
 December 2013, 20(6): 77–87

www.sciencedirect.com/science/journal/10058885 http://jcupt.xsw.bupt.cn

The Journal of China

Universities of Posts and

Telecommunications

MapReduce optimization algorithm based on machine learning in

heterogeneous cloud environment

LIN Wen-hui
1,2,3

 (�), LEI Zhen-ming
1,2

, LIU Jun
1,2

, YANG Jie
1,2

, LIU Fang
1,2

, HE Gang
1,2

, WANG Qin
4

1. Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Technology Research Institute, Aisino Corporation, Beijing 100195, China

4. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

We present an approach to optimize the MapReduce architecture, which could make heterogeneous cloud environment

more stable and efficient. Fundamentally different from previous methods, our approach introduces the machine learning

technique into MapReduce framework, and dynamically improve MapReduce algorithm according to the statistics result of

machine learning. There are three main aspects: learning machine performance, reduce task assignment algorithm based on

learning result, and speculative execution optimization mechanism. Furthermore, there are two important features in our

approach. First, the MapReduce framework can obtain nodes’ performance values in the cluster through machine learning

module. And machine learning module will daily calibrate nodes’ performance values to make an accurate assessment of

cluster performance. Second, with the optimization of tasks assignment algorithm, we can maximize the performance of

heterogeneous clusters. According to our evaluation result, the cluster performance could have 19% improvement in

current heterogeneous cloud environment, and the stability of cluster has greatly enhanced.

Keywords cloud computing, MapReduce, machine learning, heterogeneity

1 Introduction

In recent years, with the development of information

technology and the explosive growth of global data, large

data analysis business has produced great challenges to

various research institutions and companies. And the

challenges further promote the development of cloud

computing technology. Hadoop is an open-source

distributed computing framework, which is used for

distributed processing of large data sets and designed to

satisfy clusters scaled from single server to thousands of

servers. Hadoop is the most widely used cloud computing

platform in recent years and has been adopted by major

Internet companies and research institutions. The core

technology of Hadoop [1] includes MapReduce and

Hadoop distributed file system (HDFS), which are inspired

Received date: 31-05-2013

Corresponding author: LIN Wen-hui, E-mail: linwh16@gmail.com

DOI: 10.1016/S1005-8885(13)60112-0

by Google’s MapReduce and google file system (GFS). As

we’ll talk a lot about it later, MapReduce is a distributed

computing framework which mainly focus on large-scale

parallel processing in cloud computing.

Hadoop has the advantages of high reliability, high

scalability and high tolerance. Open source is the greatest

advantage of Hadoop, which can provide a low-cost

solution for processing large data. However, the initial

hardware environment in Hadoop is usually homogeneous,

which means that each node in the cluster has the same

computing power and tasks in each node have the same

operation rate. However, when obsolete hardware replaced

by new ones with the development of cloud computing

technologies, the homogenous environment will slowly

evolve into heterogeneous environment and the nodes’

performance will become inconsistent [2–3]. When tasks

are assigned to different nodes, the response time will be

different. When the speculative tasks are running on

different nodes, the efficiency will also be different. These

Bihax
Highlight

Bihax
Highlight

78 The Journal of China Universities of Posts and Telecommunications 2013

uncertainties will greatly affect the performance of

heterogeneous clusters and make the performance of

heterogeneous clusters lower and less stable than

homogeneous clusters. And this will cause difficulties for

users to predict their job completion time.

In this work, we propose a novel approach for the

heterogeneous clusters problems mentioned above. The

novelty of our approach is twofold. First, we introduce a

machine learning module into MapReduce framework. The

module will study job historical information in the cluster,

and calculate the data processing capacity of each node.

Meanwhile it will learn the statistical information every

day to calibrate nodes’ performance values and acquire an

accurate assessment of cluster performance. Second, after

getting the performance measurement results in

MapReduce framework, it will be used with other

parameters (such as the number of data blocks, the location

of data blocks and network performance, etc.) to optimize

the reduce task assignment algorithm and speculative

execution mechanism, to adapt to the characteristics of

heterogeneous clusters and improve the performance and

stability of the cloud computing cluster.

The highlights of our work can be summarized in the

following points:

1) Developing a machine learning module. This module

will make a detailed analysis of job historical information

in cluster, to obtain the number of tasks running on each

node, task running time, the size of data block and other

statistical information. And then calculate the performance

value of each node in the cloud computing cluster.

2) Optimizing the reduce task assignment algorithm.

Having obtained the performance values of each node, we

can choose the best node to run reduce task based on

current job-related information, including data sizes of the

job, the number of tasks completed by each node, network

performance and other parameters.

3) Optimizing the speculative execution mechanism.

When JobTracker wants to start a speculative task, it

requires a comprehensive analysis and calculations of

various kinds of statistical information. The statistical

information includes the progress of current task, the

remaining amount of data to be processed, network

performance, the performance differences between nodes.

Then JobTracker can select the appropriate node to run

speculative tasks to avoid cluster resource waste.

The remainder of this paper is organized as follows. In

Sect. 2, we introduce the task assignment algorithm and

speculative execution mechanism in MapReduce

framework. Then we carry out a detailed analysis of the

problems and bottlenecks encountered in current cloud

computing cluster. In Sect. 3, we propose the MapReduce

scheduling algorithm based on machine learning and

describes our improvement work for MapReduce

framework. Simulation and evaluation for above improved

MapReduce algorithm is provided in Sect. 4. Finally, we

make a conclusion to this paper and present future work.

