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Abstract— We introduce an online scheduling algorithm to 
optimally assign a set of arriving heterogeneous tasks to 
heterogeneous speed-scalable processors. The goal of our 
algorithm is to minimize the total cost of response time and 
energy consumption (TCRTEC) of the tasks. We have three 
contributions that constitute the algorithm. First, we propose a 
novel task dispatching strategy for assigning the tasks to the 
processors. Second, we propose a novel preemptive service 
discipline called Smallest remaining Computation Volume Per 
unit Price of response Time (SCVPPT) to schedule the tasks on 
the assigned processor. Third, we propose a dynamic speed-
scaling function that explicitly determines the optimum 
processing rate of each task. In our work, the processors are 
heterogeneous in that they may differ in their hardware 
specifications with respect to maximum processing rate and 
power functions. Tasks are heterogeneous in terms of 
computation volume and processing requirements. We also 
consider that the unit price of response time for each task is 
heterogeneous. Each task's unit price of response time is 
allowed to differ because the user may be willing to pay 
higher/lower unit prices for certain tasks; thereby 
increasing/decreasing their optimum processing rates. In our 
SCVPPT discipline, a task’s scheduling priority is influenced 
by its remaining computation volume as well as its unit price of 
response time. Our simulation results show that SCVPPT 
outperforms the two known service disciplines, Shortest 
Remaining Processing Time (SRPT) and  the First Come First 
Serve (FCFS), in terms of minimizing the TCRTEC 
performance metric. The results also show that the algorithm's 
dispatcher outperforms the well known Round Robin 
dispatcher when the processors are heterogeneous. We focus 
on multi-buffer, single-threading where a set of tasks is 
allocated to a given processor, but only one task is processed at 
a time until completion unless preemption is dictated by the 
service discipline. 

Keywords- speed scaling, parallel computing, single-
threaded, heterogeneous processors, multi-processor scheduling, 
energy and response time cost, mobile. 

I.  INTRODUCTION  
Energy consumption is a major constraint in today’s 

computing devices. This is especially true for portable 
devices, for example laptops and mobile phones which rely 
on batteries for energy. It is well known that the energy 
consumption grows proportionally to sα where s is the 
processor speed and α is a constant > 1 (e.g. [4, 5, 11, 15, 

26]). This implies that higher speed leads to faster execution 
but incurs high energy consumption. One way to reduce 
energy consumption is to employ dynamic speed-scaling 
(see, e.g. [8, 27]) where the speed of the processors can be 
changed dynamically depending on the workload. The aim 
is to reduce processor speed at times of low workload.  

Contemporary portable computing devices such as the 
recent versions of mobile phones, Tablets, iPads and gaming 
consoles (for example, the PSPVita [25]) utilize multiple 
processors. Multiple parallel processors are mostly used to 
improve overall processing performance needed for multi-
media applications. In the domain of scheduling, 
considerable attention has been given to single processor 
architecture [3, 7, 8, 9, 22, 26]. Fewer have considered 
multiprocessors [4, 5, 12, 13, 19]. 

Although current architectures mostly consist of 
homogenous collection of processors, several works suggest 
that future chip architectures would consist of 
heterogeneous processors [10, 24].  Gupta et al. [16] further 
suggest that scheduling heterogeneous processors is a more 
challenging task compared to homogeneous processors. 

This paper investigates the problem of online scheduling 
of the arriving heterogeneous tasks to multiple 
heterogeneous speed-scalable processors. The tasks are 
heterogeneous in terms of computation volume and 
processing requirements. The processors are heterogeneous 
in terms of their hardware specifications with respect to 
maximum processing rate and power functions.  

The goal of any speed-scaled multiprocessor scheduling 
algorithm is: (i) to minimize the response time given energy 
as a budget, (e.g. [23]) or (ii) to minimize the energy 
consumption as long as the task deadlines are not violated, 
(e.g. [22, 26]) or (iii) to optimize a tradeoff between energy 
consumption and response time (e.g. [3, 9, 18]). The 
objective of our work is to minimize the total cost (in terms 
of dollars) of energy and response time (TCRTEC). In our 
work, the user determines unit cost of response time of a 
task’s execution. Unlike any speed scaling algorithm, we 
explicitly factor the input of a user with respect to 
determining the unit cost of response time for executing 
each task. This allows the user to influence the degree of a 
task’s execution in the economy-performance continuum. 
The user or OS can set the unit price of energy for all tasks 
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depending on the actual unit price of energy in a given 
geographical region and time of day. 

This paper introduces a new multiprocessor speed-scaled 
scheduling algorithm named “Single-threading Multi-Buffer 
Scheduling & Parallel Processing Algorithm (SMBSPP).” 
The goal of this algorithm is to minimize the performance 
metric, TCRTEC. It makes three key contributions:  
• A novel task dispatcher which assigns a task to a given 

processor based on the Minimum among Minimized 
Costs of Virtually Introducing the Task to each 
Processing Stream (MMCVITPS). It dictates which of 
the processors should process each arriving task/s based 
on classifying a set of minimized potential aggregate 
cost functions each associated with a processing stream.  

