
Cost Minimization for Scheduling Parallel, Single-threaded, Heterogeneous,
Speed-scalable Processors

Rashid Khogali & Olivia Das
Department of Electrical & Computer Engineering

Ryerson University
Toronto, Canada

{rkhogali, odas }@ee.ryerson.ca

Abstract— We introduce an online scheduling algorithm to
optimally assign a set of arriving heterogeneous tasks to
heterogeneous speed-scalable processors. The goal of our
algorithm is to minimize the total cost of response time and
energy consumption (TCRTEC) of the tasks. We have three
contributions that constitute the algorithm. First, we propose a
novel task dispatching strategy for assigning the tasks to the
processors. Second, we propose a novel preemptive service
discipline called Smallest remaining Computation Volume Per
unit Price of response Time (SCVPPT) to schedule the tasks on
the assigned processor. Third, we propose a dynamic speed-
scaling function that explicitly determines the optimum
processing rate of each task. In our work, the processors are
heterogeneous in that they may differ in their hardware
specifications with respect to maximum processing rate and
power functions. Tasks are heterogeneous in terms of
computation volume and processing requirements. We also
consider that the unit price of response time for each task is
heterogeneous. Each task's unit price of response time is
allowed to differ because the user may be willing to pay
higher/lower unit prices for certain tasks; thereby
increasing/decreasing their optimum processing rates. In our
SCVPPT discipline, a task’s scheduling priority is influenced
by its remaining computation volume as well as its unit price of
response time. Our simulation results show that SCVPPT
outperforms the two known service disciplines, Shortest
Remaining Processing Time (SRPT) and the First Come First
Serve (FCFS), in terms of minimizing the TCRTEC
performance metric. The results also show that the algorithm's
dispatcher outperforms the well known Round Robin
dispatcher when the processors are heterogeneous. We focus
on multi-buffer, single-threading where a set of tasks is
allocated to a given processor, but only one task is processed at
a time until completion unless preemption is dictated by the
service discipline.

Keywords- speed scaling, parallel computing, single-
threaded, heterogeneous processors, multi-processor scheduling,
energy and response time cost, mobile.

I. INTRODUCTION
Energy consumption is a major constraint in today’s

computing devices. This is especially true for portable
devices, for example laptops and mobile phones which rely
on batteries for energy. It is well known that the energy
consumption grows proportionally to sα where s is the
processor speed and α is a constant > 1 (e.g. [4, 5, 11, 15,

26]). This implies that higher speed leads to faster execution
but incurs high energy consumption. One way to reduce
energy consumption is to employ dynamic speed-scaling
(see, e.g. [8, 27]) where the speed of the processors can be
changed dynamically depending on the workload. The aim
is to reduce processor speed at times of low workload.

Contemporary portable computing devices such as the
recent versions of mobile phones, Tablets, iPads and gaming
consoles (for example, the PSPVita [25]) utilize multiple
processors. Multiple parallel processors are mostly used to
improve overall processing performance needed for multi-
media applications. In the domain of scheduling,
considerable attention has been given to single processor
architecture [3, 7, 8, 9, 22, 26]. Fewer have considered
multiprocessors [4, 5, 12, 13, 19].

Although current architectures mostly consist of
homogenous collection of processors, several works suggest
that future chip architectures would consist of
heterogeneous processors [10, 24]. Gupta et al. [16] further
suggest that scheduling heterogeneous processors is a more
challenging task compared to homogeneous processors.

This paper investigates the problem of online scheduling
of the arriving heterogeneous tasks to multiple
heterogeneous speed-scalable processors. The tasks are
heterogeneous in terms of computation volume and
processing requirements. The processors are heterogeneous
in terms of their hardware specifications with respect to
maximum processing rate and power functions.

The goal of any speed-scaled multiprocessor scheduling
algorithm is: (i) to minimize the response time given energy
as a budget, (e.g. [23]) or (ii) to minimize the energy
consumption as long as the task deadlines are not violated,
(e.g. [22, 26]) or (iii) to optimize a tradeoff between energy
consumption and response time (e.g. [3, 9, 18]). The
objective of our work is to minimize the total cost (in terms
of dollars) of energy and response time (TCRTEC). In our
work, the user determines unit cost of response time of a
task’s execution. Unlike any speed scaling algorithm, we
explicitly factor the input of a user with respect to
determining the unit cost of response time for executing
each task. This allows the user to influence the degree of a
task’s execution in the economy-performance continuum.
The user or OS can set the unit price of energy for all tasks

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $26.00 © 2013 IEEE

DOI 10.1109/.45

265

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.45

265

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.45

265

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.45

265

2013 19th IEEE International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/.45

265

2013 International Conference on Parallel and Distributed Systems

1521-9097/13 $31.00 © 2013 IEEE

DOI 10.1109/ICPADS.2013.46

265

depending on the actual unit price of energy in a given
geographical region and time of day.

This paper introduces a new multiprocessor speed-scaled
scheduling algorithm named “Single-threading Multi-Buffer
Scheduling & Parallel Processing Algorithm (SMBSPP).”
The goal of this algorithm is to minimize the performance
metric, TCRTEC. It makes three key contributions:
• A novel task dispatcher which assigns a task to a given

processor based on the Minimum among Minimized
Costs of Virtually Introducing the Task to each
Processing Stream (MMCVITPS). It dictates which of
the processors should process each arriving task/s based
on classifying a set of minimized potential aggregate
cost functions each associated with a processing stream.

• A dynamic speed-scaling function, which we name,
"Optimum Single-threading Speed Scaling Function"
(OSTSCF) that determines the optimum processing
rate of a given processor as a function of the following:

o The parameters of the processor’s power function.
o The unit price of energy.
o The sum of the unit prices of response time of

all tasks residing in the processor’s buffer.
• A novel preemptive service discipline called Smallest

remaining Computation Volume Per unit Price of
response Time (SCVPPT) to schedule the tasks on the
assigned processor. This discipline minimizes the
TCRTEC performance metric and also conveniently
allows the user to dynamically upgrade or degrade the
priority of tasks.