2 Background and motivation

2.1 Overview of Hadoop

Hadoop has a master-slave architecture, which contains

one master node and multiple slaver nodes. The master

node contains NameNode and JobTracker modules, while

each slaver node has DataNode and Tasktracker

modules [4]. Fig. 1 shows the basic architecture of Hadoop.

In master node, JobTracker is responsible for scheduling

job, managing tasks, and communicating with TaskTracker.

And TaskTracker is used to process tasks assigned by

JobTracker in slave node. When the user submits a job,

JobTracker will initialize the job and the job will be

divided into several map tasks and reduce tasks. And then

tasks are assigned to TaskTrackers by JobTracker [5].

Fig. 1 The basic architecture of Hadoop

2.2 Task assignment algorithm in MapReduce

When the client submits a job, JobTracker first

initializes the job, splits the job into multiple map tasks

and reduce tasks, and then puts tasks into corresponding

task queue for following assignment. At the same time,

JobTracker will do a localized pre-assigned job for map

tasks and mount map tasks to corresponding nodes

according to the position of input data.

When Hadoop cluster is running, TaskTrackers

periodically send heartbeat messages to JobTracker. The

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Issue 6 LIN Wen-hui, et al. / MapReduce optimization algorithm based on machine learning in… 79

message is the statistical information of TaskTracker,

including the running task information of this node, the

node’s disk usage, the node can receive new tasks or not,

and so on. After JobTracker receives heartbeat messages

from TaskTrackers, it will analyze the statistical

information. If this slave node has idle ability to run tasks,

JobTracker will choose task from the task queue and

assign it to this node. Task assignment follows the process

of map tasks first and reduce tasks second. A simple task

assignment process is shown in Fig. 2.

Fig. 2 Simple task assignment process in Hadoop

In the process of task assignment, map tasks will be

divided into data-local map tasks and non-localized map

tasks. This is primarily determined by the location of the

input data for map task and the location of the node which

runs the task. If input data of the task and the TaskTracker

are in the same server or the same rack, the map task is

defined as a data-local map task, otherwise it should be a

non-localized map task. Assignment process is described

as follows:

Step 1 JobTracker first looks for a failed task which

needs to be run again. If this kind of task exists in the task

queue, JobTracker assigns it to the TaskTracker. Otherwise,

JobTracker continues to look for a suitable task for

allocation.

Step 2 JobTracker looks for a data-local map task

from the non-running task queue. It first looks for the task

whose input data is in the node. If it is not found, it will

look for the task in the same rack. If there is such a task,

JobTracker assigns the task to this TaskTracker. Otherwise,

JobTracker continues to look for a non-localized map task.

Step 3 If Hadoop cluster allows speculative execution,

JobTracker will first inquire map tasks which need to start

speculative execution. If there is a map task whose job

progress lags far behind the job progress, JobTracker will

launch a speculative task for this task.

After map task assignment is completed, JobTracker

will begin to assign reduce tasks. Reduce tasks are

different from map tasks, and there is no localization

concept for reduce tasks, since reduce tasks need to copy

map tasks output result from each node. Therefore, the

reduce task assignment process consists of two steps. First,

JobTracker will find out whether there is a reduce task

which is not running. If exists, it will be assigned to this

node, otherwise JobTracker will check whether there is a

Reduce task which needs to start speculative execution. If

it exits, JobTracker will assign a speculative task to this

node.

2.3 Speculative execution mechanism

High fault tolerance is an advantage of MapReduce. In

cloud computing cluster, there are some overloaded nodes

which lead to low task processing speed, and there are also

some nodes failure and downtime. In this case, JobTracker

will launch speculative tasks for these tasks. JobTracker

will launch the same tasks in other nodes to avoid the

situation that these tasks slow down the job running speed.

The purpose of speculative tasks is to use resources to

exchange for running speed by running the same tasks in

multiple nodes. And JobTracker will use the output result

of the node that completes the task fastest to improve the

running speed of the job.

In MapReduce framework, JobTracker decides whether

speculative execution should be started based on the

progress of the task. For map tasks, the progress of a task

is the ratio between the amount of the input data which has

been processed and the total amount of the input data. For

Reduce task, the calculation of task progress is relatively

complex. First of all, Reduce task has three phases which

are copy, sort and reduce. In copy phase, reduce task needs

to copy the key-value intermediate data generated by map

tasks from each node. Then the data is sorted so that the

key-value pairs for a given key are contiguous in sort

phase. Finally the actual reduce operation is to use the

reduce function defined by user to process the intermediate

data and output results. Therefore, each phase is defined as

one-third of the progress of reduce task. JobTracker further

needs to calculate the ratio between the amount of the

input data which has been processed and the total amount

of the input data in each phase to obtain the progress of

reduce task.

We can use the following two formulas to calculate the

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

80 The Journal of China Universities of Posts and Telecommunications 2013

progress of the map tasks and reduce tasks. P
Mi

 denotes the

map task process of node i in Hadoop cluster. And P
Ri

denotes the reduce task process. S represents the total

amount of the input data, C is the amount of data

processed. K stands for the phase of reduce task, including

three values 1, 2, and 3. When K is 1, the reduce task is in

copy phase. Value 2 denotes sort phase and 3 means the

reduce task is in the last reduce phase. The definition of

P
Mi

 and P
Ri

 are shown in below.

