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a b s t r a c t

We present a multi-heuristic evolutionary task allocation algorithm to dynamically map tasks to proces-
sors in a heterogeneous distributed system. It utilizes a genetic algorithm, combined with eight common
heuristics, in an effort tominimize the total execution time. It operates on batches of unmapped tasks and
can preemptively remap tasks to processors. The algorithm has been implemented on a Java distributed
system and evaluatedwith a set of six problems from the areas of bioinformatics, biomedical engineering,
computer science and cryptography. Experiments using up to 150 heterogeneous processors show that
the algorithm achieves better efficiency than other state-of-the-art heuristic algorithms.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Many heuristic algorithms exist for the task allocation problem,
but most are limited to specific cases [10]. The use of evolutionary
algorithms in scheduling, that apply evolutionary strategies from
nature, allows for the fast exploration of the search space of pos-
sible schedules. This allows for good solutions to be found quickly
and for the scheduler to be applied to more general problems. The
genetic algorithm (GA) [6] evolutionary strategy has been shown
to consistently generate more efficient solutions than other evo-
lutionary strategies when applied to scheduling in heterogeneous
distributed systems [2].
Many researchers have investigated the use of GAs to sched-

ule tasks in homogeneous [7,15,16,30] and heterogeneous [1,2,
18,27,29] multi-processor systems with some success. However,
the generality of these solutions are often reduced because of the
assumptions made; (i) calculating schedules off-line in advance
[1,2,7,27,29], (ii) a priori knowledge of communication times and
task processing times [1,2,7,27,29], (iii) instantaneous message
passing [30], (iv) all processors are homogeneous [7,30], and are
dedicated to the distributed system [1,7,10,25,27–31]. All of these
assumptions limit the applicability of a scheduler in a real-world
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distributed system. It is our belief that if a scheduler is to be made
applicable to real-world distributed computing environments and
problems, then it should not make any prior assumptions about
resource homogeneity or availability.
In this paper a scheduling strategy is presented that uses a GA

to schedule a set of heterogeneous tasks on to a set of heteroge-
neous processors in an effort to minimize the total execution time.
It operates dynamically, allowing for tasks to arrive for process-
ing continuously, and considers variable system resources, which
has not been considered by other dynamic GA schedulers. To al-
low for efficient schedules to be produced quickly, the scheduler
utilizes 8 heuristics, reducing the probability of processors becom-
ing idle while waiting for a schedule to be generated. The sched-
uler has been implemented on a real-world distributed system
and tested on 150 non-dedicated heterogeneous processors, with
a variety of real-world problems from bioinformatics, biomedical
engineering, computer science and cryptography. This paper sig-
nificantly extends [24], which presented a GA scheduling algo-
rithm, enhanced by a single heuristic. Simulated experiments
showed that this method could be used to create efficient sched-
ules, however this scheduler had all system and task information
available to it in advance, and the processing resources, commu-
nication resources and the task computation requirements were
drawn from standard distributions. The major contributions of
this paper include: on-line estimation of resources, dealing with
varying resources, dynamically modeling task execution time dis-
tributions, and providing an efficient method for scheduling in
real-world heterogeneous distributed systemswith zero advanced
knowledge.
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2. Genetic algorithm

We have created an algorithm which can adapt to varying re-
source environments utilizing a multi-heuristic GA (see Algorithm
1), originally based on the homogeneous dynamic load-balancing
algorithm in [30] and an extension of [24]. We wish to sched-
ule an unknown number of tasks for processing on a distributed
system with a minimal total execution time, otherwise known as
makespan.

Input: Set of tasks and processors
Output: Mapping of tasks to processors
foreach heuristic do
generate schedule ;

end
while population not full do
copy and mutate heuristic schedules ;

end
repeat
cycle crossover ;
randommutations ;
rebalance ;
roulette wheel selection ;
save best schedule (elitism) ;
update mutation rate ;

until stopping conditions met;
return schedule with shortest makespan

Algorithm 1: Pseudocode for genetic algorithm. We refer to this
algorithm as PN in the text.

