
Simulation Modelling Practice and Theory 40 (2014) 95–111
Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/ locate/s impat
An energy-efficient process clustering assignment algorithm
for distributed system
1569-190X/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2013.09.005

⇑ Corresponding author. Address: Advanced Virtual and Intelligent Computing Research Center, Department of Mathematics and Computer
Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand. Tel.: +66 877127360.

E-mail addresses: anan.niyom@gmail.com (A. Niyom), speraphon@gmail.com (P. Sophatsathit), lchidcha@gmail.com (C. Lursinsap).
Anan Niyom ⇑, Peraphon Sophatsathit, Chidchanok Lursinsap
Advanced Virtual and Intelligent Computing Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn
University, Thailand
a r t i c l e i n f o

Article history:
Received 1 July 2013
Received in revised form 23 August 2013
Accepted 11 September 2013
Available online 8 October 2013

Keywords:
Distributed assignment algorithm
Dependent task graph
Processing unit
Task scheduling
Energy aware
a b s t r a c t

This paper proposes a distributed assignment algorithm for selecting the optimal energy
consumption during process execution, idling, and transmission in a distributed system.
Selection criteria are based on identifying candidate processing units that are suitable
for minimizing idle energy in task scheduling. The proposed algorithm tries to mimic as
close to real situation as possible by assuming that each processing unit has multiple capa-
bilities to execute different tasks with different characteristics. Task scheduling can be flex-
ibly carried out to attain optimal energy consumption without any restrictions as those of
comparative algorithms. Thus, the energy required by each processing unit varies consid-
erably depending on the schedule. Experimental results show that the proposed algorithm
yields the lowest idle, total energy consumption, and satisfactory execution energy. The
extraneous transmission energy is a trade-off for scheduling flexibility.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Demands for energy conscious algorithms have increased in the recent years along with the fast-paced development of
computational technology [1–4]. Various combined system architectures or operators were used to solve complicated prob-
lems in science and commercial including cloud computing and computer grid systems [5–9]. These systems were built with
complex algorithms which required high computing power. Thus, one mandate that the supporting algorithms had to satisfy
was minimizing the complexity of the computation process.

In general, when parallel code is pending for execution by a cluster of servers in a distributed system, the tasks, data, and
functions are generated by the user on the client site. Only the required components are sent to the server cluster for exe-
cution. In most cases, each assigned server will only receive allotted jobs to perform. If the jobs coming from multiple sources
must undergo additional security measures, a higher transferring rate to send data across networks will be required due to
more processes to be finished. Therefore, ordinary server assignment algorithms are inadequate as the time complexity posts
more power requirement to achieve the optimal energy consumption.

Concern of energy-aware issue calls for energy-efficient server assignment problem to be carefully studied [10–14]. Two
minimum energy consumption techniques for real-time 2-level heterogeneous grid system were proposed by Terzopoulos
and Karatza [15], i.e., Dynamic Voltage Scaling (DVS) and Dynamic Power Management (DPM). The predominant aspect is
the reduction of energy consumption with minimum performance degradation. In a typical distributed system, some data
or functions are kept at a local scheduler and some are kept in specific places due to required security. The task scheduler
Science,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2013.09.005&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2013.09.005
mailto:anan.niyom@gmail.com
mailto:speraphon@gmail.com
mailto:lchidcha@gmail.com
http://dx.doi.org/10.1016/j.simpat.2013.09.005
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

96 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
must determine the starting time of each task and the server to which the task should be sent. To attain the optimal energy
consumption, scheduling scenarios could be quite complex due to the flexibility of assigning task to proper matching exe-
cution unit. Our proposed Energy-Efficient Process Clustering Assignment (EPC) algorithm aims to handle such complex sce-
narios to find the optimal energy efficient assignment in a reasonable computing time. The important aspects to the
development of this algorithm are matching the servers to which the tasks should be sent, determining the execution time
of each specific task to be run on the designated server, and clustering tasks for execution on the same server.

The paper is organized as follows. Related works and their background theory are briefly reviewed in Section 2. Details of
the problem formulation and constraints are described in Section 3. The proposed algorithm is discussed in Section 4. Sec-
tions 5 presents the experimental details and results. Some notable points are discussed and concluded in Section 6.

2. Related works and background

Many parallel or distributed task scheduling algorithms have been proposed, such as list scheduling, clustering, and task
duplication heuristics. A brief summary of each approach is described below.

2.1. List scheduling heuristics (LSH)

This is perhaps the most common scheduling algorithm owing to its practicality [16–18]. Most list scheduling algorithms
have two parts: task prioritization and server selection. In the first part, the algorithm assigns a score to each task according
to its average computation cost. The score will then be ranked in a descending order to determine task priority. In the second
part, the algorithm estimates the execution time of each task used by individual server and assigns the task to the server
which has the least execution time for that task. One of the interesting algorithms is the Min-Min algorithm proposed by
Li et al. in 2011 [18]. For this algorithm, the authors modified the original Min-Min algorithm which treated each task graph
as independent to treating each task graph as dependent. The algorithm finds the earliest finishing time for each task in each
device and then schedules each task to be computed with the earliest finishing time.