The first two contributions are achieved through solving a
set of multidimensional convex optimization problems.

In this work, we focus on multi-buffer, single-threading
where a set of tasks is allocated to a given processor, but
only one task is processed at a time until completion unless
preemption is dictated by the service discipline. In order to
find the optimal speed of a processor, the maximum
allowable rate of the processor and the minimum
recommended rate of execution for a task are considered as
constraints.

Our simulation results show that our MMCVITPS
dispatcher works well with heterogeneous processors and
outperforms the classic Round Robin dispatcher. The results
also show that our SCVPPT scheduling discipline matches
or outperforms the two known service disciplines, Shortest
Remaining Processing Time (SRPT) and the First Come
First Serve (FCFS), in terms of minimizing the TCRTEC
performance metric. SRPT policy always selects for service
the task that has the least remaining service time and it is a
preemptive policy. FCFS, on the other hand, is a non-
preemptive policy that selects the tasks for service in order
of their arrivals.

This paper is organized as follows. Section II presents a
brief description of prior related work. Section III builds
background theory and assumptions. Section IV utilizes
Section III to formally state the problem and synthesize the
algorithm. Section V describes the SMBSPP algorithm.

Section VI provides simulation results that evaluate the
overall performance of the algorithm using a variety of
performance metrics. Also in this section, we demonstrate
the performance of the algorithm's dispatcher in comparison
to the Round Robin dispatcher under various traffic
conditions and service disciplines.

II. RELATED WORK
In this section, we provide a concise summary of prior

related work that is most relevant to this paper.
In the past, when energy was not a major concern, the

objective of scheduling algorithms was to minimize the total
response time (also called flow time) of all tasks where
processors were running at fixed speeds (e.g [20, 1]). The
response time is the time elapsed since a task arrives until it
is completed.

The study of energy-efficient speed-scaled scheduling
was initiated by Yao et al. in [26]. They considered
deadline-based scheduling for a single processor where the
jobs need to complete by their given deadlines. The goal
was to minimize energy consumption. Assuming the
processor’s power consumption ()(sP) is a convex function
of processor speed (s), where αssP =)(for 1>α , they
considered scheduling a sequence of tasks on a single
variable speed processor. Each task has a required deadline,
release time and processing volume (analogous to the
number of CPU cycles required to execute a task). They
allow pre-emption, where a task is allowed to resume on the
same processor after being interrupted. They proposed an
optimal offline algorithm (YDS) to solve the task
scheduling problem in polynomial time. In the same work,
they further introduced two online algorithms, namely,
Optimum Available (OA) and Average Rate (AR). They
proved that AR has an energy competitive ratio of
() 2/2 αα . Bansal, Kimbrel and Pruhs [7] worked on OA
and proved it to have an energy competitive ratio of
exactly αα . To solve for multiprocessor case, Angel et al.
[5] considered the problem of scheduling a set of tasks with
deadlines, release dates and processing requirements, on
parallel (speed scalable) processors so as to minimize the
total energy consumption. They considered migration where
a task is allowed to resume its execution on a different
processor. They also allowed pre-emption. They name their
optimal scheduling algorithm BAL which has a time
complexity of)log)((UnnfO where, n is the number of
jobs, |)(|Vf

is the computational complexity of solving a

maximum flow in a layered graph with || VO vertices and U
is the range of all processor speed values divided by the
targeted accuracy. Independently, Albers et al. [2]
considered the same multiprocessor speed scaling problem
with migration, and obtained an optimal scheduling
algorithm that is fully combinatorial and has a time
complexity of))((2 nfnO . Angel et al. [5] compared their

266266266266266266

BAL algorithm to the one of Albers et al. [2] and stated that
when the target precision is sufficiently high, the algorithm
of Albers et al. [2] is superior to BAL, otherwise if the
target accuracy is relaxed, BAL’s algorithm is indeed
superior.

Among energy efficient scheduling algorithms, several
studies have considered minimizing the total response time,
given a set energy budget (e.g. [23]). In particular, Pruhs et
al. [23] considered offline scheduling to minimize the total
response time on a single processor, for a given amount of
energy. They gave a polynomial time optimal algorithm for
the special case when jobs are of unit size.

To better understand the tradeoff between response time
and energy, Albers et al. [3] proposed minimizing the sum
of total response time and energy for a single processor.

They presented an online algorithm that is 8.3e
α

�
�
�

�
�
�
�

� +
2

53

competitive for jobs of unit size. This result was improved
by Bansal et al. [9] who showed that this algorithm is 4-
competitive. Bansal et al. [9] also gave the first constant
competitive algorithm for arbitrary size jobs. The
multiprocessor case was first discussed by Bunde [12] that
presented an offline approximation algorithm for unit size
jobs. However, Lam et al. [19] presented the first constant
competitive online algorithm for arbitrary job sizes. In [19],
jobs are clustered and then round robin dispatched to the
processors independently for each cluster. Then they apply
the BPS online algorithm given by Bansal et al. [9] to each
processor.

In this paper, we present an online scheduling algorithm
that minimizes the cost of response time plus energy for the
heterogeneous multiprocessor case.

III. PRELIMINARY DEFINITIONS & ASSUMPTIONS

A. A Task
A task comprises of a set of base instructions, usually with a
minimum processing requirement that is enforced in
advance by the programmer during software architectural
planning. Mathematically, we model a task, TTk ∈ as a
vector with the following two parameters.

),(min,kkk pBT =

• kB is the task’s remaining computational volume
in base instructions (n).