The set of processors of the distributed system is heteroge-
neous. The available network resources between processors in the
distributed system can vary over time. The availability of each pro-
cessor can vary over time (processors are non-dedicated). Tasks are
indivisible, independent of all other tasks, arrive randomly, and can
be processed by any processor in the distributed system.
When tasks arrive they are placed in a queue of unscheduled

tasks. Batches of tasks from this queue are scheduled on processors
during each invocation of the scheduler. The queue of unscheduled
tasks can contain a large number of tasks. If all of these tasks
where to be scheduled at once, the scheduler could take a long
time to find an efficient schedule. To reduce the execution time
of the scheduler and reduce the chance of processors becoming
idle, we only consider a subset of the unscheduled tasks, which we
call a batch. A larger batch will usually result in a more efficient
schedule [30], but will incur a longer running time. To do this we
dynamically set the batch size according to the estimated amount
of time until the first processor becomes idle (further details can
be found in [24]).
Each idle processor in the system requests a task to process

from the scheduler, which it processes and returns. The scheduler
contains a queue of future tasks for each processor, and when
a request for work is received the task at the head of the
corresponding queue is sent for processing. A processor does not
contain a queue of tasks; because network resources are limited
and processing resources are not dedicated. We also wish to avoid
repeatedly issuing the same task multiple times, e.g., when a
machine is switched off. When the server has spare resources it
continues to improve the planned schedule in a non-preemptive
fashion (running tasks are not moved). This then allows for a
more efficient operation of the system when a task exceeds its
estimated running time. The server stores information about the
processors, tasks and communication channels. This information is
then used to estimate the properties of the systemand the resource
requirements of the tasks to beprocessed. This is presented inmore
detail in [22].
Fig. 1. Encoding of a schedulewithin the GA, with−1 delimiting processor queues.
Each number corresponds to a unique task ID, thus allowing for a mapping of tasks
to processors.

2.1. Encoding

Each schedule is encoded as a string of characters, using
the same analogy as the encoding of DNA in nature. A single
solution is referred to as a chromosome, and a set of multiple
possible solutions is referred to as a population. Fig. 1 shows the
encoding used within the GA. Each number represents a unique
task identifier, with −1 being used to delimit different processor
queues. This encoding allows for the execution order of tasks
to be defined on each processor, which allows for precedence
constraints (not covered in this research). If the execution order
of tasks was not required to be defined, a simpler encoding can be
used, where the index of each character corresponds to a task, and
the character itself corresponds to a processor.

2.2. Fitness function

A fitness function attaches a value to each chromosome in the
population, which indicates the quality of the schedule. It comes
from the evolutionary principle of ‘survival of the fittest’, where
the organisms with the best characteristics for their environment
have a better chance of surviving to the next generation than
weaker organisms, which are less adapted to their environment.
We use a localized makespan to delineate fitness. Simply taking
the makespan of a solution only considers the total execution
time, however a well balanced load distribution is also a desirable
property, which will also lead to a lower makespan. Thus we have
developed a fitness function which utilizes both. The localized
makespan looks at when each processor will become idle next, and
adds on the time to process each task in the proposed schedule.
The processors with the largest and smallest processing times are
then identified. If these times are the same, it indicates a perfectly
balanced schedule. As the difference becomes greater, so does the
load imbalance, which also effects the efficiency of the resource
utilization. The localized makespan of the yth batch of tasks is
Lx = maxmj=1(

∑ny
i=1 A

j
i + B

j
i) − min

m
j=1(

∑ny
i=1 A

j
i + B

j
i) where ny is

all of the tasks, up to and including the yth batch of tasks, A is the
processing time of a task, B is the communication overhead of the
task, and x is a schedule from the population. The fitness value of
chromosome x is[
Fx =

{
1 : Lx = 0
1/Lx : otherwise,

]
(1)

and Fx = [0, 1]. A larger value indicates a better or fitter schedule.

2.3. Multiple heuristics

We use eight simple heuristics to create an initial population
within the GA scheduler. We chose to use 4 heuristics, along with
4 variations, which are very simple and commonly found in real-
world systems, often with only slight variations and/or different
names. Two are batch heuristics and 2 are immediate mode
heuristics.We hypothesise that usingmore heuristicswill improve
the overall initial population, however this requires further
research and is beyond the scope of this paper. The remainder of
the population is generated using random permutations of these
heuristics. The use of multiple heuristics in our initial population
provides the GA with reasonable starting solutions, compared to
starting with a completely randomly generated initial population.
By employing elitism, the GAwill always produce a solution which