2.2. Clustering heuristics (CH)

Heuristic clustering algorithms are algorithms aiming to group tasks into m groups according to their transmission edge,
to reduce transmission cost, and then to map each group to n servers [19–22]. One of the examples of heuristic clustering
algorithms is the algorithm introduced by Liou and Palis in 1997 [20]. The algorithm has four steps: clustering all tasks into
groups, merging clusters to a number of servers, mapping individual cluster to a server, and determining the order of task
execution. It balances both the load in each cluster or server and the communication traffic among the clusters. A cluster of
tasks is assigned to a server starting from the cluster which has the highest communication cost until all clusters are
assigned.

2.3. Task duplication heuristics (TDH)

This algorithm pushes redundant tasks to different servers to reduce the communication cost between tasks [23,24].
Although it can reduce the computing time, it requires high energy consumption and execution cost as redundant tasks
are executed on different servers. This approach is effective for systems with a high ratio of communication and execution
cost. Unfortunately, its operation is very complex and the overhead to find an optimal solution is high.

2.4. Heterogeneous earliest finish time (HEFT)

The algorithm was proposed by Topcuoglu et al. in 2002 [25]. It finds the shortest time of overall finishing time of a sys-
tem with insertion base. The algorithm consists of two steps, namely, task priority and server selection. The task priority cal-
culates the priority of computation and communication for each task. The server selection determines idle time slots on each
server to insert a task for execution at the earliest time.

Some predominant aspects of the algorithms can be summarized as follows. List scheduling heuristic yields the lowest
computational cost, while clustering heuristic has a moderate communication cost. At any rate, HEFT gives a shorter finishing
time at relatively low cost. Task duplication heuristics are strong in short finishing time but use high energy. By exploiting
such strengths and weaknesses, we have derived an energy saving approach by grouping tasks in groups to be executed on
the same server that requires the least energy. This in turn reduces the overall communication energy considerably. However,
some tasks may carry their inherent restrictions which preclude them from being clustered or executed on the same server.
Hence, the details of problem formulation and constraints of task characteristics and server competency are discussed below.

3. Problems formulation and constraints

Formulation of the proposed algorithm and its constraints are given in the following sections.

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 97
3.1. Problem formulation

Let G = (V, E) be a directed graph representing a process captured in the forms of tasks and their dependencies. Graph G is
called dependent task graph. V = {v1, . . ., vn} is a set of tasks to be performed. E = {(vi, vk)jvi, vk 2 V} is a set dependency edges
among the tasks. An edge (vi, vk) denotes that task vi must be performed prior to task vk. A set of tasks occurs on the client
site, which may be a mobile phone or a PC. Each task can be performed either on a client site or a server site. Each server is
capable of performing more than one task with different amount of energy consumption. A task is processed by a processing
unit which can be either a client machine or a server machine. Thus, instead of distinguishing a client from a server, we will
call them processing unit. Each processing unit is capable of processing some tasks. It is possible that there may be more than
one processing unit that can process the same task. Let ea(vi) be the amount of energy consumed to process task vi by pro-
cessing unit a. Assuming that the number of tasks is greater than the number of processing units, the problem studied in this
paper is formulated as follows.

Given a dependent task graph G, find a method to partition tasks vi’s 2V into m groups of tasks {g1, . . ., gm} so that group gj

can be performed on processing unit j in such a way that the total amount of energy consumed by all processing units is
minimum. In other words, the objective is to minimize

P
16i6m;v j2gi

eiðv jÞ.

3.2. Constraints on energy consumption

The amount of energy ea(vi) can be decomposed into three types, namely, execution energy, transmission energy, and idle
energy. Execution energy depends primarily on server competency and task characteristics. Task vi requires ta(vi) amount of
time to be executed on processing unit a. Let aa be the energy per unit time consumed by processing unit a to execute a task.
The execution energy to execute task vi on processing unit a is computed by aata(vi).

Transmission energy occurs when data are sent from one processing unit to other processing units according to their data
dependencies. Let da(vi) be the amount of data of task vi sent from current processing unit a to other processing units in the
same dependency path of G. For each unit amount of data, the transmission energy consumed is set to ka. Therefore, the
transmission energy is computed by kada(vi).

The idle energy of processing unit a in this study is based on the assumption that if processing unit a does not process any
task, then it is put into an idle state. Processing unit a is activated when there are some other processing units transferring
the dependent data to be processed by it. Suppose the remaining jobs of task vi are transferred to processing unit a. When
processing unit a is activated, it must spends wa(vi) unit time to receive all related data of vi to be transferred before execu-
tion. Therefore, the idle energy must involve the energy consumed during the idle state and the energy wasted during the
data transferring period. Let wa(vi) be the time that processing unit a is in the idle state before being activated by task vi. The
total idle time is equal to wa(vi) + wa(vi). We assume that each idle unit time of processing unit a consumes ba unit of energy.
Hence, the total energy is equal to ba(wa(vi) + wa(vi)).

