-bit CPLEX 12.2. All practical implementations had
the symmetry reduction constraints


i δ

i
pl ≤


i δ

i
pm∀ l,m ∈ LCPU : m > l added

and used CPLEX indicators to replace big-M constraints which we found to reduce
solution times over other implementation alternatives. The solution process was
stopped if no optimal was identified in 24 hours as discussed in the text.

Approach Configuration
C1 C1F2 C1F1 C1F1F2 C1C2 C1F1C2 C1F1C2F2

HO M 0.01 0.10 0.10 0.29 229.49 320.22 117.38
P AR 0.04 0.68 0.62 4.34 0.83 4.89 11.96
S E Q 0.01 0.87 0.99 9.48 872.86 >24 h >24 h
MAP 0.01 29.24 10.29 22924.80 143.17 6729.66 >24 h

The fact that the S E Q model did not arrive at a known
bound within 24 hours was an issue and to get the sequential
results for the C1F1C2 and C1F1C2F2 configurations presented
in Table 3 and, indeed, the results for the larger configurations
presented in Table 6 we needed to use a re-formulation based
on the insight that sequential assignments do not share space
on the components they are assigned to by definition and thus
the sequential assignment problem is akin to choosing a set of
components from the configuration for each task to execute on in
isolation such that the combined execution times are minimised.
With this insight, the sequential optimisation problem can be
expressed as:

min tx (41)

s.t. tx ≥


a : a A
∧ Φb

a =1


j∈T

xjat
j
a − M ′(1 − xib) ∀i ∈ T, b : b A (42)


a : a A

xia = 1 ∀i ∈ T (43)

where a and b are valid sub-configurations for architecture A
identified using the new symbol with an example below, Φb

a
is a sub-configuration clash indicator that is defined to be 1 if sub-
configuration a uses any of the same components or channels as
sub-configuration b and 0 otherwise for the sequential approach,
xia is a sub-configuration selection indicator that is 1 if task i
executes on sub-configuration a and 0 otherwise, M ′ is a big-M
constant and t ja is the optimal isolated execution time for task j
running on sub-configuration awhich is considered constant in the
formulation.

We will not spend long discussing the details of the sequential
reformulation as it is not the main point of this paper. However, to
aid the interested reader in understanding the above, the C1F1C2
architectural configuration of Fig. 2(a) could be described by the
A, a, b and Φb

a below:

A = {C1, F1, C2}
a, b ∈ {{C1, F1, C2}, {C1, F1}, {F1, C2}, {C1, C2}, {C1}, {C2}}

Φb
a =


1 if b ∩ a ≠ ∅

0 otherwise,

with the corresponding t ja values obtained using a pre-stage to
solve the original S E Q model for tasks assigned in isolation to the
a sub-configurations.

The reformulated sequential model has the same optimals as
the original form but generally has a far lower solution space
complexity, namely:

O(2|L||T|) (44)

and this allowed us to obtain all the sequential results, including
the 10-location 5-node Axel results, in less than one second each
reusing isolated t ja constants obtained from pre-stage subproblems
Fig. 4. Time to solve MAP problems for different numbers of tasks and task sizes
with the C1F1 configuration of Fig. 2(a) as discussed in the text. The solution times
were measured on a 2.13 GHz Intel Core 2 Duo Apple Mac with 4 GB of memory
using the default configuration of 64-bit CPLEX 12.2 and the same symmetry
reduction and implementation choices as Table 9.

which were solved in a combined time of 1.6 s for all valid Axel
sub-configurations (taking advantage of architectural symmetry).
A similar multi-levelΦ reformulation was used to obtain the three
to six Axel node homogeneous results of Section 4.2 which were
all obtained within one second again and the additional parallel
results of Table 6 were obtained using the unaltered P AR model
of Section 4.1 which solved in less than two minutes.

It is worth noting that while our multi-level Φ reformulation
approach outlined above is applicable to the S E Q, H O M and
indeed (with some minor modifications) the P AR models, the
method cannot be applied directly to the MAP model. This is
because the S E Q, H O M and P AR interactions are all coarse-
grained in one sense or another whereas the optimal MAP
assignment for a task depends on the fine-grained assignments of
other tasks which means that t ja → t ja|x for MAP and it is the
subject of future work to explore appropriate MAP reformulations
along with other techniques [44,52,23,37,27] to deal with the
practical solution time issues already seen for the four location
MAP problem instance.

Despite the future work discussed above, the solution times
of Table 9 indicate that the MAP formulation presented in this
paper can be used immediately with current two-component
tightly-coupled heterogeneous research architectures [48,30,29,
40,5,31,26]. To investigate the utility of MAP with such architec-
tures, we constructed new tasks by chaining together the detailed
3S control and data flow measurements for the basic tasks of
Table 2 to create larger virtual tasks and then measured the solu-
tion times for sets of these larger virtual tasks assigned to the C1F1
configuration of Fig. 2 with the model of Definition 4. The solution
times are shown in Fig. 4 and demonstrate that we can increase
|P||T| over a wide range and still obtain rapid MAP solutions for
C1F1 type architectures.