760 A.J. Page et al. / J. Parallel Distrib. Comput. 70 (2010) 758–766
is equal to, or better than, the best heuristic solution in the initial
population, because the best/fittest solution is always brought
forward to the next generation.
The eight heuristics operate on batches of tasks, and each is

presented with the same set of tasks. They are also all presented
with estimated task execution times, estimated communication
overheads, and execution rates of the processors in MFLOP. Details
of how the task execution times and communication overheads are
estimated can be found in [22]. We will now present each of these
heuristics. The complexity of each of these heuristics is Θ(N2),
where N is the number of unmapped tasks andM is the number of
processors. The complexity of the meta-heuristic proposed in this
paper is alsoΘ(N2).
The max–min (MX) heuristic begins with a set of unmapped

tasks. The execution time of each task on each processor is added
to an ETC matrix where ETC(i, j) denotes the execution time of
task i on processor j. The ETC matrix is directly equivalent to the
makespan. For each task, the processor which will compute it with
the minimum amount of time is selected and added to a set. The
task-processor mapping with the largest completion time in this
set is selected. This task is then assigned to the processors queue,
and removed from the set of unmapped tasks. This process is
repeated until all tasks aremapped to a processor. TheMXheuristic
attempts to schedule the longest running tasks as early as possible,
to processors which will process the tasks as fast as possible. Tasks
with shorter execution times can then be mixed with the longer
running tasks resulting in an overall move evenly balanced load
across the processors and a better makespan.
The min–min (MM) scheduler [8] is similar to the MX heuristic,

except that after the set ofminimumcompletion times is found, the
task with the overall minimum completion time is assigned to the
corresponding processor. MM increases the probability that more
tasks will get to execute on their first preference processor than
with MX [18].
The max lightest loaded (LLX) heuristic scheduler considers the

existing load on processors and the estimated MFLOP of the tasks.
The set of unmapped tasks is sorted in descending order according
to their estimated size. The task with the largest computational
requirement (in MFLOP) is then assigned to the lightest loaded
processor. This is repeated until all tasks have been mapped to
processors. LLX does not consider the time a task will take to
execute on a given processor. It instead aims to put large tasks
on lightly loaded processors, and small tasks on heavily loaded
processors. If the estimated processing time of tasks has a high
error, this heuristic will still provide a reasonably distributed load
compared to MX and MM.
The min lightest loaded (LLM) heuristic scheduler operates in

the same way as LLX, except the computational requirements of
the tasks are sorted in ascending order. It attempts to schedule the
smallest tasks first to increase the throughput of tasks.
Each of the heuristics above, MX, MM, LLX, and LLM assume

there is no network overhead for scheduling a task on a processor.
Where the processing to communication (P-to-C) ratio is very high,
the network overhead may be negligible, but when it is low, or
when there is limited network resources, the communications
overhead must be considered for scheduling a task on a processor.
A variant of each of the above heuristics, MXC, MMC, LLXC and

LLMC estimates the communication cost of mapping tasks to pro-
cessors. Communication costs are estimated using the k-NN algo-
rithm as described in [22]. The makespan is updated to include
communication costs, ETC(i, j) + C(i, j) where C(i, j) is the esti-
mated communication overhead associated with executing task i
on processor j. As each processed task is returned, a tuple of in-
formation (total communication time in seconds, task inputs, task
identifier, processor identifier) is saved to the communications ob-
servation set. An estimated communication time in seconds is gen-
erated by passing in the processor identifier j, the task identifier i
and the input parameters to the task. Apart from PN (overall meta-
heuristic) MXC, MMC, LLXC and LLMC are the only new heuristics
proposed in this paper. All other heuristics are proposed elsewhere.
Each heuristic is suited to different situations. MX performs

well when there are more large tasks than small tasks, with MM
performing better in the opposite situation [18]. LLX and LLM
are ideal heuristics for the situation where the size of tasks to
be processed is not known, or the estimated processing time has
high error. The variations of all the heuristics, which estimate
communication costs, allows for efficient schedules to be produced
in systems with high communications costs, such as massively
distributed systems.

2.4. Evolutionary phase

The evolutionary phase of the GA is governed by the cycle
crossover method [20]. Two parent (A and B) strings are randomly
selected from the population. Index x1 is randomly chosen. Ax1 and
Bx1 are marked as having been visited. The value contained in Bx1
is noted. This value is then searched for in A and the index of this
value is denoted as x2. Ax2 and Bx2 are then marked as having been
visited, and the value in Bx2 is searched for in A. This continues
until an index in A is visited twice. A cycle has now been found. All
indices visited are then crossed over to produce 2 newchild strings.
This ensures that the child strings generated are valid, e.g. only
1 task may be scheduled to 1 processor at any time. Since both
parents contain the exact same character, just in a different order,
a cycle will always be found.