• kpmin, is the task’s minimum recommended
processing rate in base instructions per second
(n.Hz.) .

 kB is measured in base instructions so as to consistently
measure a task’s instructions or computation volume. For
example, multiplication and addition operations are not
treated as commensurable instructions, but is each translated
to some number of base operations or floating point

operations. For this example, the number of base
instructions for a multiplication operation generally exceeds
that of an addition operation. The unit of a base instruction
is n. Note that a base instruction can take any arbitrary
number of fixed clock cycle/s. We assume a base instruction
requires 10 Kilo clock cycles in our experiments.

 kpmin, is a software constraint imposed by the
software designer. It is fixed and optional, but crucial in
identifying the minimum processing rate of executing the
task by a given processor. An example is when a game is
made up of a task/s, the game refresh rate is heavily
influenced by kpmin, and if it is not satisfied, the game may

be unplayable. We also enforce 0min, >kp because we want
to eliminate the trivial zero-processing rate condition.

B. A User Profile
A User Profile comprises of a set of unit cost sensitivity
factors or unit prices that are specified by the user through a
profile setting integrated in the operating software of the
computing device. This profile setting could be an energy
saving profile, a performance intensive profile or any other
custom profile that is specified by the user. If the user
chooses not to specify a custom profile setting, a default
setting can be implemented by the programmer that is a
balanced tradeoff between an energy saving profile and a
performance intensive profile.
 Mathematically, we model a user profile vector

UU k ∈ associated with a task TTk ∈ as),(,ktk uuU ε= ,
where:

εu - Unit price of energy measured in $/Joule, where
∞<< εu0 .

ktu , - Unit price of response time measured in $/Second,

where ∞<< ktu ,0 .
One practical way to calibrate these cost sensitivity factors
is to use the actual unit prices of energy and time in a given
geographical region and time of day. For instance, in
Ontario, Canada the regulated price of energy during peak
hours is 12.4 ¢ / kWh [17] and the minimum wage of
employment as of May 2013 in Ontario Canada is
CD$10.25/hour [21]. This translates to

8104.3 −= xuε $/Joule and 3
, 102847.2 −= xu kt $/Second.

This is merely a suggestion as we are not enforcing the
notion that the unit price of time for a specific individual
should always be dictated by his/her hourly pay. Ideally a
given user should set ktu , to any price he/she can afford or
believes is the price of a second of his/her life.
Note that the unit price of energy for all tasks need not be
different (this explains the missing k subscript in
comparison to ktu ,) and can be set by the OS, but the unit
price of response time for each task may be different

267267267267267267

because we allow the user to influence the priority of a
task's execution through the following ways:

• If a user is willing to pay more for a task's response
time, the algorithm's speed scaling function
(OSTSCF) will increase hence executing the task at a
faster rate at the expense of energy and vice versa.

• Under our proposed service discipline, SCVPPT
(which is a generalized version of SRPT) will
prioritize the task accordingly to Smallest remaining
computation volume per unit price of response
time ()ktk uB ,/ . Therefore a user can maintain or
even improve the priority of a large task by accepting
higher unit price of response time or even degrade the
priority of a small non-urgent task by setting a
sufficiently small unit price of response time.

C. A Processing Stream

A processing stream consists of a (core) processor (jsP ,
�

)

and a corresponding memory Queue (jsQ ,

�
). A processing

stream is distinguished among other parallel processing
streams by the thj index, where mj ≤≤1 . The vector

notation in jsP ,
�

and jsQ ,

�
 is purely symbolic to denote

hardware. Likewise, the 's' subscript denotes 'stream' and is
not an index.
 1) Stream Processor: Each processing stream’s processor
(jsP ,
�

) executes a task (stored in the first index of its multi-

buffer) at a processing rate of jsP , base instructions per
second (n.Hz). We assume each and every stream processor
can be dynamically speed-scaled.
We have jMaxjsk PPp ,,min, ≤≤ where jMaxP , is the
maximum operating frequency in base instructions per
second of the thj processing stream’s processor; it is a
constraint imposed by the hardware specification of the
computing device (processor). For a given task TTk ∈ , its

minimum processing rate, kpmin, , is a software constraint
imposed by the software designer and is generally lower
than jMaxP , for analytical and practical purposes.

 2) Memory Queue (Multi-Buffer): A memory queue jsQ ,

�

of the thj processing stream stores jN tasks at some
instance in time. Therefore ∞<≤ jN0 . in other words,

jN is the occupancy of the thj processing stream's memory
queue.

• 0=jN : denotes that the memory queue of the
thj processing stream is empty.

• At any given time, the thj stream processor
processes a task stored in the first index ()j,1 of the
memory queue.

D. A Task’s Processing Rate and, Execution Time

kP is a task’s (TTk ∈) processing rate/speed in base
instructions per second (n.Hz). kt is the task’s expected
execution time in seconds. We relate kP to kt in the next
section. Overhead switching times prior to processing are
assumed to be negligible in comparison to execution times.

E. A Task’s Energy & Power Consumption

For a task: TTk ∈ , let kPow be the task's expected power

function in Watts and let kε be the task’s expected energy

function in Joules when processed by the thj processor. Let

us initially assume the task's processing rate ()kP is time

invariant or constant over its execution time ()kt .

 j
kjk PPow αλ)(= (Watts) (1)

jλ , measured in)..(1 jj nSJ αα −− , is the energy

inefficiency factor or the scaling factor of the thj

processor's power function and we assume 0>jλ .

jα is the exponent of the thj processor's power function
and it is assumed to be a constant. [18] suggests that

8.1=jα is a good approximation for CMOS based

processors and that]3,1(∈jα holds for most computer
systems comprising of disks, processing chips and servers.
We exclude the overhead energy consumed when
processors switch speed and also assume the processors
consume zero power when idle.
 We know that power consumption is the rate of energy
consumption; this implies the following.

 kkj

t

kj

t

kk tPdtPdtPow j
k

j
k

αα λλε)()(
00

=== �� (2)

kB relates kt to kP , and happens to be the task’s
remaining computation volume in base instructions (n).

k

k
k P

B
t = (Seconds) (3)

Using (2) and (3), we deduce:

1)(−= j
kkjk PB αλε (Joules) (4)

268268268268268268

F. Decision Algorithm
The decision algorithm performs three main functions as
follows:
 1) Dispatcher: Addresses which processing stream
among the m processing streams should process a given
task.
 2) Speed-scaling function: Determines the explicit
optimum processing rate of executing a task/s .
 3) Service discipline / policy: Specifies the order or
discipline in which tasks should be serviced.