• A dynamic speed-scaling function, which we name, 
"Optimum Single-threading Speed Scaling Function" 
(OSTSCF) that determines the optimum processing 
rate of a given processor as a function of the following: 

o The parameters of the processor’s power function. 
o The unit price of energy. 
o The sum of the unit prices of response time of 

all tasks residing in the processor’s buffer.  
• A novel preemptive service discipline called Smallest 

remaining Computation Volume Per unit Price of 
response Time (SCVPPT) to schedule the tasks on the 
assigned processor. This discipline minimizes the 
TCRTEC performance metric and also conveniently 
allows the user to dynamically upgrade or degrade the 
priority of tasks. 

The first two contributions are achieved through solving a 
set of multidimensional convex optimization problems. 

In this work, we focus on multi-buffer, single-threading 
where a set of tasks is allocated to a given processor, but 
only one task is processed at a time until completion unless 
preemption is dictated by the service discipline. In order to 
find the optimal speed of a processor, the maximum 
allowable rate of the processor and the minimum 
recommended rate of execution for a task are considered as 
constraints.  

Our simulation results show that our MMCVITPS 
dispatcher works well with heterogeneous processors and 
outperforms the classic Round Robin dispatcher. The results 
also show that our SCVPPT scheduling discipline matches 
or outperforms the two known service disciplines, Shortest 
Remaining Processing Time (SRPT) and the First Come 
First Serve (FCFS), in terms of minimizing the TCRTEC 
performance metric. SRPT policy always selects for service 
the task that has the least remaining service time and it is a 
preemptive policy. FCFS, on the other hand, is a non-
preemptive policy that selects the tasks for service in order 
of their arrivals.  

This paper is organized as follows. Section II presents a 
brief description of prior related work. Section III builds 
background theory and assumptions. Section IV utilizes 
Section III to formally state the problem and synthesize the 
algorithm. Section V describes the SMBSPP algorithm. 

Section VI provides simulation results that evaluate the 
overall performance of the algorithm using a variety of 
performance metrics. Also in this section, we demonstrate 
the performance of the algorithm's dispatcher in comparison 
to the Round Robin dispatcher under various traffic 
conditions and service disciplines. 

II. RELATED  WORK 
In this section, we provide a concise summary of prior 

related work that is most relevant to this paper. 
In the past, when energy was not a major concern, the 

objective of scheduling algorithms was to minimize the total 
response time (also called flow time) of all tasks where 
processors were running at fixed speeds (e.g [20, 1]). The 
response time is the time elapsed since a task arrives until it 
is completed. 

The study of energy-efficient speed-scaled scheduling 
was initiated by Yao et al. in [26].  They considered 
deadline-based scheduling for a single processor where the 
jobs need to complete by their given deadlines. The goal 
was to minimize energy consumption. Assuming the 
processor’s power consumption ( )(sP ) is a convex function 
of processor speed (s), where αssP =)(  for 1>α , they 
considered scheduling a sequence of tasks on a single 
variable speed processor. Each task has a required deadline, 
release time and processing volume (analogous to the 
number of CPU cycles required to execute a task). They 
allow pre-emption, where a task is allowed to resume on the 
same processor after being interrupted. They proposed an 
optimal offline algorithm (YDS) to solve the task 
scheduling problem in polynomial time. In the same work, 
they further introduced two online algorithms, namely, 
Optimum Available (OA) and Average Rate (AR). They 
proved that AR has an energy competitive ratio of 
( ) 2/2 αα . Bansal, Kimbrel and Pruhs [7] worked on OA 
and proved it to have an energy competitive ratio of 
exactly αα . To solve for multiprocessor case, Angel et al. 
[5] considered the problem of scheduling a set of tasks with 
deadlines, release dates and processing requirements, on 
parallel (speed scalable) processors so as to minimize the 
total energy consumption. They considered migration where 
a task is allowed to resume its execution on a different 
processor. They also allowed pre-emption. They name their 
optimal scheduling algorithm BAL which has a time 
complexity of )log)(( UnnfO  where,  n is the number of 
jobs, |)(|Vf

 
is the computational complexity of solving a 

maximum flow in a layered graph with || VO vertices and U 
is the range of all processor speed values divided by the 
targeted accuracy. Independently, Albers et al. [2] 
considered the same multiprocessor speed scaling problem 
with migration, and obtained an optimal scheduling 
algorithm that is fully combinatorial and has a time 
complexity of ))(( 2 nfnO . Angel et al. [5] compared their 
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BAL algorithm to the one of Albers et al. [2] and stated that 
when the target precision is sufficiently high, the algorithm 
of Albers et al. [2] is superior to BAL, otherwise if the 
target accuracy is relaxed, BAL’s algorithm is indeed 
superior.  