M

100%
i

C

P

S

= ×

(1)

R

1

1 100%; 1, 2,3

3

i

C

P K K

s

⎛ ⎞= − + × =
⎜ ⎟

⎝ ⎠

(2)

After the progress of task is defined, the condition for a

task to start speculative task is simple. When a task has not

launched speculative execution, and its progress is 20%

(Hadoop default value) behind its job average progress in

one minute, JobTracker will start a speculative execution

for this task.

2.4 Related works and motivation

The heterogeneous environment for cloud computing is

widespread in practical applications. For example, in IT

companies or research institutes, hardware always needs to

be upgraded, which will lead to the condition that the

cluster consists of different performance servers and the

homogenous environment evolves into heterogeneous

environment. Therefore, the heterogeneous clusters

performance improvement work is very important.

Our work is inspired by the early works of Zaharia et al.

who proposes longest approximate time to end (LATE)

scheduler in Hadoop. The LATE scheduler can improve

MapReduce performance by predicting Hadoop job

progress more accurately and take system overhead into

account [2]. Works by Xie et al. [6] proposed a data

storage mechanism which takes into account data locality

to MapReduce performance of heterogeneous clusters.

Polo et al. proposed an algorithm based on the adaptive

scheduler which can provide dynamic resource allocation

and minimize job completion time [7]. In Ref. [8], Fischer

et al. introduced a mathematic model to evaluate the cost of

task assignment and presents algorithms for the task

assignment problem with costs that reflect data locality.

Another scheduler algorithm was proposed by Zhang

et al. [9]. The scheduler is used to determine whether

Non-Local tasks could be assigned when JobTracker

cannot find a data-local task. In Ref. [10], Sandholm et al.

introduced a system to manage and dynamically assign the

resources in a cloud computing cluster shared by multiple

users. An improved data placement strategy was proposed

by Lin. This strategy determines data blocks placement by

evaluating the nodes’ network distance and data load in

Hadoop cluster. This strategy can reduce the time for data

placement and improve the cluster performance [11]. Xue

et al. [12] proposed a method to solve the problem of

storing small files on HDFS. Their method aims at

improving I/O performance of small meteorological files.

In Ref. [13], Jiang et al. introduced five factors that affect

the performance of Hadoop, and investigates alternative

but known methods for each factor. They analyzed the

changing of Hadoop performance through tuning these

factors. A hybrid scheduler for scalable and heterogeneous

Hadoop systems was proposed in Ref. [14], where they

proposed a combination of the FIFO, fair sharing, and

classification and optimization based scheduler for

heterogeneous Hadoop (COSHH) schedulers. In Ref. [15],

Guo et al. proposed a benefit aware speculative execution

which can speed up task execution by using available

resources more aggressively in heterogeneous network

environments.

The MapReduce mechanism is suitable for homogenous

cloud computing cluster. Above works improve the

performance in heterogeneous clusters, but there is still

much room for improvement.

In task assignment algorithm, the reduce task

assignment is based on the order in which the node

requests. The advantage of this approach is to assign

reduce task to node in the easiest way, and it can reduce

the pressure of JobTracker. However, the performance of

nodes in heterogeneous clusters is different. When reduce

task is assigned to the high performance node, the task will

be completed faster, otherwise the task will run a long time.

When the difference of each node’s performance is big,

task running time enjoys great uncertainty, which causes

the instability of the time for completing the same job in a

cloud computing cluster.

The speculative execution mechanism in MapReduce

framework has certain irrationality. When speculative task

is started, JobTracker does not consider data localization,

node performance and other factors. JobTracker assumes a

number of conditions, for example the performance of

each node is basically the same, the time of dealing with

the same types of tasks roughly equal in each node,

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Issue 6 LIN Wen-hui, et al. / MapReduce optimization algorithm based on machine learning in… 81

speculative task is launched only because of the

overloaded of current nodes and so on. In heterogeneous

clusters, the performance of each node is quite different,

the running of speculative tasks is prevalent, and the

excessive speculative task execution leads to the decline of

the cluster performance. This will make the job running

speed lower than that when speculative execution

mechanism is not started, which will result in resources

waste and performance decline. Therefore, the speculative

execution mechanism can enhance the performance in

homogenous cloud computing cluster. However, in

heterogeneous clusters this mechanism may not improve

performance; on the contrary, it may even reduce the

performance of the cluster.

3 MapReduce algorithm based on machine learning

This section describes our MapReduce algorithm based on

machine learning. Firstly, we introduce a node performance

indicator in our algorithm, and try to obtain the value of

the indicator through machine learning approach. We

design a machine learning module in MapReduce

framework to help JobTracker acquire the computing

capabilities of each node through analyzing job historical

data in the cluster. And then, according to the load and

performance of each node, we improve the reduce task

assignment algorithm and speculative execution

mechanism to improve the performance and stability of

heterogeneous clusters.

3.1 Node performance measurement based on machine

learning

Excellent Scalability is an advantage of cloud

computing clusters. Nowadays, most of the cloud

computing clusters are built in stages and gradually

upgrade the hardware. Meanwhile, the hardware update

speed is very fast and this will inevitably lead to node

performance differences in cloud computing cluster.

Therefore, the existing cloud computing clusters are

mostly heterogeneous.

Currently, cloud computing cluster cannot accurately

predict job completion time or reasonably assign tasks to

nodes according to nodes’ performance. To solve this

problem, we propose a scheduling algorithm based on

machine learning. The algorithm combines the time series

analysis and machine learning algorithms, which can solve

cloud computing cluster job scheduling problem in

heterogeneous environment.