Some processing unit may not consume any idle energy and transmission energy if it executes the last task of G which is a
leaf vertex. To handle this situation, constants ja 2 {0, 1} and la 2 {0, 1} are introduced to indicate whether a task vi executed
by processing unit a is a leaf vertex or an internal vertex in G. ja = 0 if the number of out-degrees of vi is equal to zero and
la = 0 if the number of in-degrees of vi is equal to zero. Otherwise, it is equal to 1. Hence, the total energy of G, denoted by CG,
is computed by this equation.
CG ¼
X

16a6m;v j2ga

eaðv jÞ þ
X

16a6m;v i2ga

bawaðv iÞ ð1Þ

¼
X

16a6m;v j2ga

aataðv jÞ þ jakadaðv jÞ þ labawaðv jÞ

þ
X

16a6m;v i2ga

bawaðv iÞ ð2Þ
4. Energy-Efficient Process Clustering Assignment (EPC) algorithm

We assume that, for any processing unit a, the values of ta(vi), aa, da(vi), ka, wa(vi), and ba can be estimated prior to the
assignment of tasks to processing units. This assumption is feasible and practical enough for this study. Furthermore, each
processing unit in this study is assumed to have the capability to process different kinds of task unless a specific capability is
defined to the processing unit. This means that, in general, more than one task can be assigned to any processing unit. Let Pv i

be a set of processing units capable of processing task vi. The task assignment consists of the following steps.

1. Identify a set of candidate processing units for each task vi. A candidate processing unit for vi is a processing unit whose
consumed energy is less than or equal to the minimum energy estimated from every processing unit in Pv i

. This candidate
processing unit is called a primary candidate processing unit. Any processing units that are not satisfied with the above

Table 1
Power consumption of benchmark desktop CPUs at peak and idle states. The values were taken from [26,27] and were used to estimate energy consumption of
each processing unit in the experiment.

Processing unit CPU Clock (GHz) Power consumption (W)

Peak Idle

a Intel Core i7-975 XE 3.33 240 105
b Intel Core 2 Extreme QX6850 3.00 233 110
c Intel Core 2 Extreme QX6700 2.66 229 106
d Intel Core i7-920 2.66 224 105

98 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
condition will be classified as secondary or tertiary candidate processing units, depending on the following conditions.
Processing unit a is called a secondary candidate processing unit if aata(vi) 6 s, otherwise it is called tertiary candidate
processing unit. Details are given in Algorithm 1.

2. Identify a set of actual candidate processing units. For any task vi and its candidate processing unit a, other dependent
tasks of vi executable by a are virtually assigned to a. The energy consumption of primary candidate and secondary can-
didate processing units are re-computed and compared. Any candidate processing unit a is replaced by a secondary can-
didate processing unit b if the energy consumption of a is higher than that of b. Details are given in Algorithm 2.

3. Schedule the set of tasks assigned to each processing unit. The scheduling process consists of two phases. In the first
phase, a set of dependent tasks assigned to a processing unit is orderly arranged according to their dependent paths in
dependent task graph G in the form of processing time duration. For those independent tasks, they can be arbitrarily
scheduled. Therefore, the scheduled sequence in any processing unit will consist of alternate slots of task duration and
slots of idle duration. The second phase is to minimize the idle energy of the whole system. If there are some tasks pos-
sibly executed by more than one processing unit, then these tasks are re-assigned to other processing units under the
condition that the new total energy must not be increased. The detail of phase 1 is given in Algorithm 3 and that of phase
2 is given in Algorithm 4.
Algorithm 1. Identifying Preliminary Candidate Processing Units

Require: v i; Pv i , and G.
1. for vi 2 G do
2. Let o be the number of out-degrees of vi.
3. s ¼ mina2Pvi

ðaataðv iÞÞ þmaxa2Pvi
ðojakadaðv iÞ þ labawaðv iÞÞ

4. for each processing unit a 2 Pv i
do

5. if aata(vi) 6 s then
6. mark a as a secondary candidate processing unit.
7. else
8. mark a as a tertiary candidate processing unit.
9. end if

10. end for
11. end for
Algorithm 2. Identifying Actual Candidate Processing Units

Require: v i; Pv i ;ga, and G.
1. for vi 2 G do
2. for each secondary candidate processing unit a 2 Pv i

do
3. Let ga = / for all a.
4. for all ancestors vj’s of vi do
5. if vj is executable by a then
6. Let ga = ga [{vj}.
7. end if
8. end for
9. for all descendants vk’s of vi do

10. if vk is executable by a then
11. Let ga = ga [{vk}.

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 99
12. end if
13. end for
14. end for
15. Descendingly sort jgaj.
16. Mark any processing unit a 2 Pv i

having maximum jgaj and lowest execution energy as a primary candidate
processing unit.

17. Mark the rest of processing units in Pv i
as a secondary candidate processing units.

18. end for
19. for vi 2 G do
20. for each secondary candidate processing unit b 2 Pv i

do
21. Compute energy eb(vi).
22. if $ candidate processing unit a 2 Pv i

such that eb(vi) < ea(vi) then
23. Mark processing unit a as a tertiary candidate processing unit.
24. Mark processing unit b as a primary candidate processing unit.
25. end if
26. end for
27. end for
Algorithm 3. Phase-1 Preliminary Task Scheduling in Processing Units

Require: v i; Pv i , and G.
1. Let vf be the latest task in its primary processing unit in Pv f

.
2. Let fv f

be the finishing time of task vf.
3. Descendingly sorted task vi at first level of G by execution time on its primary processing unit.
4. for each sorted task vi at first level of G do
5. if primary processing unit Pv i

is an empty slot then
6. Assign vi to its primary processing unit in Pv i

.
7. else
8. Assign vi to its primary processing unit in Pv i

at time fv f
þ 1.