To put the timings of Fig. 4 in perspective, the top right hand
point on the graph represents the time to identify the optimal
MAP solution for a problem with 5,621,548 code sections and
a solution space of the order of 25,621,548 from Eq. (40). Or, put
anotherway, the top right hand data point is the time to assign 100
tasks which are all over 10 times the size of the current Apache
Web Server distribution [4] when measured in lines of C code to
a two-component heterogeneous architecture. The corresponding
MAP model is 2.38 GB in size when represented as a LP file and
solves to optimality in around half an hour.
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Table 10
The main symbols used in this paper (in alphabetical order). The source column
gives the original source of the data used to generate the results of Section 4 with
[MAP] used to signify internalmodel variables.WeuseB to denote the set {0, 1}, R+

the set of real non-negative numbers i.e. R+ = {a ∈ R : a ≥ 0} and Z+ for the set
of non-negative integers in this paper.

Symbol Source Description

αi
l|x ∈ B [MAP] 1 if any part of task i is assigned to location l

β i
lm|x ∈ B [MAP] 1 if any part of task i communicates

between l and m
γ i
lm|x ∈ B [MAP] 1 if any part of task i spends time executing

on lm
δi
pl ∈ R+ [41,42] The size of code section p from task i on

location l
∆l ∈ R+ [50] The size capacity of location l
ηi
pq ∈ Z+ [41,42] The data flows from p to q in task i

µi
pl ∈ R+ [45] The total computation time of code section

p at location l
χ i
pq ∈ Z+ [41,42] The number of control flows from p to q in

task i
c ipqlm ∈ R+ [45] The total time for communications from p

on l to q onm
i, j ∈ T [14] Task identifiers in the parallel DAG task

set T
l,m ∈ L [50] Computational locations
L [50] The set of all computation assignment

locations
Lp
e ⊆ L [50] Locations with access to external code

required by p ∈ Pi
e

L⊥ ⊆ L [50] The set of sequential computation locations
M⊥ ⊆ L × L [50] The set of shared communication channel

ordered pairs
Pi [41,42] The set of code sections within task i
Pi
e ⊆ Pi [41,42] The set of code sections calling external

code in task i
p, q ∈ Pi [41,42] Code sections within task i
r, s ∈ Pj [41,42] Code sections within task j
T [14] The set of parallel DAG tasks
tx ∈ R+ [MAP] Time task set T takes to execute (including

delays) for x
t ix ∈ R+ [MAP] Time task i takes to execute (including

delays) for x
t ilm|x ∈ R+ [MAP] Time task iwould spend on lm if executing

in isolation
t i
lm⊗

∈ R+ [MAP] Worst case serialisation delay i could
experience on lm

t i
⊗

∈ R+ [MAP] Total worst case serialisation delay i could
experience

X ⊆ B|L||P||T| [MAP] The set of feasible assignments to L of code
P in tasks T

x ∈ X [MAP] One of the feasible assignments from the
set X

x∗
∈ X [MAP] An optimal assignment from the feasibility

set X
xipl ∈ B [MAP] 1 if code section p from task i is assigned to

location l

5. Conclusion

This paper presented the Multi-level Assignment Partitioning
(MAP) approach which optimises parallel task execution on
shared distributed hardware components using robust sequential
assignment. The paper contributed:

1. a formal model for partitioning coarse-grained parallel tasks
to shared distributed hardware components using fine-grained
sequential assignment.

2. insights to simplify the formal model for solution using
standard solvers.

3. experimental results demonstrating the performance improve-
ments possible over previous approaches for a suite of bench-
marks.
In Section 3 our formal model was presented along with sim-
plifying insights which brought the number of binary variables in
the problem down by orders of magnitude. Section 4 then pro-
vided assignment results for a parallel task set consisting of six
standard benchmarks. Results were provided for formal homoge-
neous assignment (using just CPUs), coarse-grained parallel task
assignment, sequential assignment (with reconfiguration costs)
and ourMulti-level Assignment Partitioningmodel with a range of
hardware configurations. The results showed that MAP produced
program accelerations of 6.378 times with only two Axel cluster
nodes [50]where the other approaches tookup to three timesmore
hardware to achieve their respective optimals, all of which were
below that achievable with MAP.

In Section 4.3 we generalised our specific results with bounds
that proved that MAP will always be at least as good as the
homogeneous and parallel models and we provided an existence
proof demonstrating that MAP cannot be guaranteed to always be
better than the sequential method which we hope will encourage
future work in this area. We concluded the main body of the paper
with practical solution timing information that demonstrated the
immediate utility of the formal MAP model with the current
research focus on heterogeneous architectures and provided
possible directions for research to extend the applicability of the
formal method for future practical problems.
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