In this paper�we designed an algorithm works on the

master node. Through this machine learning module,

JobTracker can assign tasks more suitable by analyzing the

job processing statistics. The machine learning module

collects information of map tasks and reduce tasks that

each job was broken down. Then the module will

statistically analyze map tasks historical information,

calculate the number of tasks completed by each node and

task completion time, and finally get the value of the

performance of each node. Through the analysis of the

relevant statistical information, we use node data

processing speed to represent the performance of each

node. Node data processing speed is the amount of data

processed by one node per unit time. In heterogeneous

clusters, the node data processing speed can more vividly

demonstrate the performance differences of each node.

Meanwhile, this module calculates job historical

information every day to correct the performance value of

each node. The detailed calculations are shown below.

We assume that current cluster has N nodes. Node data

processing speed are v
1
, v

2
,…,v

N
. The size of data block is

C. As each map task corresponds to one data block in the

cluster, the value of C also indicates the amount of input

data for each map task. We define the vector V = (v
1
,

v
2
,…,v

N
), which is a collection of data processing speed of

nodes. Node data processing speed is also the

demonstration of node performance value.

Assuming that the number of running jobs is M
k
 in the

day k. For the jth job, the average time for processing a

task in node i is t
ij
, and C/t

ij
denotes the average speed of

the node i processing tasks of job j. the matrix A
k

shows

the speed that each node in the cluster processes each job

on the kth day.

11 1 1

1

1

... ...

... ...

... ...

j M

k

i ij iM

N Nj NM

C C C

t t t

C C C

t t t

C C C

t t t

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥=
⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥
⎣ ⎦

� �

� �

A

(3)

For cloud computing cluster running speed issues, we

believe that it is similar to a lot of problems in the time

series analysis. Cluster running speed changes every

moment, and we can use some ideas from the time series

Bihax
Underline

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

82 The Journal of China Universities of Posts and Telecommunications 2013

to carry out modeling and analysis of the cluster running

speed. The essential characteristics of time series analysis

which different from the normal analysis is the

neighboring correlation between observations. It is very

similar to the data attributes in our paper. The speed of

previous moment will greatly affect current calculation

speed, thereby affecting the overall performance of the

cloud computing cluster. Moving average method and

exponential smoothing method are based method of time

series analysis, which are suitable for simple system model.

Compared with the moving average method, exponential

smoothing method includes moving average processing

idea and considers the debilitating impact of the past data.

Combined with the running data in cloud computing

cluster, we believe that the cluster running speed at each

moment is the weighted average value of the observation

value of a certain moment and its previous moment.

We define the initial data processing speed as V
0
, as

shown in Eq. (4). V
k
 is the result after k iterations.

T 1

0 0

0

m

M

=
J

V A

 (4)

T T

1 1 1

1

1

k k m k

k

M

α α− −
−

−= +V A J V

 (5)

In Eq. (5),
1 1

(1,1,...,1)
m n×=J , α is a weight parameter,

which is used to represent the impact of the calculation

result of 1k − on the calculation result of k. In this paper,

we use k to define the number of days, that is, we calculate

the value of the vector V once a day. In the actual

operation of the process, the number of running jobs

cannot be the same every day, so we randomly select M

job historical information every day.

In our algorithm, select an appropriate value of α is a

very important, which will directly affect the forecast

results. As shown in Eq. (5), with the larger value of α ,

the measurement result is more reliance on historical data.

Combined with the type of data to be processed in cloud

computing cluster, we believe that the running speed of

cloud computing cluster is irregular ups and downs, but its

long-term trend is relatively stable. And refer to the

relevant information of time series, its value between 0.05

and 0.2 is reasonable. After several experiments, we verify

that 0.1 as the value of α is more reasonable in Hadoop

experimental cluster. This means that the impact of

previous day’s data on current Hadoop cluster is small and

the cluster performance is relatively stable over time.

Through adding machine learning module to the master

node, JobTracker can analyze the job historical

information every day. The machine learning module

needs to know the number of map tasks and reduce tasks

that each job is broken down. Then the module will

statistically analyze map tasks history information,

calculate the number of tasks completed by each node and

task completion time, and finally get the value of the

performance of each node. Meanwhile, this module will

calculate job historical information every day to correct

performance value of each node. The detailed calculations

are shown below.

3.2 MapReduce optimization algorithm based on machine

learning

In the previous section, we use machine learning

approach to calculate the performance indicator of nodes.

Using this indicator as a basis, we propose a MapReduce

optimization algorithm. The algorithm is an innovative

approach for heterogeneous clusters problem. Firstly, we

optimize the reduce task assignment. When JobTracker

needs to assign reduce tasks, it will be combined with node

performance value, to-be-transferred data amount, network

performance and so on, and then choose the best node to

run reduce tasks. Then, we carry out targeted

improvements for speculative execution mechanism of

map tasks and reduce tasks. The advantage of our

speculative execution mechanism is to improve the

effectiveness of speculative task, reduce the waste of

resources and speed up job running speed in cluster. Using

this algorithm, the performance of heterogeneous clusters

will be greatly improved and the stability of cluster

performance will also be enhanced.

In heterogeneous clusters, the high performance node

will run more map tasks and store more intermediate data.

When these intermediate data are temporarily stored in the

slave node which will not launch reduce task, the cluster

will spend a lot of network resources for data transmission.