Among energy efficient scheduling algorithms, several 
studies have considered minimizing the total response time, 
given a set energy budget (e.g. [23]). In particular, Pruhs et 
al. [23] considered offline scheduling to minimize the total 
response time on a single processor, for a given amount of 
energy. They gave a polynomial time optimal algorithm for 
the special case when jobs are of unit size. 

To better understand the tradeoff between response time 
and energy, Albers et al. [3] proposed minimizing the sum 
of total response time and energy for a single processor. 

They presented an online algorithm that is 8.3e
α

�
�
�

�
�
�
�

� +
2

53  

competitive for jobs of unit size. This result was improved 
by Bansal et al. [9] who showed that this algorithm is 4-
competitive. Bansal et al. [9] also gave the first constant 
competitive algorithm for arbitrary size jobs. The 
multiprocessor case was first discussed by Bunde [12] that 
presented an offline approximation algorithm for unit size 
jobs. However, Lam et al. [19] presented the first constant 
competitive online algorithm for arbitrary job sizes. In [19], 
jobs are clustered and then round robin dispatched to the 
processors independently for each cluster. Then they apply 
the BPS online algorithm given by Bansal et al. [9] to each 
processor. 

In this paper, we present an online scheduling algorithm 
that minimizes the cost of response time plus energy for the 
heterogeneous multiprocessor case.  

III.  PRELIMINARY DEFINITIONS & ASSUMPTIONS 

A. A Task  
A task comprises of a set of base instructions, usually with a 
minimum processing requirement that is enforced in 
advance by the programmer during software architectural 
planning. Mathematically, we model a task, TTk ∈  as a 
vector with the following two parameters. 

),( min,kkk pBT =  

• kB is the task’s remaining computational volume 
in base instructions (n).  

• kpmin,  is the task’s minimum recommended 
processing rate in base instructions  per second 
(n.Hz.) . 

  kB  is measured in base instructions so as to consistently 
measure a task’s instructions or computation volume. For 
example, multiplication and addition operations are not 
treated as commensurable instructions, but is each translated 
to some number of base operations or floating point 

operations. For this example, the number of base 
instructions for a multiplication operation generally exceeds 
that of an addition operation. The unit of a base instruction 
is n. Note that a base instruction can take any arbitrary 
number of fixed clock cycle/s. We assume a base instruction 
requires 10 Kilo clock cycles in our experiments. 

    kpmin,  is a software constraint imposed by the 
software designer. It is fixed and optional, but crucial in 
identifying the minimum processing rate of executing the 
task by a given processor. An example is when a game is 
made up of a task/s, the game refresh rate is heavily 
influenced by kpmin,  and if it is not satisfied, the game may 

be unplayable. We also enforce 0min, >kp because we want 
to eliminate the trivial zero-processing rate condition. 

 

B. A User Profile  
A User Profile comprises of a set of unit cost sensitivity 
factors or unit prices that are specified by the user through a 
profile setting integrated in the operating software of the 
computing device. This profile setting could be an energy 
saving profile, a performance intensive profile or any other 
custom profile that is specified by the user. If the user 
chooses not to specify a custom profile setting, a default 
setting can be implemented by the programmer that is a 
balanced tradeoff between an energy saving profile and a 
performance intensive profile.  
   Mathematically, we model a user profile vector 

UU k ∈ associated with a task TTk ∈  as ),( ,ktk uuU ε= , 
where: 

εu  - Unit price of energy measured in $/Joule, where 
∞<< εu0 . 

ktu ,  - Unit price of response time measured in $/Second, 

where ∞<< ktu ,0 . 
One practical way to calibrate these cost sensitivity factors 
is to use the actual unit prices of energy and time in a given 
geographical region and time of day. For instance, in 
Ontario, Canada the regulated price of energy during peak 
hours is 12.4 ¢ / kWh [17] and the minimum wage of 
employment as of May 2013 in Ontario Canada is 
CD$10.25/hour [21]. This translates to 

8104.3 −= xuε $/Joule and  3
, 102847.2 −= xu kt $/Second. 

This is merely a suggestion as we are not enforcing the 
notion that  the unit price of time for a specific individual 
should always be dictated by his/her hourly pay. Ideally a 
given user should set ktu ,  to any price he/she can afford or 
believes is the price of a second of his/her life.  
Note that the unit price of energy for all tasks need not be 
different (this explains the missing k subscript in 
comparison to ktu ,  ) and can be set by the OS, but the unit 
price of response time for each task may be different 
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because we allow the user to influence the priority of a 
task's execution through the following ways: 

• If a user is willing to pay more for a task's response 
time, the algorithm's speed scaling function 
(OSTSCF) will increase hence executing the task at a 
faster rate at the expense of energy and vice versa. 