9. end if
10. end for
11. while $ unassigned vi do
12. Let d be a set of vk having all ancestor tasks already assigned to their primary processing units.
13. for each task vk 2 ddo
14. Let Avk

be a set of ancestor tasks of vk already assigned to their primary processing units.
15. Find a task v j 2 Avk

having the latest finishing time at time fv j
.

16. end for
17. Find a task vk 2 d having earlier finishing time fv j

and the shortest execution time on its primary processing
unit.

18. if time slot fv j
þwaðvkÞ of primary processing unit in Pvk

is empty then
19. Assign vk to its primary processing unit in Pvk

at time slot fv j
þwaðvkÞ.

20. else
21. Assign vk to its primary processing unit in Pvk

at time slot fv f
þ 1.

22. end if
23. end while
Algorithm 4. Phase-2 Minimizing Idle Energy in Task Scheduling

Require: a list of scheduled tasks in each ga and G.
1. Let S be a set of jgaj sorted in descending order.
2. for each corresponding ga 2 S do
3. Let vk be the last task in ga.
4. while task vk is not the first task in ga do

(continued on next page)

100 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
5. Traverse the task list upward starting at vk until an empty slot E is found and let vj be the task next to this idle
slot.

6. Let Av j
be a set of ancestors of vj.

7. for all tasks v i 2 Av j
do

8. if there exists a processing unit b with an empty slot and the data dependency of vi and its ancestors in any
processing units is not violated then

9. Temporarily remove vi from the present slot.
10. Insert vi to the beginning of this new empty slot.
11. Reschedule all tasks whose starting times are after the ending time of vi by using Algorithm 3.
12. Let G0 be the new dependent task graph after the temporary assignment of vi.
13. Compute the total energy CG0 .
14. if CG0 > CG then
15. Remove vi from processing unit b and assign it back to its original processing unit.
16. else
17. Permanently assign vi to this new empty slot on processing unit b.
18. end if
19. end if
20. end for
21. if vk is not the first task in ga then
22. Let vk be a new task found after traversing list ga upward starting from the empty slot E.
23. end if
24. end while
25. end for

To illustrate how these four algorithms work, the algorithms are applied to schedule all tasks in the dependent task graph
shown in Fig. 1. Each vertex represents a task with its name. A parenthesis to the right of each vertex vi is a set of processing
units capable of processing task vi. For example, task v1 can be processed by processing units a and c. The values of all vari-
ables in Eq. (2) are hypothetically given in Tables 2–4. Table 2 provides the amount of processing energy per unit time (aa),
amount of waiting energy per unit time (ba), and transmission energy per unit amount of data (ka) of each processing unit a.
In this example, there are four processing units which are a, b, c, and d. Table 3 defines the transmission speed of the link
between each processing unit pair in unit amount of data per unit time. These constants are used to estimate data transmis-
sion time among processing units. Table 4 shows the amount of transmitted data of each task vi and its estimated transmis-
sion time of each processing unit. To show how the energy consumption is estimated, the activities of task v1 will be used as
an example.

The amount of time to process task v1 on a processing unit a is ta(v1) = 260 with aa = 0.067 as defined in Table 2. The
estimated execution energy is equal to aata(v1) = 0.067 � 260 = 17.42. The energy consumption of the other tasks can be
similarly estimated. Table 5 summarizes the estimated energy consumption of all tasks in the given dependent task graph.

Suppose v1 is processed at processing unit a. After finishing task v1, the results must be transmitted to its descendant
tasks which are v4, v5, v6, and v7. These four tasks can be executed by a set of processing units (a, b) for v4, (c, d) for v5,
(b, d) for v6, and (a, c) for v7. Thus, the amount of transmission energy between processing unit pairs {a, b}, {a, c}, {a, d} must
Fig. 1. An example of dependent task graph G. The parentheses to the right of each vertex denote candidate processing units to which the tasks can be
executed. For example, vertex v1(a, c) denotes task v1 that can be executed on either processing unit a or c.

Table 2
A list of given energy consumption constants for each processing unit i 2 {a, b, c, d}. ai is the execution energy at peak state per unit time, bi is the waiting energy
at idle state per unit time, ki is the transmission energy per unit data.

Energy constants Processing units

a b c d

ai2{a, b, c, d} 0.067 0.065 0.064 0.062
bi2{a, b, c, d} 0.029 0.031 0.029 0.029
ki2{a, b, c, d} 0.045 0.047 0.050 0.048

Table 3
Estimated data transmission rate ra, b between any processing unit pair a and b in unit amount of data per unit time.

Processing unit a b c d

a – 1 0.5 1
b 1 – 0.5 1.25
c 0.5 0.5 – 1.25
d 1 1.25 1.25 –

Table 4
The initial values of output data size and the estimated execution time of each task processed by each processing unit.

Task Amount of transmitted data Amount of execution time

vi da(vi) ta(vi) tb(vi) tc(vi) td(vi)

1 60 260 – 760 –
2 80 350 160 – –
3 10 – – 890 820
4 60 420 150 – –
5 90 – – 940 430
6 30 – 400 – 560
7 50 670 – 850 –
8 40 300 – – 630
9 50 – 470 – –
10 30 920 – – 950
11 80 – 550 120 –
12 10 – 200 – 130
13 90 – 100 790 –
14 40 940 – 580 –
15 50 – – 350 310
16 40 930 – – 750
17 70 – 370 – –

Table 5
Estimated execution energy to execute each task on each processing unit for the first case.