And reduce task will complete more quickly when it runs

on the high performance node. The default MapReduce

mechanism does not consider node performance problems

in heterogeneous clusters. Therefore, job completion time

will enjoy greater fluctuation when it runs in

heterogeneous clusters.

Under such circumstances, we optimize the reduce task

assignment algorithm to improve the performance and

stability of the cloud computing cluster. Firstly, JobTracker

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Bihax
Highlight

Issue 6 LIN Wen-hui, et al. / MapReduce optimization algorithm based on machine learning in… 83

acquires the performance value of each node from the

machine learning module. Then, with the heartbeat

messages from TaskTrackers, JobTracker builds a list of

node status. When JobTracker begins to assign reduce

tasks, it will use the active form of assignment rather than

wait for TaskTracker to initiate a request. Following the

high-to-low sequence of node performance, JobTracker

will inquire node information in the node status list and the

load of the node, and then assign a reduce task to the slave

node which has idle reduce tasks running ability and best

performance value. JobTracker selects corresponding

number of nodes to run tasks according to the number of

Reduce tasks that need to be run. The flow chart is shown

in Fig. 3.

Fig. 3 Flow chart of reduce task assignment

JobTracker will launch speculative task for the task that

runs more slowly. However, JobTracker does not consider

the performance of nodes when it assigns speculative tasks.

In practical applications, the phenomenon that the running

speed of speculative task is lower than that of the original

task often appears in heterogeneous clusters. In this case,

the speculative task is unable to expedite the completion of

the job and there will be a waste of cluster resources.

Therefore, in the heterogeneous clusters, the launch

condition of speculative execution needs to be reasonably

assessed. Meanwhile, we need to design a node selection

algorithm for launching speculative task to improve the

efficiency of the speculative task, avoid waste of resources

and speed up the completion of the job.

In this algorithm, when JobTracker needs to start a

speculative map task, it should firstly obtain performance

value of the node that runs the map task and the locations

of the map task input data. In these nodes that store the

input data, if there is a higher performance node which has

idle slot that can run the map task, JobTracker will choose

the node that meets the conditions and has best

performance to run the speculative task. Otherwise,

JobTracker will continue the search from the list of all

nodes. When the performance of the selected node is better

than that of the original node and has idle slot to run the

map task, JobTracker will launch a speculative task in this

node. In other words, if the selected node satisfies the

condition of Eq. (6), JobTracker will choose this node.

M

(1)

0
i

j ij i

D PD D

v v v

−
+ − > (6)

In Eq. (6), v
ij
 denotes inter-node network transmission

speed in cluster, P
Mi

 denotes the task progress in node i,

and D is the input data size. v
i
 stands for the task

processing speed of the node I and v
j
 represents the task

processing speed of the node j. Since D is a common part,

Eq. (6) can be simplified to Eq. (7).

M

11 1

0
i

j ij i

P

v v v

−
+ − >

(7)

We assume that S is the size of data that the reduce task

needs to handle. The Reduce task progress in node i is P
Ri

,

v
i
 denotes the data processing speed of node i, and the

remaining time of the reduce task is T
i
 which is shown in

Eq. (8). When the reduce tasks are running, reduce task

must copy the intermediate result generated by map tasks

from each node. The time for copying data cannot be

accurately calculated, so it is necessary to add a threshold

value β . We assume that the selected node is j, its data

processing speed is v
j
, and the remaining time of reduce

task is T
j
. The definition of T

j
 is shown in Eq. (9). If T

i
 is

larger than T
j
, JobTracker will launch a speculative reduce

task in node j.

1

=
i

i

P

T S

v

−
 (8)

= (1)
j

j

S

T

v

β+ (9)

When JobTracker needs to start a speculative reduce

task, it should firstly obtain performance value of the node

that runs the reduce task. Then JobTracker selects a node

from the node list. This node should have a higher

performance value and idle slot that can run the reduce

task. If the node satisfies the conditions of Eq. (10),

JobTracker will launch a speculative Reduce task in this

node. Otherwise, JobTracker will not launch speculative

execution. Since S is a common part, Eq. (10) can be

simplified to Eq. (11). The pseudo-code of our algorithm is

Bihax
Highlight

Bihax
Highlight

84 The Journal of China Universities of Posts and Telecommunications 2013

provided in Fig. 4

1

(1) 0

i j

P S

S

v v

β− − + >

(10)

R

(1)

1

i

j

i

v

v

P

β+ >
−

(11)

Pseudo-code interpretation of MapReduce optimization

algorithm

Algorithm 1 Reduce task assignment algorithm

Input:

Pnode: Node performance list sorted by node performance

NodesLists: Node status list

TaskList
reduce: List of reduce tasks need to be assigned

Output:

AssignFlagList: Flag list indicates whether reduce tasks are

assigned.