2.5. Mutation

Two types of mutation are employed by the GA, one randomly
swaps elements of chromosomes in the population, and the other
is a rebalancing heuristic. Random mutations are an essential
part of a GA, perturbing the population to allow for new
areas in the solution space to be searched. Every generation a
percentage of elements in the population is randomly mutated.
If the improvement in the makespan has not improved after 10
generations, the mutation rate is increased. Once the makespan
begins to improve again the mutation rate is reduced. This reduces
the probability of the GA getting stuck in a local minimum.
The other mutation operation utilizes a rebalancing heuristic

to reduce the makespan. It achieves this by attempting to more
evenly distribute the load on processors, by swapping tasks from
heavily loaded processors on to lightly loaded processors. It has an
average case complexity of Θ(M + N), where M is the number of
processors, and N is the number of tasks. The solution generated
by the heuristic will be discarded if it is worse than the starting
solution, thus ensuring that the heuristic will only have a positive
effect on the makespan.

2.6. Selection

The selection technique is based on the roulette wheel method
[7,25,30]. The probability of a string going forward to the next gen-
eration is represented as a proportional sized slot on the roulette
wheel, with a range from 0 to 1. Random numbers from 0 to 1 are
then generated. The string which corresponds to the randomly se-
lected slot is brought forward to the next generation. Since fitter
strings have larger slots, they are more likely to be brought for-
ward to the next generation. This process continues until a suffi-
cient number of strings are selected.

2.7. Stopping conditions

When the stopping conditions are met, the evolution of the
populationwill halt. This is to prevent theGA from running forever.
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Table 1
Client resources of different experimental setups.

Heterogeneity No. proc MFLOP/s RAM (MB) O/S Processor type

A High

91 28–31 256 Linux P3 600 MHz
50 190–229 512 Linux P4 2.4 GHz
4 15 192 Linux P2 266 MHz
1 154 1024 Windows Centrino 1.4 GHz
1 25 512 Linux P3 500 MHz
1 37 256 Linux P3 1 GHz
1 72 256 Linux P4 1.7 GHz
1 91 1024 FreeBSD AMD 2400+XP

B Low 45 28–31 256 Linux P3 600 MHz
45 180–200 1024 Linux P4 D820

C Homogeneous 45 180–200 1024 Linux P4 D820
Since this scheduler is intended for use in an on-line distributed
system, it must produce schedules in a reasonable amount of time.
Thus we use two stopping conditions: (1) there is an upper bound
on the maximum number of generations, to guarantee evolution
will halt and (2) if the makespan of the best solution has not
changed after a set number of generations, then the GA will stop.

3. Experiments

For the experiments described in this section, we primarily
used the 3 experimental setups in Table 1, run on a heterogeneous
Java distributed system [11]. The first and simplest setup is a
homogeneous set of processors, whichwe use as a base case for our
experiments. This allows schedulers which favour a homogeneous
set of processors to excel. The next setup is a set of processors
with 2 homogeneous sets of processors. Both of theses setups
used a 100 Mbps network. Finally, we used a set of processor
with high heterogeneity and with a heterogeneous network which
was spread over 3 different LANs and ranged from 10–100 Mbps.
We had non-dedicated usage of these processors, and the actual
available processing and network resources varied stochastically
over time. All experiments were performed at off-peak times to
minimize the effect of these variations. All the clients connected
to a dedicated server running Linux (Fedora Core 4) on a 3 GHz P4
with 1 GB of RAM.

3.1. Other scheduling algorithms

The performance of the PN scheduler has been compared
to the performance of a number of different schedulers. These
schedulers are the most commonly used schedulers in distributed
computing (see Table 2). The earliest first (EF) scheduler [17] is
an immediate mode heuristic scheduler. It schedules tasks on the
processor which will finish processing earliest. The lightest loaded
(LL) scheduler is also an immediate mode scheduler, scheduling
tasks on the most lightly loaded processors, without regard for
the processing time of the task. MX is a batch scheduler which
attempts to schedule the largest tasks first, andMM is the opposite,
scheduling the smallest tasks first. We compare PN to three other
evolutionary schedulers. A simulated annealing (SA) [14] based
scheduler was created using the open source library Jannealer [9].
A tabu search (TA) based scheduler was created using OpenTS [21].
A GA scheduler (ZO) developed by Zomaya & Teh [30] is used for
comparison purposes.
The scheduling algorithms are of varying complexity (see

Table 7), from the least complex, round robin (RR), to the most
complex evolutionary algorithms. These schedulers represent the
most commonly usedheuristics and the state-of-the-art evolution-
ary schedulers.