Task Execution energy

vi aata(vi) abtb(vi) actc(vi) adtd(vi)

1 17.42 – 48.64 –
2 23.45 10.40 – –
3 – – 56.96 50.84
4 28.14 9.75 – –
5 – – 60.16 26.66
6 – 26.00 – 34.72
7 44.89 – 54.40 –
8 20.10 – – 39.06
9 – 30.55 – –
10 61.64 – – 58.90
11 – 35.75 7.68 –
12 – 13.00 – 8.06
13 – 6.5 50.56 –
14 62.98 – 37.12 –
15 – – 22.40 19.22
16 62.31 – – 46.50
17 – 24.05 – –

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 101

(a)

(b)

(c)
Fig. 2. Examples of applying the Algorithm 1 to identify preliminary candidate processing units for the tasks v1, v8, and v15. The incoming edge of the
considered task vi shows the waiting energy having maximum weight for each ancestor task. The outgoing edge shows the transmission energy having
maximum weight for the transmission to each descendant task. The numbers next to the task denote the minimum execution energy utilized by the
candidate processing units. (a) Task v1, (b) Task v8, and (c) Task v15.

102 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
be estimated. Suppose we consider the pair {a, c}. From Tables 2 and 4, the amount of transmitted data is da(v1) = 60 and the
transmission energy per unit amount of data is ka = 0.045. Hence, the transmission energy is equal to kada(v1) = 0.045 -
� 60 = 2.7. The transmission energy of other processing unit pairs can be similarly estimated.

The waiting energy of any processing unit depends upon the data transmission rate between the sending unit and the
receiving unit. Let us consider tasks v6 and v8. Task v6 can be processed by either processing units b or d and task v8 can
be processed by either processing units a or d. Assume that v6 is processed by d and v8 is by a. According to Table 4, the
amount of data to be transmitted from d to a is equal to dd(v6) = 30 and the data transmission rate from d to a is equal to
rd, a = 1. Therefore, the data transmission time wa(v8) is equal to dd(v6)/rd, a = 30/1 = 30. The waiting energy at processing unit
a for v8 is estimated by bawa(v8) = 0.029 � 30 = 0.87.

The results produced by each algorithm will be explained next. From Algorithm 1, three different types of tasks will be
considered to illustrate how Algorithm 1 works. The first type is a task without any incoming degree such as task v1. The
second type is a task with both incoming and outgoing degrees such as task v8. The last type is a task having only incoming
degree such as task v15. For task v1, the value of minimum energy s estimated from every processing unit in list Pv1 is equal to
s ¼ min
k2Pv1

ðaktkðv1ÞÞ þmax
k2Pv1

ðojkkkdkðv1Þ þ lkbkwkðv1ÞÞ ð3Þ

¼ 17:42þ 3� 3þ 0 ¼ 26:42 ð4Þ
Since v1 has no incoming degree, the term lkbkwk(v1) is set to zero. For task v8, the value of minimum energy s estimated
from every processing unit in list Pv8 is equal to
s ¼ min
k2Pv8

ðaktkðv8ÞÞ þmax
k2Pv8

ðojkkkdkðv8Þ þ lkbkwkðv8ÞÞ ð5Þ

¼ 20:10þ 2� 1:92þ 1:74 ¼ 25:68 ð6Þ
For task v15, the value of minimum energy s estimated from every processing unit in list Pv15 is equal to
s ¼ min
k2Pv15

ðaktkðv15ÞÞ þ max
k2Pv15

ðojkkkdkðv15Þ þ lkbkwkðv15ÞÞ ð7Þ

¼ 19:22þ 0þ 4:64 ¼ 23:86 ð8Þ

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 103
From Fig. 2, processing unit a is selected as a secondary candidate, while processing unit c is selected as a tertiary candidate
for v1 with respect to s. Fig. 3 shows all secondary candidate processing units for each task after applying Algorithm 1.

In the second step, Algorithm 2 is used to identify the actual candidate processing units. The input is a dependent graph G
obtained from the first step as shown in Fig. 3. Algorithm 2 counts the number of ancestors as well as descendants of each
task with respect to each secondary candidate processing unit. Any secondary processing unit of a task is set as a primary
candidate processing unit if the task has the largest number of counts. Then the algorithm computes the actual energy con-
sumption for each primary and secondary candidate processing units. An example is shown in Fig. 4 along with procedural
computations below.

For task v10 in Fig. 3, both ga and gd have the same counts of 2. As the execution energy of task v10 on processing unit d is
less than the execution energy on processing unit a, the processing unit d is marked as a primary candidate processing unit.
Similarly, for task v15 in Fig. 3, group gc has the maximum counts of 3. Thus, the processing unit c is marked as a primary
candidate processing unit.