1. For each reduce task in TaskList
reduce do

2. i = 0;

3. For each node in P
node do

4. SelectedNode = Node which is sequentially read

from P
node

5. NodeFlag = check whether SelectedNode has idle ability to

run reduce task from NodesList
s

6. if (NodeFlag == True) then

7. Assign this task to SelectedNode

8. AssignFlagList[i] = True

9. end if

10. if (AssignFlagList[i] == True) then

11. break;

12. end if

13. end for

14. if(AssignFlagList[i] == True) then

15. update the SelectedNode status in NodesList
s

16. end if

17. i is incremented by one

18. end for

Algorithm 2 Speculative execution algorithm

Input:

P
lownode: performance value of the node i that runs the task

Percent
lownode: the task progress in node i

V
lownode: the data processing speed of node i

S: the size of data that the task needs to process

Pnode: Node performance list sorted by node performance

NodesList
s: Node status list

α: threshold for data tranmission

Output:

CheckFlag: Flag to indicate whether this node meets the condition

1. For each Node in Pnode do

2. if (P
i
 < Plownode) then

3. continue;

4. end if

5. NodeFlag = check whether SelectedNode has idle ability to

run task from NodesLists

6. if (NodeFlag == False) then

7. continue;

8. end if

9. T
lownode = S / Vlownode * (1 − Percentlownode)

10. T
i
 = S / Vi * (1 +α)

11. if (T
i
 < Tlownode) then

12. continue;

13. else

14. select this node to run speculative tasks

15. ChenkFlag = True

16. break;

17. end if

18. end for

4 Experimfnt and analysis

In this section, in order to verify the effect of the

MapReduce algorithm based on machine learning, we will

introduce the improved algorithm into a Hadoop cluster. In

this experiment, we add the machine learning module to

the master node and edit the task assignment algorithm in

Hadoop cluster. Then we will run the same jobs in the

improved Hadoop cluster and the default Hadoop cluster.

Finally, we analyze the experimental results.

4.1 Experimental setup

The experimental platform is built on a cluster with one

master node and five slave nodes. And operating system in

each node is Centos 5.4, Kernel version is 2.6.18, Hadoop

version is 1.0.2, and Java version is 1.6.0_33.

The experimental cluster is a heterogeneous

environment, the hardware configuration of the servers in

the cluster are different. The master node is IBM System

x3650 M2, CPU Intel (R) Xeon (R) E5520 2.27 GHz,

2×4 GB DDR2, 146 GB HDD. The slave nodes include

three types of servers. Two nodes are IBM x236 which

have been used for seven years. Hardware configuration is

CPU Intel (R) Xeon (TM) 2.40 GHz, 1×4 GB DDR2,

146 GB HDD. Another two nodes are Lenovo Server.

Issue 6 LIN Wen-hui, et al. / MapReduce optimization algorithm based on machine learning in… 85

Hardware configuration is Pentium (R) Dual-Core 3.20 GHz,

2×2 GB DDR2, 500 GB HDD. And a slave node is IBM

x3850, CPU Intel(R) Xeon (TM), 2.66 GHz, 1×4 GB

DDR2, 2×146 GB HDD. Server configuration cannot

quantify the level of server performance, so it is necessary

to use machine learning method to accurately quantify the

performance of nodes.

Terasort is a classic Hadoop benchmark. It uses

map/reduce to sort the input data into a total order.

TeraSort is a recognized standard which can be used to

measure the cluster’s data processing capabilities in the

framework of distributed data processing. In this

experiment, we use TeraGen to generate test data. TeraGen

is a map/reduce program which can write out a specified

amount of data. Each line of test data is 100 B, which

contains a 10 B key and a 90 B value.

4.2 Node performance measurement based on machine

learning

In this experiment, we run several jobs every day in the

experimental Hadoop cluster. We use the machine learning

module to analyze and calculate the daily job historical

information, and obtain the performance values for each

node. Firstly, we use the machine learning module to

analyze the four-day job running data in the cluster. This

module calculates job historical information every night.

And it calculates the number of tasks completed by each

node, task completion time, the input data sizes, and so on.

After calculating the daily job historical information, the

module can get the average time for processing tasks in

each node and get the value of A
k
 in Eq. (3). Then using

the first day’s job information and A
k

in Eq. (4), this

module can get the value of V
0
. In the subsequent three

days, the machine learning module analyzes the job

historical information every day and use the Eq. (5) to get

the value of V
k
. Fig. 5 is the four-day performance value of

nodes which is calculated by the module. The horizontal

axis indicates the slave nodes in cluster. The vertical axis

represents the data processing speed, which indicates the

size of data processed by a node per second, and unit is

MB/s.

As shown in Fig. 5, we can see that the performance

values of nodes are tending to stabilize, but there will be

slight fluctuations. In the long term, with the aging of the

server hardware or equipment replacement, the node’s

performance will have big changes.

(a) The first day

(b) The senond day

(c) The third day

(d) The fourth day

Fig. 5 Four-day performance value of nodes calculated by

machine learning module

Therefore, in actual operation, we do not need to

analyze the job historical information or calculate the

86 The Journal of China Universities of Posts and Telecommunications 2013

node’s performance value every day. We can recalculate

the performance value of nodes weekly, monthly or when

hardware changes in cluster to reduce the pressure of the

master node. Meanwhile, as can be seen from Fig. 5,

server hardware parameters and the use of time both affect

node performance.

We use Eq. (5) for iterative calculation and finally get

V
3
 = (2.01, 3.55, 3.62, 4.24, 3.16). This value is the

performance value of nodes in the cluster after four days

running as well as the basis for task assignment in our

algorithm. In the next section we will launch jobs based on

the value of V
3
 and launch the same jobs with Hadoop

default mechanism for comparison to analyze the impact

of the improved algorithm on Hadoop cluster performance.

4.3 Job running experiment based on improved

MapReduce algorithm

In order to objectively describe the impact of the

improved MapReduce algorithm, we use Terasort as a

benchmark. Firstly, we use TeraGen program to generate

standard test data. Then we run Terasort job with different

sizes of input data. We use the improved MapReduce

algorithm and default algorithm to launch the same jobs in

the Hadoop cluster. Experimental results will be compared

and analyzed.