IV. PROBLEM FORMULATION

A. Processing Streams with Multiple Buffers
Fig. 1 illustrates the parallel multi-buffer scenario where
each processing stream has a memory queue that has a
capacity to store an arbitrary finite number of tasks. For a
set of arriving tasks, we are essentially trying to find the
optimum dispatcher, speed scaling function and service
discipline that minimizes the total cost of response time and
energy consumption (TCRTEC) of executing these tasks
where the unit price of response time is heterogeneous.

.
Decision Algorithm

 TTk ∈

Arriving
Tasks

1,sP
�

...
...

 1,1T
 1,2T

1,1NT

1,kT

1,sQ
�

2,sP
�

...
...

2,1T
2,2T

2,kT

2,2NT

2,sQ
�

msP ,

�

...
...

mT ,1

mT ,2

mkT ,

mN m
T ,

msQ ,

�

jsP ,

�

...
...

jT ,1

jT ,2

jkT ,

jN j
T ,

jsQ ,

�Th
e

jth
 p

ro
ce

ss
in

g
st

re
am

Processor

Key

Memory
 Queue

jsP ,

�

jsQ ,

�

Fig. 1: The parallel multi-buffer scenario

B. The Cost Function of the thj Processing Stream

Let us assume that the thj processing stream has jN tasks
already queued up in its corresponding memory
queue)(, jsQ

�
. Let the aggregate cost function of the

thj processing stream be jC . This cost function aggregates
the total cost of expected response time and energy
consumption of these jN

tasks. Also let jkC , be the cost of

response time and energy consumption of the task stored at
the thk index of the jsQ ,

�
memory queue/multi-buffer.

Using vector notation and dot product operations, we have:

	 		
= ==

�
�

�
�

�
�

�
�
�

�•==
jj N

1 1

N

1
, ,

k

k

r
rkk

k
jkj tUCC ε

More explicitly, using (3) and (4) we have:

	 	
= =

−

�

�
�
�

�

�
�
�

�
�
�

�
�
�
�

�
+=

j jN

1

N

,
1)(

k kr
rt

k

k
kkjj u

P
BPBuC jα

ε λ

(5)

C. The Minimized Cost Function of the thj processing
stream
For each thj stream, we have an “ jN ” dimensional
optimization problem. The adjustable parameters are the
processing rates (kP) of the tasks: }...2,1{| jk NkTT ∈∈ as

well as their service sequence in the thj processing stream.

We optimize jC as defined by (5) as follows.

0)()1(
jN

,2
2 =−−=

∂
∂

	
=

−

kr
rt

k

k
kkjj

k

j u
P
B

PBu
P
C

jα
ε λα

for }...2,1{ jNk ∈

.
The solution of our optimization problem is as follows:

kP =
j

kr
rt

jj

u
u

α

ε λα

1
N

,

j

)1(
1

�
�
�

�
�
�
�

�

− 	
=

for }...2,1{ jNk ∈

and]3,1(∈jα

Using a Hessian matrix [14], it was confirmed that this set
of critical points (processing rates) globally minimizes jC .

D. The Minimized Constrained Cost Function of the thj
Processing Stream
 TTk ∈∀ jsk QT ,|

�
∈ , let us factor in the task and processor

stream processing constraints mentioned earlier (III.C.1).
We enforce kkjMax pPP min,, ≥≥ where, kpmin, is the
task’s minimum recommended execution rate in base
instructions per second (n.Hz.). The minimum constrained
cost function that factors the processing constraints is:

	 	
= =

−

�
�
�

�
�
�
�

�
+=

j jN

1

N

,
1

min *
)*()(

k kr
rt

k

k
kkjjj u

P
BPBuNC jα

ελ (6)

269269269269269269

and (7)

�
�
�
�
�

�
�
�
�
�

�

�

�
�
�
�
�

�
�
�
�
�

�

�

>�
�
�

�
�
�
�

�

−

<�
�
�

�
�
�
�

�

−

≥�
�
�

�
�
�
�

�

−
≥�

�
�

�
�
�
�

�

−

=

	

	

		

=

=

==

jMax
kr

rt
jj

jMax

k
kr

rt
jj

k

k
kr

rt
jj

jMax
kr

rt
jj

k

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

,

1
N

,,

min,

1
N

,min,

min,

1
N

,,

1
N

,

j

j

jj

)1(
1 if ,

)1(
1 if ,

)1(

1P if ,
)1(

1

*

α

ε

α

ε

α

ε

α

ε

λα

λα

λαλα

for }...2,1{ jNk ∈ and]3,1(∈jα

kP* is the optimum constrained processing rate of

potentially executing the task stored in the thk index of the

jsQ ,
�

memory queue.

V. ALGORITHMS DESCRIPTION
This section describes the SMBSPP algorithm. First we

describe our MMCVITPS dispatcher and our SCVPPT
scheduling policy. Then we present our algorithm.