• Under our proposed service discipline, SCVPPT 
(which is a generalized version of SRPT) will 
prioritize the task accordingly to Smallest remaining 
computation volume per unit price of response 
time ( )ktk uB ,/ . Therefore a user can maintain or 
even improve the priority of a large task by accepting 
higher unit price of response time or even degrade the 
priority of a small non-urgent task by setting a 
sufficiently small unit price of response time. 

 

C. A Processing Stream  

A processing stream consists of a (core) processor ( jsP ,
�

) 

and a corresponding memory Queue ( jsQ ,

�
). A processing 

stream is distinguished among other parallel processing 
streams by the thj  index, where mj ≤≤1 . The vector 

notation in jsP ,
�

and jsQ ,

�
 is purely symbolic to denote 

hardware. Likewise, the 's' subscript denotes 'stream' and is 
not an index. 
   1)  Stream Processor: Each processing stream’s processor 
( jsP ,
�

) executes a task (stored in the first index of its multi-

buffer) at a processing rate of jsP ,  base instructions per 
second (n.Hz). We assume each and every stream processor 
can be dynamically speed-scaled. 
We have jMaxjsk PPp ,,min, ≤≤  where jMaxP ,  is the 
maximum operating frequency in base instructions per 
second of the thj  processing stream’s processor; it is a 
constraint imposed by the hardware specification of the 
computing device (processor). For a given task TTk ∈ , its 

minimum processing rate, kpmin, , is a software constraint 
imposed by the software designer and is generally lower 
than jMaxP ,  for analytical and practical purposes. 

   2)  Memory Queue (Multi-Buffer): A memory queue jsQ ,

�
 

of the thj  processing stream stores jN  tasks at some 
instance in time. Therefore ∞<≤ jN0 . in other words, 

jN is the occupancy of the thj  processing stream's memory 
queue.  
 

• 0=jN  : denotes that the memory queue of the 
thj  processing stream is empty.  

• At any given time, the thj stream processor 
processes a task stored in the first index ( )j,1  of the 
memory queue. 

 

D. A Task’s Processing Rate and, Execution Time    

kP  is a task’s ( TTk ∈ )  processing rate/speed in base  
instructions per second (n.Hz). kt  is the task’s expected 
execution time in seconds. We relate kP  to kt  in the next 
section. Overhead switching times prior to processing are 
assumed to be negligible in comparison to  execution times. 
 

E. A Task’s Energy & Power Consumption   

For a task: TTk ∈ , let kPow  be the task's expected power 

function in Watts and let kε  be the task’s expected energy 

function in Joules when processed by the thj  processor. Let 

us initially assume the task's processing rate ( )kP is time 

invariant or constant over its execution time ( )kt . 

                   j
kjk PPow αλ )(=    (Watts)                    (1) 

jλ , measured in )..( 1 jj nSJ αα −− , is the energy 

inefficiency factor or the scaling factor of the thj  

processor's power function and we assume 0>jλ  . 

jα is the exponent of the thj  processor's power function 
and it is assumed to be a constant. [18] suggests that 

8.1=jα  is a good approximation for CMOS based 

processors and that ]3,1(∈jα  holds for most computer 
systems comprising of disks, processing chips and servers. 
We exclude the overhead energy consumed when  
processors switch speed and also assume the processors 
consume zero power when idle. 
       We know that power consumption is the rate of energy 
consumption; this implies the following.       

     kkj

t

kj

t

kk tPdtPdtPow j
k

j
k

αα λλε )()(
00

=== ��     (2) 

kB   relates kt  to kP , and happens to be the task’s 
remaining computation volume in base instructions (n). 

        
k

k
k P

B
t =  (Seconds)                                 (3) 

 
Using (2) and (3), we deduce: 
                  

1)( −= j
kkjk PB αλε    (Joules)                        (4) 
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F. Decision Algorithm 
The decision algorithm performs three main functions as 
follows: 
   1)  Dispatcher: Addresses which processing stream 
among the m processing streams should process a given 
task. 
   2) Speed-scaling function: Determines the explicit 
optimum processing rate of executing a task/s . 
   3)  Service discipline / policy: Specifies the order or 
discipline in which tasks should be serviced. 
 

IV. PROBLEM FORMULATION  

A. Processing Streams with Multiple Buffers 
Fig. 1 illustrates the parallel multi-buffer scenario where 
each processing stream has a memory queue that has a 
capacity to store an arbitrary finite number of tasks. For a 
set of arriving tasks, we are essentially trying to find the 
optimum dispatcher, speed scaling function and service 
discipline that minimizes the total cost of response time and 
energy consumption (TCRTEC) of executing these tasks 
where the unit price of response time is heterogeneous. 
 