After identifying the primary candidate processing units, the algorithm determines the energy consumption of primary
and secondary processing units of each task. For example, consider task v10. This task has both incoming and outgoing de-
grees. The energy consumption of processing units a and d for task v10 are shown in Fig. 4(a) and (b), respectively. The energy
consumption of task v10 by processing unit a is equal to
Fig. 3.
than on
eaðv10Þ ¼ aataðv10Þ þ jakadaðv10Þ þ labawaðv10Þ ð9Þ
¼ 61:64þ 2� 1:35þ 2:61 ð10Þ
¼ 66:95 ð11Þ
and by processing unit d is equal to
edðv10Þ ¼ adtdðv10Þ þ jdkdddðv10Þ þ ldbdwdðv10Þ ð12Þ
¼ 58:90þ 2� 1:44þ 1:45 ð13Þ
¼ 63:23 ð14Þ
Since ed(v10) is less than ea(v10), the actually selected candidate processing unit for task v10 is d. For a task without any out-
going degree such as v15, a similar computation for energy consumption can be estimated. Task v15 has two candidate pro-
cessing units which are c and d. Fig. 4(c) and 4(d) show the energy consumption of each processing unit for task v15. The
energy consumption of task v15 by processing unit c is equal to
ecðv15Þ ¼ actcðv15Þ þ jckcdcðv15Þ þ lcbcwcðv15Þ ð15Þ
¼ 22:40þ 0þ 0 ð16Þ
¼ 22:40 ð17Þ
and by processing unit d is equal to
edðv15Þ ¼ adtdðv15Þ þ jdkdddðv15Þ þ ldbdwdðv15Þ ð18Þ
¼ 19:22þ 0þ 1:856 ð19Þ
¼ 21:076 ð20Þ
Results from the first step after applying Algorithm 1 to the dependent task graph G of Fig. 1. Note that some tasks, such as v10 and v15 still have more
e secondary candidate processing unit.

(a) (b)

(c) (d)
Fig. 4. Examples of candidate processing units for tasks v10 and v15. The tasks still contain secondary candidate processing units at the end of the first step
and all the ancestors and descendants are primary candidate processing units. The incoming and outgoing edges are actual waiting and transmission
energy, respectively. (a) Task v10 on processing unit a, (b) Task v10 on processing unit d, (c) Task v15 on processing unit c, and (d) Task v15 on processing unit
d.

104 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
Because ed(v15) is less than ec(v15), the actually selected candidate processing unit for task v15 is d. The actual processing unit
of each task in the dependent task graph G as the result of Algorithm 2 is shown in Fig. 5.

Scheduling is performed by Algorithm 3. For example, from Fig. 5, there are three tasks in the first level, namely, v1, v2 and
v3, with the assigned primary candidate processing units a, b, and d, having the execution time of 260, 160, and 820, respec-
tively. Thus, task v2 will be scheduled first, followed by v1, and v3. Next, the unassigned task v6 whose ancestor task v2 is
considered. Task v6 has the latest finishing time comparing with all of its ancestors, but has the earliest finishing time com-
paring with the ancestors of other tasks. Thus, it is assigned to primary candidate processing unit b. Task v4, the descendant
task of v1, has the latest finishing time comparing with all of its ancestors, but has the earliest finishing time comparing with
the ancestors of other tasks. Thus, it is assigned to primary candidate processing unit b. Task v8, the descendant of v4, is
scheduled next. It has the latest finishing time comparing with all of its ancestors, but has the earliest finishing time com-
paring with the ancestors of other tasks. Therefore, it is assigned to primary candidate processing unit a. Tasks v5 and v7 have
a common ancestor task v3. Task v3 has the latest finishing time comparing with all of its ancestors, but has the earliest fin-
ishing time comparing with the ancestors of other tasks. However, task v5 has a shorter execution time. Hence, it is assigned
to primary candidate processing unit d. The algorithms will continue until all tasks are assigned. Fig. 6(a) illustrates the list of
scheduled tasks assigned by Algorithm 3.
Fig. 5. Results of Algorithm 2. A solid line represents data transmission between different processing units. A dashed line represents data transmission
within the same processing unit. A thick line represents data transmission from a task to its descendant tasks which are executed by the same processing
unit, e.g., v8 to v11 and v14.

Fig. 6. The scheduling results of Algorithms 3 and 4. (a) The result of Algorithm 3, (b) The result of Algorithm 4. In this example, only task v7 is removed
from processing unit a and re-assigned to processing unit c.

Fig. 7. Results of energy consumption for the first case.

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 105
Algorithm 4 is applied further to reduce the empty slots so as to minimize the idle energy of the scheduled tasks. From
Fig. 6(a), the latest finished task is v15 on processing unit d. The algorithm traverses the time slots of processing unit d
upwards until an empty slot is found. In this case, v16 is the task next to this first idle slot and its ancestors are v12 and
v13. A re-assignment trial of v12 and v13 to other processing units is proceeded. Although there are empty slots and no data
dependency violation for v12 and v13, the re-assignment of v12 and v13 increases the amount of total energy. Therefore, no
re-assignment for v12 and v13 is done. The next empty slot when traversing the time slot towards the beginning is a slot be-
fore v10. Task v10 has three ancestors which are v5, v6, and v7. In this case, v7 can be re-assigned to processing unit c which
decreases the idle energy and total energy. Other tasks in each processing unit are re-assigned in a similar fashion. Fig. 6(b)
depicts the results from Algorithm 4.
5. Experimental results and discussion

We conducted four experimental cases on LSH, CH, HEFT, and EPC algorithms to test and evaluate their performance using
different scheduling scenarios. The dependent task graph in the first case was synthesized. The second case was taken
directly from [25] as a validation benchmark. The third case employed the same scenario as that of the second case but

Fig. 8. A list of scheduled tasks in each processing unit of dependent task graph in Fig. 1. (a) List scheduling heuristic (LSH), (b) Clustering heuristic (CH), (c)
Heterogeneous earliest finish time (HEFT).