A. SMBSPP Algorithm's Dispatcher (MMCVITPS)
Before presenting the complete algorithm description (V.C),
let us describe in words how its dispatcher (MMCVITPS)
works. For an arriving task, MMCVITPS hypothetically or
virtually assumes the potential aggregate cost of virtually
introducing the task (according to a service discipline) to
each of the processing streams. It then virtually minimizes
the aggregate cost function of each processing stream by
again virtually re-adjusting the processing rates of all tasks
in the queues (of each processing stream) including the task
in question. It then finally decides on the processing stream
with the lowest potential (minimized) aggregate cost. This
decision will dynamically affect the speed function of the
chosen processing stream's processor. We mathematically
describe the dynamic speed scaling function in section V.C.

B. SMBSPP Algorithm's Service Discipline (SCVPPT)
In this service discipline, arriving tasks are sorted in each
processing stream's memory queue or multi-buffer from the
lowest index (highest priority) according to their Smallest
remaining computation volume per unit price of response
time ()ktk uB ,/ .

C. Single-threading Multi-buffer Scheduling & Processing
Algorithm (SMBSPP)

1. User or OS specifies εu for all tasks and may

specify different ktu , for each TTk ∈ .
2. For an arriving task, TTk ∈ , we evaluate and

compare the minimum potential processing cost,

)1(min +jj NC of virtually introducing and
processing the arriving task in each of the
available processing streams)j(1 m≤≤ . The task
virtually acquires a position index according to

ktk uB ,/ (SCVPPT) in each of the processing
streams.

3. Using (6) and (7), the task should follow a stream
j* such that :

 { })1(min)1(min1*min* +=+
≤≤ jjmjjj NCNC thereby

 it acquires the position index according to
 ()ktk uB ,/ (SCVPPT) and will be processed by

 the *, jsP
�

 processor at some adjusted optimum
 processing rate.
4. Update *jN .

5. The task stored at system index ()*,1 j i.e., the task

*,1 jT , is executed by the *, jsP
�

processor at the

optimum adjusted processing rate defined below6:

�
�
�
�
�

�
�
�
�
�

�

�

�
�
�
�
�

�
�
�
�
�

�

�

>�
�
�

�
�
�
�

�

−

<�
�
�

�
�
�
�

�

−

≥�
�
�

�
�
�
�

�

−
≥�

�
�

�
�
�
�

�

−

=

	

	

		

=

=

==

*,

1
N

1
,

**
*,

1min,

1
N

1
,

**
1min,

1min,

1
N

1
,

**
*,

1
N

1
,

**

*,

**j

**j

jj

)1(
1 if ,

)1(
1 if ,

)1(

1P if ,
)1(

1

jMax
r

rt
jj

jMax

r
rt

jj

r
rt

jj
jMax

r
rt

jj

js

Pu
u

P

pu
u

p

pu
u

u
u

P

j

j

jj

α

ε

α

ε

α

ε

α

ε

λα

λα

λαλα

6. Repeat steps 4 & 5 whenever a task/s is either

dynamically introduced or deleted in *, jsQ
�

3.

7. Once the execution of the task *,1 jT is complete or
terminated, the indices of all tasks in memory
queue *, jsQ

�
 are shifted down by one creating room

for another task.2, 3
8. If any task or tasks in *, jsQ

�
 are deleted/cancelled,

each alive task in *, jsQ
�

is shifted to the minimum
available slot starting from the first index to
preserve task priority before steps 4 & 5.2, 3

9. If we are to enforce FCFS queuing service policy
or we are not allowed to exercise preemption,
whenever a task enters the queue of a processing
stream it acquires the Smallest Empty Index (SEI),
also in step 2, while calculating the virtual cost of
introducing the task to each processing stream, the
arriving task virtually acquires the SEI4.

10. Ignore steps 2 & 3 when processors are
homogeneous and instead utilize Round Robin
dispatching5.

270270270270270270

Steps 2 & 3 summarize the SMBSPP algorithm's default
dispatcher (MMCVITPS) under the SCVPPT service
discipline. Step 5 describes the speed scaling function
(OSTSCF).

Notes pertaining to algorithm's description:
2 Steps 7 and 8 are maintenance operations that facilitate the long-
run functionality of the algorithm.
3 Steps 3, 4, 7 and 8 can be implemented by adjuster modules that
dynamically make changes and keep track of the memory queue
environment of each processing stream.
4 Step 9 may degrade the performance of the algorithm.
5 Step 10 improves the algorithm's computational complexity when
processors are homogeneous, but should not be conducted when
processors differ in terms of their power degree constants or
maximum processing rates.

VI. SIMULATIONS
A. Performance Metrics

Table I provides a list (with abbreviations and standard
units) of some performance metrics. All experiments are run
using the OSTCF speed scaling function.

TABLE I
PERFORMANCE METRICS

METRIC DEFINITION UNITS
TET Total execution time of executing N tasks ms

TET/N

Average execution time of executing N
tasks

ms/task

TCRTEC

Total cost of response time and energy
consumption for executing N tasks

CDN$

TCRTEC/N

Average cost of response time and energy
consumption for executing N tasks

CDN$/task

ST

System time of executing N tasks: amount
of time that at least one processor is active

ms

TSSC

Total cost of system time and energy
consumption for executing N tasks

CDN$

TSSC/N

Average cost of system time and energy
consumption for executing N tasks

CDN$/task

In Table I, the metrics in bold are used to evaluate the
algorithm.

B. Simulation I: Sensitivity of SMBSPP Algorithm To
inter-arrival periods
The preliminary simulation assumptions are as follows:

• We have an N number of homogenous tasks each
with a computation volume of 100 base
instructions.

• We have three processors. Their power functions
have the following energy inefficiency factors:

 08.11 =λ , 0.12 =λ and 92.03 =λ)..(11 1 αα −− nSJ
 with the following corresponding exponents:

 8.1321 === ααα
• In this simulation, the computation volumes and

unit price of response times for all tasks are
homogenous so as to eliminate the effect of

service disciplines, i.e. FCFS, SRPT and SCVPPT
all behave in the same way.