The test data size is from 10 GB to 60 GB in this

experiment. Fig. 6 is a comparison chart of job completion

time. From this figure, we can see that the improved

algorithm can improve the running speed of the job to a

certain extent. Our work mainly consists of two parts. First,

according to the performance and load of nodes,

JobTracker can select suitable nodes to launch reduce tasks

to improve job performance and job running speed stability.

Second, we improve the launch conditions and nodes

selection algorithm of the speculative task.

Fig. 6 Comparison chart of job completion time

This algorithm avoids the problem of the default

MapReduce mechanisms which may start too many

speculative tasks and invalid speculative tasks. And it can

save resources and speed up the completion of jobs in

cloud computing cluster. In this experiment, the cluster

performance is improved about 19%.

After analyzing job historical information, we can get

statistical information of Reduce tasks including its

location and running time of all stages. Fig. 7 is the

running time comparison chart of Reduce tasks with

different data sizes in each node, horizontal axis represents

five slave nodes in the experimental cluster, vertical axis

represents the average time of each reduce task processed

by slave nodes. In the figure we can see that there is a

large time gap between different nodes when processing

reduce tasks. When a Reduce task runs in the higher

performance node, its running time will be significantly

reduced. This also shows that our improved algorithm

mainly increases the running speed of reduce tasks. In the

default Hadoop cluster, reduce tasks randomly run on the

node , and the improved algorithm running reduce tasks

node is in accordance with the performance and load of the

node, which to some extent, improve the Hadoop

performance and stability. Reduce tasks randomly run on

the node in default hadoop cluster. But with the improved

algorithm, JobTracker will select a suitable node to launch

a reduce task in accordance with the performance and load

of the node. So this algorithm can improve the

performance and stability of cloud computing cluster.

Fig. 7 Running time comparison chart of reduce tasks with

different data size in each node

Fig. 8 shows the time of the data copy phase when the

reduce task is running with different input data sizes. As the

comparative experiment uses the same cluster, the network

configuration is the same, so this figure also indicates the

size of the amount of data that each node needs to copy

during reduce task running. When the node which will run a

reduce task saves more intermediate result�it needs to copy

Issue 6 LIN Wen-hui, et al. / MapReduce optimization algorithm based on machine learning in… 87

less data. After the analysis of the job historical information,

the time consumed by the copy stage occupies the entire

reduce task running time from 64% to 52%. When the input

data is 10 GB, this ratio is 60% in node 4 which has higher

performance and 64% in node 1 which has lower

performance. When the input data is 60 GB, this ratio is

52% in node 4 which has higher performance and 60% in

node 1 which has lower performance. Meanwhile, when

reduce tasks run on a higher performance node, the time for

processing data will be less. Therefore, reducing the amount

of data copied and selecting high performance node to

launch reduce task are two key factors that influence the

cluster performance in this algorithm.

Fig. 8 Running time comparison chart of copy phase with

different data sizes

Based on above analysis, we know factors that affect the

cluster performance including task assignment algorithm,

map task processing speed, network performance, data sizes

in copy phase, jobs running parameters and so on. During

job running, the higher performance node will run more

map tasks to store more map output results, and reduce task

need to obtain the data generated by map tasks from each

node. Therefore, the data transmission time will be different

when reduce tasks run on different nodes. Meanwhile, when

a reduce task runs on a lower performance node, it will take

more time to complete task. Therefore, this optimization of

MapReduce mechanism is the key to improve the

performance of cloud computing clusters in a heterogeneous

environment. When we optimize the performance of

MapReduce mechanism, we need comprehensive

consideration of various factors, including job scheduling,

task assignment, cluster parameter configuration, and so on.

5 Conclusions and future work

In this paper, we propose a MapReduce algorithm based

on machine learning for solving heterogeneous clusters

problem. Compared with existing efforts, our approach has

significantly different philosophy. The novelty of our

approach lies in two key features: first, a machine learning

module is introduced into MapReduce framework. This

module is used to study job historical information and

calculate the data processing capacity of each node in

cluster. Second, based on the learning result, two aspects

of optimization have been done:

1) Reduce task assignment algorithm. The improved

task assignment algorithm will assign reduce tasks based

on node performance to improve the job running speed.

2) Speculative execution mechanism. The new

speculative execution mechanism will fully consider the

performance and load of slave nodes before launching

speculative execution in suitable nodes. This mechanism

can avoid launching invalid speculative execution that

results in cluster resources waste.

Finally, our results show that in current experimental

environment, the cluster performance is improved about 19%.

The future directions of our research is performance

optimization for cloud computing. The cloud computing

architecture is complex, it involves various aspects of the

storage, parallel computing, network architecture, and so

on. Therefore, there is a great need for comprehensive

consideration of performance optimization and reasonable

optimization of different cloud computing scenarios.

Acknowledgements

This work was supported by the Important National Science &

Technology Specific Projects (2012ZX03002008), the 111 Project of

China (B08004), and the Fundamental Research Funds for the

Central Universities (2012RC0121).