. . .. . .
Decision Algorithm

 TTk ∈

Arriving
Tasks
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�
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...
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Fig. 1: The parallel multi-buffer scenario 

 
B.   The Cost Function of the thj Processing Stream 

Let us assume that the thj processing stream has jN tasks 
already queued up in its corresponding memory 
queue )( , jsQ

�
. Let the aggregate cost function of the 

thj processing stream be jC . This cost function aggregates 
the total cost of expected response time and energy 
consumption of these jN

 
tasks. Also let jkC ,  be the cost of 

response time and energy consumption of the task stored at 
the thk index of the jsQ ,

�
memory queue/multi-buffer. 

Using vector notation and dot product operations, we have: 

	 		
= == 


�
�


�
�

�
�

�
�
�

�•==
jj N

1 1

N

1
, ,

k

k

r
rkk

k
jkj tUCC ε  

 
More explicitly, using (3) and (4) we have: 

	 	
= =

−

�


�
�
�

�

�
�
�

�
�
�

�
�
�
�

�
+=

j jN

1

N

,
1)(

k kr
rt

k

k
kkjj u

P
BPBuC jα

ε λ
     

(5) 

 
C.   The Minimized Cost Function of the thj  processing 
stream 
For each thj  stream, we have an “ jN ” dimensional 
optimization problem. The adjustable parameters are the 
processing rates ( kP ) of the tasks: }...2,1{| jk NkTT ∈∈  as 

well as their service sequence in the thj processing stream. 

We optimize jC as defined by (5) as follows. 

0)()1(
jN

,2
2 =−−=

∂
∂

	
=

−

kr
rt

k

k
kkjj

k

j u
P
B

PBu
P
C

jα
ε λα   

for }...2,1{ jNk ∈
 

. 
The solution of our optimization problem is as follows:  

kP =
j

kr
rt

jj

u
u

α

ε λα

1
N

,

j

)1(
1

�
�
�

�
�
�
�

�

− 	
=

for }...2,1{ jNk ∈  

and ]3,1(∈jα
 

 
Using a Hessian matrix [14], it was confirmed that this set 
of critical points (processing rates) globally minimizes jC .  
 
D.   The Minimized Constrained Cost Function of the thj  
Processing Stream 
   TTk ∈∀ jsk QT ,|

�
∈ , let us factor in the task and processor 

stream processing constraints mentioned earlier (III.C.1).  
We enforce kkjMax pPP min,, ≥≥ where, kpmin, is the 
task’s minimum recommended execution rate in base 
instructions per second (n.Hz.). The minimum constrained 
cost function that factors the processing constraints is:   
 

	 	
= =

−

�
�
�

�
�
�
�

�
+=

j jN

1

N

,
1

min *
)*()(

k kr
rt

k

k
kkjjj u

P
BPBuNC jα

ελ          (6) 
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and                                                                                     (7) 
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for }...2,1{ jNk ∈  and ]3,1(∈jα         

   
kP*  is the optimum constrained processing rate of 

potentially executing the task stored in the thk index of the 

jsQ ,
�

memory queue. 

V. ALGORITHMS DESCRIPTION   
This section describes the SMBSPP algorithm. First we 

describe our MMCVITPS dispatcher and our SCVPPT 
scheduling policy. Then we present our algorithm. 

 

A. SMBSPP Algorithm's Dispatcher (MMCVITPS) 
Before presenting the complete algorithm description (V.C), 
let us describe in words how its dispatcher (MMCVITPS) 
works. For an arriving task, MMCVITPS hypothetically or 
virtually assumes the potential aggregate cost of virtually 
introducing the task (according to a service discipline) to 
each of the processing streams. It then virtually minimizes 
the aggregate cost function of each processing stream by 
again virtually re-adjusting the processing rates of all tasks 
in the queues (of each processing stream) including the task 
in question. It then finally decides on the processing stream 
with the lowest potential (minimized) aggregate cost. This 
decision will dynamically affect the speed function of the 
chosen processing stream's processor. We mathematically 
describe the dynamic speed scaling function in section V.C. 

 

B. SMBSPP Algorithm's Service Discipline (SCVPPT) 
In this  service discipline, arriving tasks are sorted in each 
processing stream's memory queue or multi-buffer from the 
lowest index (highest priority) according to their Smallest 
remaining computation volume per unit price of response 
time ( )ktk uB ,/ . 
 
C.   Single-threading Multi-buffer Scheduling & Processing 
Algorithm (SMBSPP) 

1. User or OS specifies εu  for all tasks and may 

specify different ktu , for each TTk ∈ . 
2. For an arriving task, TTk ∈ , we evaluate and 

compare the minimum potential processing cost, 

)1(min +jj NC  of virtually introducing and 
processing the arriving task in each of the 
available processing streams )j(1 m≤≤ . The task 
virtually acquires a position  index according to 

ktk uB ,/  (SCVPPT) in each of the processing 
streams.  