• The unit price of energy is 8104.3 −= xuε $/Joule
and the unit price of response time is

3102847.2 −= xut $/Second (see section III.B for
details).

• For each simulation iteration, we utilize the
TET/N, TCRTEC/N and TSSC/N performance
metrics to evaluate the effect of deterministic and
stochastic arrival periods.

• All this was repeated for growing values of N
(simulation iterations).

• Results were confirmed using discrete-time based
simulations written in Java.

Following these assumptions, the figures below summarize
the simulation results.

TABLE II
INTERPRETATION OF INTER-ARRIVAL PERIODS
INTER-ARIVAL PERIOD INTERPRETATION

μ = 0ms Extreme (batch arrivals)
μ = 26.1ms Heavy
μ = 50ms Almost ideal

μ � 156.4ms Minimal (no traffic)

Fig. 2(a) exhibits how the SMBSPP algorithm utilizes
dynamic speed-scaling to adapt to various traffic
conditions (speed increases with aggregate occupancy pricing).

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100
N - Number of Tasks

TE
T/

N
 (M

ill
is

ec
on

ds
 /

Ta
sk

)

μ = 0 ms

μ = 26.1ms

μ = 50ms

μ �156.4ms

Fig. 2 (a)

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

0 20 40 60 80 100
N - Number of Tasks

TC
R

TE
C

/N
 (C

A
D

$
/ T

as
k)

μ = 0 ms

μ = 26.1ms

μ = 50ms
μ �156.4ms

Fig.2 (b)

Fig. 2: Showing Effect of Deterministic Arrival Periods (μ) by: Average
Execution Time for N Homogeneous Tasks (a), and Average Cost of
Response Time & Energy Consumption for N Homogeneous Tasks (b)

271271271271271271

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

0 100 200 300 400 500
N - Number of Tasks

C
A

D
$

/ T
as

k

TCRTEC/N
TSSC/N

Fig. 3: Average Cost of Response Time & Energy Consumption Versus
Average Cost of System Time & Energy Consumption for N Homogeneous
Tasks under Exponentially Distributed Arrival Periods with a Mean of 1/μ
(μ =26ms: heavy traffic) (The results for deterministic arrival periods is
interpolated by continuous curves).

In Fig. 3, the TSSC/N performance metric is a convenient
metric in the sense that it is actually the amount in dollars
per task that it costs to lease out computation services. The
reason why the TSSC/N curve falls way below the
TCRTEC/N metric is due to multiple processors working in
parallel; where the TSSC/N metric charges the global
timescale as can be experienced by a user while TCRTEC/N
factors response times of each task leading to multiple
aggregation of delays. The fact that the algorithm has a
fairly constant TSSC/N curve under heavy stochastic traffic
conditions reveals its robustness.

C. Simulation II: Comparing SMBSPP Algorithm's
Dispatcher (MMCVITPS) Versus Round Robin Dispatcher
under FCFS, SRPT and SCVPPT service disciplines.

The preliminary simulation assumptions are as follows:
• We have an N number of heterogeneous tasks whose

computation volumes is Gaussian distributed with a
mean of 100 base instructions and a standard
deviation of 20% mean.

• We have three processors with the following power
function parameters (respectively):

 08.11 =λ , 0.12 =λ and 92.03 =λ)..(11 1 αα −− nSJ

 and 1.9441 =α ,

8.12 =α and
 656.13 =α .

• The unit price of energy is 8104.3 −= xuε $/Joule
and the unit price of response time is Gaussian
distributed with a mean of 3102847.2 −= xut $/Second
and a standard deviation of 25 % of the mean.

• For each simulation iteration, the SMBSPP
Algorithm runs using its default Dispatcher
(MMCVITPS) and independently runs using the
Round Robin Dispatcher using the same input data
for various service disciplines.

• All this is repeated for growing values of N
(simulation iterations).

• We assume very heavy traffic conditions with
exponentially distributed arrival periods .

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

5 50 95 140 185 230 275
N - Number of Tasks

TC
RT

EC
/N

 (C
A

D$
 /

Ta
sk

)

MMCVITPS_FCFS
ROUND ROBIN_FCFS

Fig. 4 (a)

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

5 50 95 140 185 230 275
N - Number of Tasks

TC
R

TE
C/

N
 (C

AD
$

/ T
as

k)

MMCVITPS_SRPT
ROUND ROBIN_SRPT

Fig. 4(b)

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

5 50 95 140 185 230 275
N - Number of Tasks

TC
R

TE
C

/N
 (C

A
D

$
/ T

as
k)

MMCVITPS_SCVPPT
ROUND ROBIN_SCVPPT

 Fig. 4 (c)

Fig. 4: MMCVITPS Versus Round Robin for N Heterogeneous Tasks
under Exponentially Distributed Arrival Periods (heavy traffic) with
Heterogeneous Unit Prices of Response Time under FCFS (a), SRPT
(b) and SCVPPT (c) Service Disciplines.

 In this simulation, the power function parameters were
conservatively chosen to differ from the mean by at most
8%. Presumably, let this 8% deviation be attributed to: the
manufacturing error of fabricating homogeneous processors,
failing to achieve equal temperature environments for all
processors or even the intentional fabrication of
heterogeneous processors due to design budget constraints.

272272272272272272

In Fig. 4(a-c) we show that the algorithms dispatcher
(MMCVITPS) out performs the Round Robin dispatcher
under the FCFS, SRPT and SCVPPT service disciplines
under heavy stochastic traffic conditions. The tasks have
heterogeneous computation volumes and heterogeneous unit
prices of response time.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

0 50 100 150 200 250 300
N - Number of Tasks

TC
R

TE
C

/N
 (C

A
D

$
/ T

as
k)

M M CVITPS_Heavy Traffic
ROUND ROBIN_Heavy Traffic
M M CVITPS_Ideal Traffic
ROUND ROBIN_Ideal Traffic
M M CVITPS_M inimal Traffic
ROUND ROBIN_M inimal Traffic

Fig. 5: MMCVITPS Versus Round Robin for N Homogeneous Tasks under
Three Main Deterministic Arrival Periods with Homogeneous Unit Prices
of Response Time. (The three service disciplines are equivalent and have
no effect in this scenario).