3.2. Heterogeneous distributed system

A general purpose programmable Java distributed system,
which utilizes the free resources of a heterogeneous set of
Table 2
Taxonomy of schedulers.

Type Key Name Reference

Immediate
RR Round Robin
EF Earliest first [17]
LL Lightest loaded

Batch MM Min–min [8]
MX Max–min [8]

Evolutionary

SA Simulated annealing [14]
ZO Zomaya–Teh [30]
TA Tabu search [5]
PN This paper Algorithm 1

computers linked together by a network, has been developed [11].
The systemhas been successfully deployed on over 500 computers,
which were distributed over a number of locations, and has
been successfully used to process bioinformatics [13], biomedical
engineering [23], and cryptography applications.
The distributed system consists of 3 Java archive files, a client,

a server and a remote interface. A problem can be created for
the system simply by extending 2 classes, called Algorithm and
DataManager. TheAlgorithm class is run on the client and spec-
ifies the actual computation to be performed. The DataManager
class is run on the server and specifies how the problem is broken
up into tasks and how the processed results are recombined.
The distributed system provides a simple scheduling interface,

which allows the administrator of the system to select a scheduling
algorithm using the remote interface. To create a new scheduler,
a programmer only needs to extend the SchedulerCommon API
and implement a single method called generateSchedule. This
method simply takes in a list of tasks andmaps them to processors.
The system defaults to the simplest scheduler, round robin.
Table 3 has a quick overview of the properties of each problem

application. The set of problem used in this section is detailed
in [22].

3.3. GA experiments

Parameters used within a GA, such as the number of genera-
tions, mutation rate and chromosome length, can effect the run-
ning time and quality of results generated by the GA. We will
investigate the effect varying these can have on the scheduling
algorithm.
The execution time of the scheduler increases approximately

linearly with an increase in the number of chromosomes. This can
be seen in Fig. 2, where we varied the chromosome length and
measured the execution time of the GA. We fixed the number of
generations at 500 and ignored all other stopping conditions. The
execution time of a given chromosome length varies, due to the
stochastic nature of overheads in a real-world distributed system,
but the majority of times fall into a tight linear range. The tasks
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Table 3
Comparison of problem properties.

Problem Avg communication time (s) Avg processing time (s) P-to-C No. tasks Reference

SLTT 12.4 519.81 41.92 143 [23]
DSEARCH 14.0 731.99 52.05 612 [12]
MD5 14.4 235.52 16.36 800 [19]
SHA1 64.5 543.02 8.42 900 [26]
Elgamal 29.2 419.96 14.34 406 [4]
TSP 9.5 353.72 37.04 121
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Fig. 2. Execution time (ms) of PN schedulerwith a fixed number of generations and
a fixed mutation rate. The chromosome length corresponds to the number of tasks
to be scheduled.

used in the experiment are described in Table 3. The scheduler
produces schedules for large numbers of tasks and processors
quickly, for example, the GA scheduler can schedule a batch of 170
tasks in under 1 s.
However, the scheduler uses a variable number of generations,

depending on whether the stopping conditions are met. If there in
no improvement after 50 generations, the algorithm stops. The fig-
ure of 50 was chosen as a large enough figure to allow for the ran-
dom mutations to evolve a solution out of a local minima without
impacting significantly on the running time of the algorithm. The
histogram in Fig. 3 shows the number of generations performed
before this stopping condition halts evolution. It forms a Poisson
distribution, which indicates that the scheduler finds either a lo-
cal minimum or the global minimummakespan within a relatively
low number of generations.
When the quality of the solution produced is considered, we

found that the greatest average reduction in makespan occurs
within the first 200 generations. Fig. 4 shows this with a large
reduction in makespan at the beginning, but the returns diminish
quickly. Since the execution time of a generation is a constant
factor, reducing the number of generations allows for a lower
execution time of the scheduler. In a real-time system a client
might be lying idle whilst waiting for a schedule to be produced,
nullifying the effects of a more efficient schedule, thus a lower
scheduler execution time is desirable.
We then looked at the effect the population size on the

makespan achieved when scheduling on a real-world distributed
systemwith 124 processors (see Table 4). Table 5 shows that when
a larger population size is used, the effect on the overall makespan
is negligible compared to using a small population size. This is
due to the stopping condition which halts evolution if there is
no improvement in makespan after 50 generations. The greater
diversity in a large population allows for a minimum to be found
in less generations, which offsets the longer execution time for a
single generation. A smaller population requires more generations
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Fig. 3. Number of generations run before stopping conditions terminate the
evolution of the GA.
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Fig. 4. Averagemakespan achievedwith varying numbers of generations in the GA
scheduler.

to achieve the same effect, however the execution time for each
generation is less. The only difference between using a small and
large population size is the spacial requirement. Thus to reduce
the overall memory consumption of the algorithm we use a small
population size (a micro-GA [3]).