References

1. White T. Hadoop: the definitive guide. 3rd ed. Beijing, China: O'Reilly

Media Inc, 2012

2. Zaharia M, Konwinski A, Joseph A D, et al. Improving mapreduce

performance in heterogeneous environments. Proceedings of the 8th

USENIX Symposium on Operation Systems Design and Implementation

(OSDI’08), Dec 8-10, 2008, San Diego, CA, USA. Berkeley, CA, USA:

USENIX Association, 2008: 29−42

3. Borthakur D. The Hadoop distributed file system: architecture and design.

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf. 2007

4. Shvachko K, Kuang H, Radia S, et al. The Hadoop distributed file system.

Proceedings of the 26th Symposium on Mass Storage Systems and

Technologies (MSST’10), May 3−7, 2010, Lake Tahoe, NV, USA. Los

Alamitos, CA, USA: IEEE Computer Society, 2010: 10p

5. Dean J, Ghemawat S. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 2008, 51(1): 107−113

6. Xie J, Yin S, Ruan X, et al. Improving mapreduce performance through data

placement in heterogeneous hadoop clusters. Proceedings of the 2010 IEEE

International Symposium on Parallel and Distributed Processing,

Workshops and Ph, d. Forum (IPDPSW−10), Apr 19−23, 2010, Atlanta, GA,

USA. Los Alamitos, CA, USA: IEEE Computer Society, 2010: 9p

To p. 121

Bihax
Highlight

Issue 6 BAI Bing, et al. / Influences of GVD on the characteristics of soliton in a passively mode-locked… 121

Communications in Nonlinear Science and Numerical Simulation, 2012,

17(12): 4544−4550

6. Zhou M, Ma J X. The influence of fiber dispersion on the transmission

performance of a quadruple-frequency optical millimeter wave with two

signal modulation formats. Optical Switching and Networking, 2012, 9(4):

343−350

7. Purwins H G, Bodeker H U, Amiranashvili S. Dissipative solitons.

Advances in Physics, 2010, 59(5): 485−701

8. Zhang H, Tang D Y, Zhao L M. Dissipative vector solitons in a

dispersion-managed cavity fiber laser with net positive cavity dispersion.

Optics Express, 2009, 17(2): 455−460

9. Ouyang C M, Chai L, Hu M L, et al. Characteristics of three operation

schemes in a passively mode-locked all fiber ring laser. Proceedings of the

International Conference on High-Power Lasers and Applications IV:

Proceedings of the SPIE, Vol 6823, Nov 12−14, 2007, Beijing, China.

Bellingham, WA, USA: SPIE, 2007: 179−184

10. Francisco J D, Pedro C P. Propagation properties of strongly

dispersion-managed soliton trains. Optics Communications, 2012, 285(2):

162−170

11. Cho S B, Song H, Gee S Y, et al. Pulse width and peak power optimization

in a mode-locked fiber laser with a semiconductor saturable absorber mirror.

Microwave and Optical Technology Letters, 2012, 54(10): 2256−2261

12. Karlsson S, Yu J, Akay M. Time-frequency analysis of myoelectric signals

during dynamic contractions: A comparative study. IEEE Transactions on

Biomedical Engineering, 2000, 47(2): 228−238

(Editor: ZHANG Ying)

From p. 87

7. Polo J, Carrera D, Becerra Y, et al. Performance management of accelerated

mapreduce workloads in heterogeneous clusters. Proceedings of the 39th

International Conference on Parallel Processing(ICPP’10), Sep 13−16, 2010,

San Diego, CA, USA. Los Alamitos, CA, USA:IEEE Computer Society,

2010: 653−662

8. Fischer M J, Su X, Yin Y. Assigning tasks for efficiency in hadoop:

Extended abstract. Proceedings of the 22nd ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA’10), Jun 13−15, 2010,

Santorini, Greece. New York, NY, USA: ACM, 2010: 30−39

9. Zhang X, Feng Y, Feng S, et al. An effective data locality aware task

scheduling method for mapreduce framework in heterogeneous

environments. Proceedings of the 2011 International Conference on Cloud

and Service Computing (CSC’11), Dec 12−14, 2011, Hong Kong, China.

Los Alamitos, CA, USA: IEEE Computer Society, 2011: 235−242

10. Sandholm T, Lai K. Mapreduce optimization using regulated dynamic

prioritization. Proceedings of the 11th International Joint Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS/

Performance’09), Jun 15−19, 2009, Seattle, WA, USA. New York, NY,

USA: ACM, 2009: 299−310

11. Lin W. An improved data placement strategy for hadoop. Journal of South

China University of Technology: Natural Science, 2012, 40(1): 152−158 (in

Chinese)

12. Xue S J, Pan W B, Fang W. A novel approach in improving I/O

performance of small meteorological files on hdfs. Applied Mechanics and

Materials, 2012, 117/118/119: 1759−1765

13. Jiang D, Ooi B C, Shi L, et al. The performance of mapreduce: an in-depth

study. Proceedings of the VLDB Endowment, 2010, 3(1/2): 472−483

14. Rasooli A, Down D G. A hybrid scheduling approach for scalable

heterogeneous hadoop systems. Proceedings of the 2012 SC Companion:

High Performance Computing, Networking Storage and Analysis (SCC’12),

Nov 10−16, 2012, Salt Lake City, UT, USA. Los Alamitos, CA, USA: IEEE

Computer Society, 2012: 1284−1291

15. Guo Z, Fox G. Improving mapreduce performance in heterogeneous

network environments and resource utilization. Proceedings of the 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid’12), May 13−16, 2012, Ottawa, Canada. Los Alamitos,

CA, USA: IEEE Computer Society, 2012: 714−71

(Editor: WANG Xu-ying)