Fig. 5 shows that the MMCVITPS dispatcher outperforms
the Round Robin dispatcher under three main deterministic
arrival periods that correspond to very heavy, ideal and
minimal traffic conditions. In Figs. 4(a-c) and 5 the
processors' power function parameters were conservatively
chosen to differ from the mean by at most 8% yet the
MMCVITPS dispatcher drastically outperformed the Round
Robin dispatcher with cost savings exceeding 100% on
average.

D. Simulation III: Evaluating SMBSPP Algorithm's
Dispatcher (MMCVITPS) under FCFS, SRPT and SCVPPT
service disciplines.

Using the assumptions of Simulation II, we compare the
MMCVITPS dispatcher under the three service disciplines.

In Figure 6, we show that the SCVPPT service discipline
always minimizes TCRTEC making it the most ideal for the
SMBSPP algorithm with its default dispatcher. We
recommend that the SCVPPT service discipline be
implemented in any online speed-scaling algorithm that
aims to minimize TCRTEC and considers tasks with
heterogeneous unit prices of response time.

All of the simulation results are consistently scalable in
terms of considering tasks with substantially larger
computation volumes, but the simulation run times will
take longer and will require a calibration of the inter-
arrival periods (and their categorizations). In practice, we
lightly suggest implementing the MMCVITPS dispatcher
in ad-hoc hardware to guarantee performance, but the
actual cost of doing so warrants further investigation.

However, we are currently working on enhancing its
computational complexity.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

0 50 100 150 200 250 300
N - Number of Tasks

TC
R

TE
C

/N
 (C

A
D

$
/ T

as
k)

MMCVITPS_SCVPPT

MMCVITPS_SRPT

MMCVITPS_FCFS

Fig. 6: MMCVITPS Dispatcher Performance under SCVPPT, SRPT and
FCFS Service Disciplines for N Heterogeneous Tasks that have
Exponentially Distributed Arrival Periods with a Mean of 1/μ (almost
extreme traffic of μ = 2ms) with Heterogeneous Unit Prices of Response
Time (Gaussian distributed).

VIII. CONCLUSION

We have synthesized and simulated an online
multiprocessor scheduling algorithm (SMBSPP) for
optimum parallel computing of portable devices or energy-
aware workstations. We focused on single threading where
no processor executes more than a single task at any given
time until completion unless preemption is dictated by the
service discipline e.g. SCVPPT. The SMBSPP algorithm
provides some insights. It tells us that the optimum
processing rate of a task is not a function of its computation
volume (kB). It also tells us once a task is dynamically
included into a given memory queue of a processing stream,
the optimum processing rate of the currently processed task
(stored at the first index of the queue) is likely to change.
The processing rate changes because the aggregate cost
function of all tasks in the queue has changed and there
exists a time dependency among tasks in the processing
stream's memory queue due to single-threading. The
algorithm explicitly finds a globally optimum solution for
each aggregate cost function associated with each
processing stream. This globally optimum solution
minimizes the total cost of both energy consumption and
response time of tasks in each processing stream. The
solution explicitly obtains the optimum processing rates of
each task in all memory queues. We believe this robustness
of the algorithm being able to handle dynamic inclusion of
heterogeneous tasks at run-time makes it appealing among
hardware architectural planers and software programmers of
portable computing devices.

Assuming each processing stream has roughly n tasks
queued up, the algorithm's default dispatcher (MMCVITPS)
has a worse case computational complexity of O(n2) with
heterogeneous pricing and O(n) with homogenous pricing,
and when it uses the Round Robin dispatcher, it has a worse

273273273273273273

case computational complexity of O(1). In terms of the
TCRTEC/N metric, we demonstrated that the algorithms
default dispatcher (MMCVITPS) significantly out performs
the Round Robin dispatcher under the FCFS, SRPT and
SCVPPT service disciplines for various stochastic and
deterministic traffic conditions where the degree of
processor heterogeneity was mild (power function
parameters were conservatively chosen to differ from the
mean by at most 8%), yet the MMCVITPS dispatcher
drastically outperformed the Round Robin dispatcher with
cost savings exceeding 100% on average. In fact, we do not
recommend the use of the Round Robin dispatcher in
systems that utilize heterogeneous processors. If the
SMBSPP algorithm is to be implemented in devices with
homogeneous processors, the Round Robin dispatcher
would be more ideal to use because it would produce results
equal to MMCVITPS, but with a lower worse case
computational complexity as mentioned previously.
 Through simulation, we demonstrated that the SMBSPP
algorithm with its default dispatcher (MMCVITPS), service
discipline (SCVPPT) and speed-scaling function (OSTSCF)
has a fairly constant TSSC/N curve under heavy stochastic
traffic conditions; this reveals the algorithm’s robustness. It
makes it suitable to be implemented in energy aware work
stations or "green" computational devices that utilize
parallel processors and want to maintain a fairly stable
(constant) operation cost under unpredictable heavy traffic
conditions.

The proposed SCVPPT service discipline always
matches or outperforms the FCFS and SRPT service
disciplines as evaluated by the TCRTEC performance
metric. When implemented in the algorithm, the SCVPPT
and SRPT service disciplines each have computational
complexities of O(log n). where n is the occupancy of a
given processor's memory queue. SCVPPT behaves exactly
like SRPT when the unit price of response time is fixed and
equivalent for all tasks; thereby it minimizes total response
time. SCVPPT is sort of a generalized version of SRPT but
is flexible. It allows a user to maintain or even improve the
priority of a large task by accepting to set/pay a higher unit
price of response time or even degrade the priority of a
small non-urgent task by setting a sufficiently small unit
price of response time. This is a dynamic feature that is
absent in both FCFS and SRPT service disciplines. We
recommend that the SCVPPT service discipline be
implemented in any online speed-scaling algorithm that
aims to minimize TCRTEC and considers tasks with
heterogeneous unit prices of response time.