3.4. Multiple heuristics performance

We wish to show that using multiple heuristics to generate
schedules for the initial population of the GA provides more
efficient schedules than using each individual heuristic on its own,
or using a purely random initial population. In Fig. 5 we use each
heuristic individually to initialize the population of the GA. Each
bar is an average 10 simulations, and we scheduled 600 tasks
with normally distributed execution times on 30 heterogeneous
processors.
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Table 4
Client resources used in the distributed system for the experiment shown in Table 5. The operating system on all clients was Linux.

No. processors MFLOP/s RAM (MB) Network link (Mb/s) Processor type

47 180–200 1024 100 P4 D820
45 190–229 512 100 P4 2.4 GHz
32 28–31 256 10 P3 600 MHz
Table 5
Varying population size of the scheduling algorithm where the GA terminates if there is no improvement in makespan after 50 generations.

Population size Makespan (s) Scheduling time (s) Mean scheduling time (s) % Efficiency % Communication costs

10 4653 24.0 0.31 80.4 0.407
20 4720 23.1 0.30 78.1 0.405
30 4701 26.3 0.30 86.4 0.444
40 4672 22.6 0.28 86.9 0.436
50 4649 29.7 0.33 83.3 0.436
60 4846 32.1 0.34 84.3 0.437
100 4686 25.7 0.31 80.9 0.463
1000 4855 32.3 0.34 86.3 0.541
5000 4720 24.8 0.31 83.1 0.418
10000 4711 21.5 0.28 82.7 0.415
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Fig. 5. Performance of each heuristic when used on its own to initialize the GA.

The black bar shows the average initial makespan produced by
the heuristic, and the gray bar corresponds to the average final
makespan produced by the GA from that initial population. The
population consists of only one heuristic and random variations
of the schedule produced by the heuristic. A randomly chosen
initial population (RM) presented for comparison purposes. The
algorithm presented in this paper (PN) utilizes all of the heuristics
to generate an initial population. The initial makespan for PN is an
average of the best solutions generated by the heuristics. As can
be seen in Fig. 5 using multiple heuristics provides, on average, a
lower makespan.
In Fig. 6 we compared each heuristics initial solution to the

final evolved solution (PN), with PN utilizing all of the heuristics.
A set of 6 real-world problems (see [22] for details) were used
for this experiment, processed by 25 non-dedicated heterogeneous
processors (see Table 6). Fig. 6 shows the average initial solutions
(normalized makespan) found by each heuristic after scheduling
60 different batches of tasks. The final evolved solution provides
more efficient solutions on average than the solutions produced
initially by the individual heuristics. The errorbars also show that
the schedules produced by PN vary over a smaller range than the
schedules produced by the other heuristics.

3.5. Performance evaluation

Each scheduler was presented with the same set of problems
and the same set of processors (see Table 1). Themakespan ismea-
sured as the time from when the first task is requested from the
MM MX LLM LLX MMC MXC LLMC LLXC PN

M
ak

es
pa

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Performance of heuristics compared to our algorithm (PN) with real
problems on a real heterogeneous distributed system, with normalized makespan.

distributed system, to the time when the final task is returned
to the system. Table 7 shows that there is a huge difference in
makespan (lower is better) with PN processing all tasks much
faster than the next best scheduler when using a highly heteroge-
neous set of processors and networking resources. The variation in
makespans can be accounted for by inefficient mappings of tasks
to processors, such as slow processors being given computation-
ally intensive tasks or processors with high communication over-
heads being given tasks with a low P-to-C ratio. The experiment
was repeated with a set of resources that displayed low hetero-
geneity (see Table 1.B). With less heterogeneity the difference in
makespan is only 13% between the best (PN) and the worst (SA).
With high heterogeneity this difference was 132%, with PN gener-
ating the lowest makespan (Table 8).
When the experiment is repeated on a homogeneous set of

processors the differences in makespan between the schedulers
becomes negligible (see Table 9) with most schedulers utilizing
the processing resources efficiently with up to 97% efficiency. PN,
ZO and TA generate schedules which are within 1% of each other
in this case and can adapt well to this homogeneous resource
environment, which is to be expected. The simple heuristic
schedulers generate solutions which have makespans which are
20%–38% longer than the evolutionary algorithms.
Fig. 7 shows the number of idle clients while the set of

problems is being processed using the PN scheduler in a highly
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Table 6
Client resources used in the distributed system for the experiment shown in Fig. 6.