3. Using (6) and (7), the task  should follow a stream 
j* such that : 

 { })1(min)1( min1*min* +=+
≤≤ jjmjjj NCNC thereby 

 it acquires the position  index according to 
 ( )ktk uB ,/  (SCVPPT) and will be processed by 

 the *, jsP
�

 processor at some adjusted optimum 
 processing rate. 
4. Update *jN  . 

5. The task stored at system index ( )*,1 j i.e., the task 

*,1 jT , is executed by the *, jsP
�

 
processor at the 

optimum adjusted processing  rate defined below6: 
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6. Repeat steps 4 & 5 whenever a task/s is either 

dynamically introduced or deleted in *, jsQ
�

3. 

7. Once the execution of the task *,1 jT  is complete or 
terminated, the indices of all tasks in memory 
queue *, jsQ

�
 are shifted down by one creating room 

for another task.2, 3 
8. If any task or tasks in *, jsQ

�
 are deleted/cancelled, 

each alive task in *, jsQ
�

is shifted to the minimum 
available slot starting from the first index to 
preserve task priority before steps 4 & 5.2, 3 

9. If we are to enforce FCFS queuing service policy 
or we are not allowed to exercise preemption, 
whenever a task enters the queue of a processing 
stream it acquires the Smallest Empty Index (SEI), 
also in step 2, while calculating the virtual cost of 
introducing the task to each processing stream, the 
arriving task virtually acquires the SEI4. 

10. Ignore steps 2 & 3 when processors are 
homogeneous and instead utilize Round Robin 
dispatching5. 
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Steps 2 & 3 summarize the SMBSPP algorithm's default 
dispatcher (MMCVITPS) under the SCVPPT service 
discipline. Step 5 describes the speed scaling function 
(OSTSCF). 
 
Notes pertaining to algorithm's description: 
2 Steps 7 and 8 are maintenance operations that facilitate the long-
run functionality of the algorithm.  
3 Steps 3, 4, 7 and 8 can be implemented by adjuster modules that 
dynamically make changes and keep track of the memory queue 
environment of each processing stream. 
4  Step 9 may degrade the performance of the algorithm. 
5 Step 10 improves the algorithm's computational complexity when 
processors are homogeneous, but should not be conducted when 
processors  differ in terms of their power degree constants or 
maximum processing rates. 
 

VI.   SIMULATIONS 
A.    Performance Metrics  

Table I provides a list (with abbreviations and standard 
units) of some performance metrics. All experiments are run 
using the OSTCF speed scaling function. 
 

TABLE I 
PERFORMANCE METRICS 

METRIC DEFINITION UNITS 
TET Total execution time of executing N tasks ms 

 
TET/N 

Average execution time of executing N 
tasks 

ms/task 

 
TCRTEC 

Total cost of response time and energy 
consumption for executing N tasks 

CDN$ 

 
TCRTEC/N 

Average cost of response time and energy 
consumption for executing N tasks 

CDN$/task 

 
ST 

System time of executing N tasks: amount 
of time that at least one processor is active 

ms 

 
TSSC 

Total cost of system time and energy 
consumption for executing N tasks 

CDN$ 

 
TSSC/N 

Average cost of system time and energy 
consumption for executing N tasks 

CDN$/task 

In Table I, the metrics in bold are used to evaluate the 
algorithm. 
 

B.  Simulation I: Sensitivity of SMBSPP Algorithm To 
inter-arrival periods 
The preliminary simulation assumptions are as follows: 

• We have an N number of homogenous tasks each 
with a computation volume of 100 base 
instructions. 

• We have three processors. Their power functions 
have the following energy inefficiency factors: 

 08.11 =λ , 0.12 =λ  and 92.03 =λ )..( 11 1 αα −− nSJ  
  with the following corresponding exponents:

 
 8.1321 === ααα  
• In this simulation, the computation volumes and 

unit price of response times for all tasks are 
homogenous so as to eliminate the effect of  

service disciplines, i.e. FCFS, SRPT and SCVPPT 
all behave in the same way.  

• The unit price of energy is 8104.3 −= xuε $/Joule 
and  the unit price of response time is 

3102847.2 −= xut $/Second (see section III.B for 
details).  

• For each simulation iteration, we utilize the 
TET/N, TCRTEC/N and TSSC/N performance 
metrics to evaluate the effect of deterministic and 
stochastic arrival periods. 

• All this was repeated for growing values of N 
(simulation iterations). 

• Results were confirmed using discrete-time based 
simulations written in Java.  

Following these assumptions, the figures below summarize 
the simulation results. 