Table 6
Energy consumption in each processing unit by LSH algorithm in the first case.

Processing unit Execution energy Transmission energy Idle energy Total energy

a 144.05 12.15 14.79 170.99
b 107.25 14.57 46.81 168.63
c 44.80 10.00 75.40 130.20
d 151.28 9.12 42.98 203.38

Total 447.38 45.84 179.98 673.20

106 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
imposed the processing unit limitation of the first case on the second case. The fourth case was extended from the first case
to cover more complex task graphs and emphasize on execution intensive scenario rather than transmission load. Thus, con-
sideration of the transmission time in the first and the fourth cases was not our main concern in this situation as the network
capability is technologically increased.

The simulation environment for these experiments consists of four heterogeneous processing units. Each unit has unique
competence but different energy consumption during peak or idle states. The amount of energy consumption for the four
processing units were selected from the values of experimental energy consumption database for a number of CPU specifi-
cations [26,27]. The selected values are shown in Table 1. In this study, the energy consumption was converted to execution
energy at peak state and waiting energy at idle state in watts per seconds. For example, for processing unit a, the execution

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 107
energy per unit time aa = 240/3600 = 0.067 and the waiting energy per unit time ba = 105/3600 = 0.029. As processing units
are connected to one another, the transmission energy (k) were assigned to each pair. The values were randomly generated
within the range of energy consumption during the peak state and the idle state. The obtained values for the execution en-
ergy per unit time, waiting energy per unit time, and transmission energy per unit data are shown in Table 2. In order to
calculate delay time due to data transmission, the network transmission speed for all the processing unit pairs were assigned
as shown in Table 3.

For the first case, the dependent task graph is shown in Fig. 1. There are 17 given tasks, i.e., v1–v17, and 4 processing units,
i.e., a, b, c, and d. The tasks were created with different attributes and the processing units possessed various competency to
handle individual task execution requirements. The initial assignment of processing units to their executable tasks are
shown in Fig. 1. The size of output data and the estimated execution time of each task processed by each processing unit
from the beginning of simulation are given in Table 4. The total execution energy consumed by each processing unit for each
task is shown in Table 5.

Although other scheduling algorithms, namely, LSH, CH, HEFT, did not consider energy consumption as their cost func-
tions, they are worthy to be deployed in performance comparison. Fig. 7 shows the comparison of energy consumption of
LSH, CH, and HEFT scheduling algorithms with the proposed algorithm based on the first experimental case. This energy con-
sumption was set up as a cost function during the scheduling process for each processing unit in terms of execution, trans-
mission, and idle energy. The introduction of energy consumption was not deployed as a part of the cost function
computation in those comparative algorithms. The resulting schedules are depicted in Fig. 8. The dark and striped slots de-
note execution time and idle time of each processing unit, respectively. The system completion time of LSH, CH, HEFT, and
EPC were 3922, 3940, 3410, and 3924, respectively. At any rate, this number is of no concern for this study as this overhead
could be allocated off-line, thus imposing no performance degradation for the proposed algorithm.

The execution, transmission, and idle energy consumption of each processing unit obtained from LSH, CH, HEFT, and EPC
are shown in Tables 6–9, respectively. Note that LSH algorithm has the least execution energy usage but ranks third in the
total energy usage as the algorithm concerns mainly execution energy. The least transmission energy usage belongs to CH
algorithm, although the algorithm yielded the most total energy consumption as it concerns mainly transmission energy.
HEFT has the least execution time, but came in the second place for the total energy usage as the algorithm concerns mainly
the idle and execution time. The EPC yielded good execution and total energy usages because the algorithm selected the
Table 7
Energy consumption in each processing unit by CH algorithm in the first case.

Processing unit Execution energy Transmission energy Idle energy Total energy

a 235.17 9.90 0.00 245.07
b 110.50 9.87 42.47 162.84
c 30.08 4.00 100.63 134.71
d 124.00 9.12 44.14 177.26

Total 499.75 32.89 187.24 719.88

Table 8
Energy consumption in each processing unit by HEFT algorithm in the first case.

Processing unit Execution energy Transmission energy Idle energy Total energy

a 152.09 10.35 4.35 166.79
b 97.50 13.16 44.02 154.68
c 67.20 4.00 68.44 139.64
d 171.12 6.24 17.75 195.12

Total 487.91 33.75 134.56 656.22

Table 9
Energy consumption in each processing unit by EPC algorithm in the first case.

Processing unit Execution energy Transmission energy Idle energy Total energy

a 37.52 9.90 14.79 62.21
b 107.25 15.98 46.87 170.10
c 99.20 15.00 49.94 164.14
d 210.18 7.68 15.49 233.35

Total 454.15 48.56 127.09 629.80

Table 10
Execution cost of dependent task graph of Fig. 9 for the second case.

Task aata(vi) abtb(vi) actc(vi)

1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20

10 21 7 16

Table 11
Execution cost of dependent task graph of Fig. 9 for the third case.

Task aata(vi) abtb(vi) actc(vi)

1 14 – 9
2 13 19 –
3 – – 19
4 13 8 –
5 – – 10
6 – 16 –
7 7 – 11
8 5 – –
9 – 12 –

10 21 – –

Fig. 9. The dependent task graph with similar transmission and execution costs from [25] used in the second case.