No. proc MFLOP/s RAM available (MB) O/S Network link (Mb/s)

9 214 257–296 Windows 10
7 244 100 Windows 100
3 255 261–265 Windows 10
2 223 257–267 Windows 10
2 255 100 Windows 100
1 32 100 Windows 10
1 221 64 Linux 100
Table 7
Comparison of schedulers with a set of highly heterogeneous processors and a heterogeneous set of networking resources.

Scheduler Makespan (s) Scheduling time (s) Mean scheduling time (s) % Efficiency % Communications % Inefficiency

This paper (PN) 9144 138.2 2.239 53.01 2.84 0
Zomaya–Teh (ZO) 14278 276.1 1.904 33.94 2.24 56
Tabu (TA) 16378 322.8 4.818 33.66 2.34 79
Sim. annealing (SA) 21260 4605.4 47.478 30.07 5.95 132

Max–min (MX) 15486 0.5 0.006 34.94 1.84 69
Min–min (MM) 18321 0.4 0.005 32.21 2.30 100
Lightest loaded (LL) 19645 0.1 0.001 25.05 1.82 114
Earliest first (EF) 14492 0.4 0.004 46.88 10.96 58
Round Robin (RR) 20314 0.1 0.001 31.90 9.10 122
Table 8
Comparison of schedulers with a set of 2 types of homogeneous processors and a heterogeneous set of networking resources.

Scheduler Makespan (s) Scheduling time (s) Mean scheduling time (s) % Efficiency % Communications % Inefficiency

This paper (PN) 8437 60.2 0.506 92.5 1.1 0
Zomaya–Teh (ZO) 8593 39.4 0.210 90.6 0.9 2
Tabu (TA) 8767 39.5 0.376 88.4 1.4 4
Sim. annealing (SA) 9564 3938.3 17.27 84.1 7.4 13

Max–min (MX) 9065 0.091 0.0008 87.3 1.1 7
Min–min (MM) 8860 0.166 0.0013 87.0 1.3 5
Lightest loaded (LL) 9053 0.021 0.0002 87.0 0.9 7
Earliest first (EF) 8602 0.089 0.0007 90.9 1.1 2
Round Robin (RR) 8812 0.096 0.0006 88.4 0.9 4
Table 9
Comparison of schedulers with a homogeneous set of processors.

Scheduler Makespan (s) Scheduling time(s) Mean scheduling time (s) % Efficiency % Communications % Inefficiency

This paper (PN) 10408 50.4 0.49 96.9 1.3 1
Zomaya–Teh (ZO) 9969 21.7 0.17 97.6 1.2 0
Tabu (TA) 10126 22.3 0.23 97.5 1.3 1
Sim. annealing (SA) 10351 1530.5 12.24 95.2 3.2 1

Max–min (MX) 12034 0.05 0.01 81.8 1.1 20
Min–min (MM) 13788 0.04 0.01 69.9 0.8 38
Lightest loaded (LL) 13841 0.01 0.01 69.9 0.8 38
Earliest first (EF) 13836 0.03 0.01 69.7 0.8 38
heterogeneous resource environment. The initial assignment of
tasks to processors does not happen instantaneously because the
client machines only contact the server at set intervals (1 min in
this case). Near the end when the steep slope shows that all of the
clients stop processing tasks within a short interval. If this was a
shallow slope it would indicate processing resources are idle and
underutilized.
The overall scheduling framework used in this paper allows for

a zero knowledge approach to be adopted. The target user audience
for this scheduler consists of non-technical researchers, who want
to create a distributed application and have it ‘‘just work’’ without
having to worry about scheduling. As all properties of the system
and the tasks to be processed are estimated on-line, there is no
need for the user to provide a DAG, an ETC matrix in advance or
to have previously executed the application.
The simple list scheduling heuristics (LL, EF, RR) take the next