TABLE II 
INTERPRETATION OF INTER-ARRIVAL PERIODS 
INTER-ARIVAL PERIOD INTERPRETATION 

μ = 0ms Extreme (batch arrivals) 
μ = 26.1ms Heavy 
μ = 50ms Almost ideal 

μ � 156.4ms Minimal (no traffic) 
 
Fig. 2(a) exhibits how the SMBSPP algorithm utilizes 
dynamic speed-scaling to adapt to various traffic 
conditions (speed increases with aggregate occupancy pricing). 
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Fig. 2: Showing Effect of Deterministic Arrival Periods (μ) by: Average  
Execution Time for N Homogeneous Tasks (a), and Average Cost of 
Response Time & Energy Consumption for N Homogeneous Tasks (b) 
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Fig. 3: Average Cost of Response Time & Energy Consumption Versus 
Average Cost of System Time & Energy Consumption for N Homogeneous 
Tasks under Exponentially Distributed Arrival Periods with a Mean of 1/μ 
(μ =26ms: heavy traffic) (The results for deterministic arrival periods is 
interpolated by continuous curves). 
 
In Fig. 3, the TSSC/N performance metric is a convenient 
metric in the sense that it is actually the amount in dollars 
per task that it costs to lease out computation services. The 
reason why the TSSC/N curve falls way below the 
TCRTEC/N metric is due to multiple processors working in 
parallel; where the TSSC/N metric charges the global 
timescale as can be experienced by a user while TCRTEC/N 
factors response times of each task leading to multiple 
aggregation of delays. The fact that the algorithm has a 
fairly constant TSSC/N curve under heavy stochastic traffic 
conditions reveals its robustness. 
 
C. Simulation II: Comparing SMBSPP Algorithm's 
Dispatcher (MMCVITPS) Versus Round Robin Dispatcher 
under FCFS, SRPT and SCVPPT service disciplines.  

The preliminary simulation assumptions are as follows: 
• We have an N number of heterogeneous tasks whose 

computation volumes is Gaussian distributed with a 
mean of 100 base instructions and a standard 
deviation of 20% mean. 

• We have three processors with the following power 
function parameters (respectively):  

 08.11 =λ , 0.12 =λ  and 92.03 =λ )..( 11 1 αα −− nSJ  

 and 1.9441 =α ,
 

8.12 =α  and
 656.13 =α .  

• The unit price of energy is 8104.3 −= xuε $/Joule 
and  the unit price of response time is Gaussian 
distributed with a mean of  3102847.2 −= xut $/Second 
and a standard deviation of  25 % of the mean. 

• For each simulation iteration, the SMBSPP 
Algorithm runs using its default Dispatcher 
(MMCVITPS) and independently runs using the 
Round Robin Dispatcher using the same input data 
for various service disciplines. 

• All this is repeated for growing values of N 
(simulation iterations). 

• We assume very heavy traffic conditions with 
exponentially distributed arrival periods . 
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Fig. 4 (a) 
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                                         Fig. 4 (c) 
 
Fig. 4: MMCVITPS Versus Round Robin for N Heterogeneous Tasks 
under Exponentially Distributed Arrival Periods (heavy traffic) with 
Heterogeneous Unit Prices of Response Time under FCFS (a), SRPT 
(b) and SCVPPT (c) Service Disciplines. 
 
 In this simulation, the power function parameters were 
conservatively chosen to differ from the mean by at most 
8%. Presumably, let this 8% deviation be attributed to: the 
manufacturing error of fabricating homogeneous processors, 
failing to achieve equal temperature environments for all 
processors or even the intentional fabrication of 
heterogeneous processors due to design budget constraints. 
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In Fig. 4(a-c) we show that the algorithms dispatcher 
(MMCVITPS) out performs the Round Robin dispatcher 
under the FCFS, SRPT and SCVPPT service disciplines 
under heavy stochastic traffic conditions. The tasks have 
heterogeneous computation volumes and heterogeneous unit 
prices of response time. 
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Fig. 5: MMCVITPS Versus Round Robin for N Homogeneous Tasks under 
Three Main Deterministic Arrival Periods with Homogeneous Unit Prices 
of Response Time. (The three  service disciplines are equivalent and have 
no effect in this scenario). 
 
Fig. 5 shows that the MMCVITPS dispatcher outperforms 
the Round Robin dispatcher under three main deterministic 
arrival periods that correspond to very heavy, ideal and 
minimal traffic conditions. In Figs. 4(a-c) and 5 the 
processors' power function parameters were conservatively 
chosen to differ from the mean by at most 8% yet the 
MMCVITPS dispatcher drastically outperformed the Round 
Robin dispatcher with cost savings exceeding 100% on 
average. 
 
D. Simulation III: Evaluating SMBSPP Algorithm's 
Dispatcher (MMCVITPS) under FCFS, SRPT and SCVPPT 
service disciplines.  

Using the assumptions of  Simulation II, we compare the 
MMCVITPS dispatcher under the three service disciplines. 

In Figure 6, we show that the SCVPPT service discipline 
always minimizes TCRTEC making it the most ideal for the 
SMBSPP algorithm with its default dispatcher. We 
recommend that the SCVPPT service discipline be 
implemented in any online speed-scaling algorithm that 
aims to minimize TCRTEC and considers tasks with 
heterogeneous unit prices of response time. 