ACKNOWLEDGMENT

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] N. Avrahami, and Y. Azar. “Minimizing total flow time and total completion
time with immediate dispatching”. SPAA, pp. 11–18, 2003.

[2] Albers, S., Antoniadis, A. and Greiner, G. “On Multi-Processor Speed
Scaling with Migration”. SPAA, pp. 279–288, 2011.

[3] Albers, S. and Fujiwara, H. “Energy-efficient algorithms for flow time
minimization”. Proc. 23rd Annual Symposium on Theoretical Aspects of
Computer Science (STACS), Springer LNCS 3884, pp. 622–633, 2006.

[4] Albers, S., Muller, F. and Schmelzer, S. “Speed Scaling on Parallel
Processors”. SPAA, pp. 289-298, 2007.

[5] Angel, E., Bampis, E., Kacem, F. and Letsios, D. “Speed Scaling on Parallel
Processors with Migration*”. Euro-Par, pp.128-140, 2012.

[6] Asanovi�, K., et al., "The Landscape of Parallel Computing Research: A
View from Berkeley" EECS Department, University of California, Berkeley,
pp.22, Tech. Rep. UCB/EECS-2006-183, December 2006.

[7] Bansal, N., Kimbrel, T. and Pruhs, K. “Dynamic speed scaling to manage
energy and temperature” Proc. 45th Annual IEEE Symposium on
Foundations of Computer Science, pp. 520–529, 2004.

[8] Bansal, N., Kimbrel T. and Pruhs, K. “Speed scaling to manage energy and
temperature”, J. ACM 54 (1) , pp. 1–39, 2007.

[9] Bansal, N., Pruhs, K., Stein, C., “Speed scaling for weighted flow time”. In:
Proc. of 18th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’07), pp. 805–813, 2007.

[10] Bower, F.A., Sorin, D.J. and L.P. Cox. “The impact of dynamically
heterogeneous multicore processors on thread scheduling”. Micro, IEEE,
28(3), pp. 17 –25, 2008.

[11] Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N.,
Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.,
“Power-aware microarchitecture: design and modeling challenges for next-
generation microprocessors”. IEEE MICRO 20(6), pp. 26–44, 2000.

[12] Bunde, D.P., “Power-aware scheduling for makespan and flow”, SPAA,
pp. 190–196, 2006.

[13]Koufaty et al., "Bias scheduling in heterogeneous multi-core
architectures," EuroSys 2010

[14] Gradshteyn, I. S. and Ryzhik, I. M. "Hessian Determinants" §14.314 in
Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic
Press, pp. 1069, 2000.

[15] Greiner, G. , Nonner, T. and Souza, A. “The bell is ringing in speed-scaled
multiprocessor scheduling”, SPAA, pp. 11-18, 2009.

[16] Gupta, A., Im, S., Krishnaswamy, R., Moseley, B. and Pruhs, K.,
"Scheduling heterogeneous processors isn't as easy as you think", Proc. of
the Twenty-Third Annual ACM-SIAM Symp. on Discrete Algorithms pp.
1242-1253.

[17] Hydro One. (2013, May). "BUILDING YOUR BILL: prices & rates"
[Online].Available:http://www.hydroone.com/RegulatoryAffairs/RatesPrices
/Pages/Default.aspx Access on 2013, June 19.

[18] LLH Andrew, M Lin, A Wierman “Optimality, fairness, and robustness in
speed scaling designs”, SIGMETRICS '10 Proceedings of the ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems, Pages 37-48, 2010.

[19] Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H. “Competitive non-
migratory scheduling for flow time and energy”. In: Proc. of the 20th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA’08), pp.
256–264, 2008.

[20] Pruhs, K., Sgall, J. and Torng, E. “Online scheduling”. In J. Leung, editor,
Handbook of Scheduling: Algorithms, Models and Performance Analysis,
pp. 15-1–15-41. CRC Press, 2004.

[21] Ontario Ministry of Labour. (2013, May). "Minimum Wage"
[Online].Available:http://www.labour.gov.on.ca/english/es/pubs/guide/minw
age.php. Access on 2013, June 19.

[22] Pruhs, K., Uthaisombut, P. and Woeginger, G. “Getting the best response
for your erg” Proc. 9th Scandinavian Workshop on Algorithm Theory
(SWAT), Springer LNCS 3111, pp.15–25, 2004.

[23] Pruhs, K., van Stee, R. and Uthaisombut, P., “Speed scaling of tasks with
precedence constraints”, Theory Comput. Syst. 43 (1), pp. 67–80, 2008.

[24] Tomer, Y., Morad, Uri C.Weiser, Avinoam Kolodny, Mateo Valero, and
Eduard Ayguade. “Performance, power efficiency and scalability of
asymmetric cluster chip multiprocessors”. IEEE Comput. Archit. Lett., 5:4–,
January 2006.

[25] Wikipidea. (2013, Feb 1). “PlayStation Vita” Wikipidea [Online].
Available: http://en.wikipedia.org/wiki/PlayStation_Vita. Access on 2013,
Mar 10.

[26] Yao, F., Demers, A. and Shenker, S. “A scheduling model for reduced CPU
energy” Proc. 36th Annual Symposium on Foundations of Computer
Science, pp.374–382, 1995.

[27] Yuan, L., and Qu, G. “Analysis of energy reduction on dynamic voltage
scaling-enabled systems”, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 24 (12), pp. 1827–1837, 2005.

274274274274274274