available task and schedule it. They do not allow for tasks to be
scheduled out of sequence. The underlying algorithms are very
simple, deterministic and easy to understand. The overheads are
also quite low in complexity terms O(M), M is the number of
processors, or in the case of RR O(1). The simple batch scheduling
methods (MM, MX) can take a set of tasks and schedule them at
once. This allows for the scheduler to look ahead to select the best
task to assign to a processor. This additional capability only makes
the heuristics slightly more complicated however it does increase
the complexity to O(N2).
The evolutionary algorithm based schedulers (PN, ZO, TA, SA)

can allocate batches of tasks to processors and utilize evolutionary
techniques to find near optimal solutions. The algorithms can
quickly traverse large solution spaces, which allows them to adapt
to different resource and computational environments. The non-
deterministic nature of the algorithms can limit the applicability of
thesemethods, such as in time critical systems ormedical systems.
These techniques are also more complicated internally. They all
require parameters to be set and inappropriately set parameters
can have a detrimental effect on the quality of the solutions found.
Whilst thesemethods can theoretically findnear optimal solutions,
this can require substantial amounts of time, for example, SA will
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Fig. 7. The number of idle clients in the system while the set of problems is being
processed with the authors’ scheduling algorithm (PN).

find the optimal solution given infinite time. To ensure that these
algorithms finish in a realistic amount of time,where processor idle
time is minimized, stopping conditions must be imposed to cut off
the algorithmand return the current best solution. These trade-offs
when applied to the evolutionary heuristics result in differences in
performance between the algorithms.
Tabu based algorithm (TA) works reasonably well in two of

the three experiments. We intend to investigate using a hybrid
of this algorithm for future scheduling research as its underlying
similarity to genetic algorithms may well benefit from using a
number of simple heuristics. The performance of the Simulated
Annealing method is affected by the parameters required for the
algorithm, such as the temperature and the cool down factor.
For the experiments presented here, the SA parameters were
set by using the simulated annealing algorithm itself, which is
a standard way of setting the parameters. This is problematic
however, because it has a tendency to work for a specific set of
circumstances, andwhen facedwith the unknowns of a real-world
distributed system, it cannot adapt quickly enough.
Compared to other methods the GA based schedulers (PN, ZO)

provide reasonably efficient solutions. PN significantly extends the
ZO heuristic to work with a heterogeneous resource environment
and unknown task execution time distributions. A downside to
the PN algorithm is the complicated non-deterministic nature
of the algorithm. A simpler algorithm is usually preferential
over a complicated algorithm (Occams Razor). Also as it is non-
deterministic, given the same set of inputs, it is unlikely that the
same set of outputs will result. This limitation also affects the
other evolutionary algorithms. Overall however, PN provides an
algorithm which can provide efficient solutions in a wide variety
of unknown task execution time distributions, and can adapt to
heterogeneous resources. This best meets our objective to create
a heterogeneous computing scheduler which can be used by non-
technical users without the need for them to provide a priori
knowledge of the resources or computational requirements.

4. Conclusion

A scheduler was developed for the task allocation problem
in a dynamic heterogeneous distributed system. It is a multi-
heuristic evolutionary algorithm, which utilizes a GA, to allocate
tasks to processors in polynomial time. The use of eight heuristics
to initialize the GA allowed for more efficient schedules to be
created than would have been with a purely random initial
population. If at any stage a processor becomes idle the scheduler
returns the current best solution, which will always be at least as
efficient as the best heuristic solution. The GA was implemented
in Java and incorporated into a distributed system. A set of
real-world problems from bioinformatics, biomedical engineering
and cryptography was used to test the scheduler. Experiments
were performed up to 150 heterogeneous processors, and show
that the scheduler presented in this paper outperforms the most
commonly used heterogeneous distributed computing scheduling
heuristics. The more heterogeneous the resources of a system
become, the harder it is to generate an efficientmapping of tasks to
processors.We have presented an algorithmwhich achieves better
efficiency than other schedulers as the resources become more
heterogeneous.
For future work, the next logical step would be to distribute

the scheduling algorithm to take full advantage of the available
computational resources. Investigation is also needed into dynam-
ically adapting task execution time distribution estimation tech-
niques to identify the characteristics of applications at runtime
which may yield less erroneous computational requirements es-
timations. Task dependencies will also need to be considered, al-
lowing for this work to be applied to a larger set of problems. We
also intend to investigate the use of different heuristics, dynami-
cally changing the set of heuristics at runtime based on observed
performance.
The distributed system software is freely available under an

open source GNU GPL license from the system homepage located
at http://www.cs.nuim.ie/distributed.
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