 
All of the simulation results are consistently scalable in 
terms of considering tasks with substantially larger 
computation volumes, but the simulation run times will 
take longer and will require a calibration of the inter-
arrival periods (and their categorizations). In practice, we 
lightly suggest implementing the MMCVITPS dispatcher 
in ad-hoc hardware to guarantee performance, but the 
actual cost of doing so warrants further investigation. 

However, we are currently working on enhancing its 
computational complexity. 
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Fig. 6: MMCVITPS Dispatcher Performance under SCVPPT, SRPT and 
FCFS Service Disciplines for N Heterogeneous Tasks that have 
Exponentially Distributed Arrival Periods with a Mean of 1/μ  (almost 
extreme traffic of μ = 2ms) with Heterogeneous Unit Prices of Response 
Time (Gaussian distributed). 

 
VIII.   CONCLUSION 

We have synthesized and simulated an online 
multiprocessor scheduling algorithm (SMBSPP) for 
optimum parallel computing of portable devices or energy-
aware workstations. We focused on single threading where 
no processor executes more than a single task at any given 
time until completion unless preemption is dictated by the 
service discipline e.g. SCVPPT. The SMBSPP algorithm 
provides some insights. It tells us that the optimum 
processing rate of a task is not a function of its computation 
volume ( kB ). It also tells us once a task is dynamically 
included into a given memory queue of a processing stream, 
the optimum processing rate of the currently processed task 
(stored at the first index of the queue) is likely to change. 
The processing rate changes because the aggregate cost 
function of all tasks in the queue has changed and there 
exists a time dependency among tasks in the processing 
stream's memory queue due to single-threading. The 
algorithm explicitly finds a globally optimum solution for 
each aggregate cost function associated with each 
processing stream. This globally optimum solution 
minimizes the total cost of both energy consumption and 
response time of tasks in each processing stream. The 
solution explicitly obtains the optimum processing rates of 
each task in all memory queues. We believe this robustness 
of the algorithm being able to handle dynamic inclusion of 
heterogeneous tasks at run-time makes it appealing among 
hardware architectural planers and software programmers of 
portable computing devices.  

Assuming each processing stream has roughly n tasks 
queued up, the algorithm's default dispatcher (MMCVITPS) 
has a worse case computational complexity of O(n2) with 
heterogeneous pricing and O(n) with homogenous pricing, 
and when it uses the Round Robin dispatcher, it has a worse 
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case computational complexity of O(1). In terms of the 
TCRTEC/N metric, we demonstrated that the algorithms 
default dispatcher (MMCVITPS) significantly out performs 
the Round Robin dispatcher under the FCFS, SRPT and 
SCVPPT service disciplines for various stochastic and 
deterministic traffic conditions where the degree of 
processor heterogeneity was mild (power function 
parameters were conservatively chosen to differ from the 
mean by at most 8%), yet the MMCVITPS dispatcher 
drastically outperformed the Round Robin dispatcher with 
cost savings exceeding 100% on average. In fact, we do not 
recommend the use of the Round Robin dispatcher in 
systems that utilize heterogeneous processors. If the 
SMBSPP algorithm is to be implemented in devices with 
homogeneous processors, the Round Robin dispatcher 
would be more ideal to use because it would produce results 
equal to MMCVITPS, but with a lower worse case 
computational complexity as mentioned previously.  
    Through simulation, we demonstrated that the SMBSPP 
algorithm with its default dispatcher (MMCVITPS), service 
discipline (SCVPPT) and speed-scaling function (OSTSCF) 
has a fairly constant TSSC/N curve under heavy stochastic 
traffic conditions; this reveals the algorithm’s robustness. It 
makes it suitable to be implemented in energy aware work 
stations or "green" computational devices that utilize 
parallel processors and want to maintain a fairly stable 
(constant) operation cost under unpredictable heavy traffic 
conditions. 

The proposed SCVPPT service discipline always 
matches or outperforms the FCFS and SRPT service 
disciplines as evaluated by the TCRTEC performance 
metric. When implemented in the algorithm, the SCVPPT 
and SRPT service disciplines each have computational 
complexities of O(log n). where n is the occupancy of a 
given processor's memory queue. SCVPPT behaves exactly 
like SRPT when the unit price of response time is fixed and 
equivalent for all tasks; thereby it minimizes total response 
time. SCVPPT is sort of a generalized version of SRPT but 
is flexible. It allows a user to maintain or even improve the 
priority of a large task by accepting to set/pay a higher unit 
price of response time or even degrade the priority of a 
small non-urgent task by setting a sufficiently small unit 
price of response time. This is a dynamic feature that is 
absent in both FCFS and SRPT service disciplines. We 
recommend that the SCVPPT service discipline be 
implemented in any online speed-scaling algorithm that 
aims to minimize TCRTEC and considers tasks with 
heterogeneous unit prices of response time. 
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