108 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
optimal server assignment for minimal execution and transmission energy consumption, and proceeded to reduce idle en-
ergy to attain the best total energy performance. In addition, the optimal time-line might not be reached as it is not the prime
directive of EPC algorithm (see Tables 10 and 11).

The second case used a task graph taken from [25] as shown in Fig. 9. Each number at each edge of the graph denotes the
transmission time. The transmission energy was determined in terms of delay, which was different for every task. The exe-
cution energy of each task depended on a processing unit. The waiting energy was set to 50% of execution energy. Scheduling
of a task limited a processing unit to use only one unit of execution energy per one unit of execution time and one unit of
transmission energy per one unit of transmission time. The execution energy, transmission energy, idle energy, and total en-
ergy used by each algorithm are shown in Fig. 10. The system completion time of LSH, CH, HEFT, and EPC were 80, 139, 80,
and 127, respectively. The reason why LSH and HEFT ended up with the shortest computation time is because they focused
primarily on execution time and did not take energy consumption issue into consideration. On the other hand, the transmis-
sion and idle energy consumption was equal to zero in EPC algorithm because all processing units were capable of executing
every task and processing unit a required the minimum energy.

For the third case using the task graph shown in Fig. 9, the same capabilities and conditions of the processing units as
those in the second case were adopted. The results are shown in Fig. 11. The system completion time of LSH, CH, HEFT,
and EPC were 102, 116, 102, and 116, respectively.

Fig. 10. Results of energy consumption for the second case. Note that in case of transmission and idle situations, the results from EPC were not shown
because all tasks in EPC were executed only at processing unit a.

Fig. 11. Results of energy consumption for the third case.

Fig. 12. The dependent task graph for the fourth case.

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 109
Similar results to those of the second case mean that the adopted capabilities and conditions have a little effect on the
performance of each algorithm.

The fourth case uses a generated task graph shown in Fig. 12. The transmission time was reduced to 10% of the execution
time. The execution time and data size of this case for each task are shown in Table 12. The same estimated energy consump-
tion and data transmission coefficients of each processing unit used in the first case were used in this case as shown in

Table 12
A list of transmission data of each task da(vi) and execution time by each processing unit ta(vi) for the fourth case.

Task Amount of transmission data Amount of execution time

vi da(vi) ta(vi) tb(vi) tc(vi) td(vi)

1 25 350 – 570 430
2 30 430 270 – –
3 20 – – 510 450
4 45 590 710 – –
5 60 – 920 – 790
6 70 360 480 – –
7 30 – – 840 720
8 55 – 710 380 –
9 20 390 670 – 380
10 25 – – 550 580
11 15 – – – 620
12 65 870 790 720 –
13 20 560 – – 540
14 10 430 410 – –
15 85 280 260 270 250
16 35 – 520 480 –
17 20 – 380 390 420
18 15 610 690 – –
19 30 250 – 270 480
20 10 – – 620 710
21 70 760 – 890 –
22 30 – 540 – –
23 35 580 – – –

Fig. 13. Results of energy consumption for the fourth case.

110 A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111
Table 2. The execution energy, transmission energy, idle energy, and total energy used by each algorithm are shown in
Fig. 13. The system completion time of LSH, CH, HEFT, and EPC were 6278, 6299, 5230, and 5450, respectively. HEFT
algorithm gave the minimum scheduling length, while EPC algorithm gave the lowest total energy. As seen from Fig. 13,
a significant reduction of the transmission energy from the total energy consumption was given by CH algorithm. In EPC
algorithm, additional idle energy reduction helped shorten the scheduling length at the small expense of execution and
transmission energy. However, EPC algorithm still yielded the minimum total energy.
6. Conclusion

A new set of task scheduling and assignment algorithms focusing on minimizing energy consumption, named Energy-
Efficient Process Clustering Assignment algorithm or EPC algorithm, was proposed. In this study, multiple capabilities of each
processing unit was involved during the task scheduling and enhance the assignment flexibility. The proposed Algorithm 4
significantly reduces the idle time and further minimizes the energy consumption which is not properly handled by the
other compared algorithms. The experimental results showed that EPC algorithm spent less energy consumption than those
from LSH, CH, and HEFT algorithms in different scenarios. Although the significant benefits of EPC algorithm was confirmed
by the experimental results, the performance of the algorithm still depends upon the provided information on estimated
transmission data of each task, execution time of each task, and the computational capability of each processing unit.

A. Niyom et al. / Simulation Modelling Practice and Theory 40 (2014) 95–111 111
Acknowledgments

This work is supported by the Office of the Higher Education Commission, Ministry of Education, Thailand.

References

[1] W. Alsalih, S. Akl, H. Hassanein, Energy-aware task scheduling: toward enabling mobile computing over MANETs, in: 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), IEEE Computer Society, Denver, Colorado, USA, 2005, pp. 1–8.

[2] V. Rao, N. Navet, G. Singhal, A. Kumar, G.S. Visweswaran, Battery Aware Dynamic Scheduling for Periodic Task Graphs, 20th International Parallel and
Distributed Processing Symposium (IPDPS), IEE, Rhodes Island, Greece, 2006.

[3] G. Varsamopoulos, S.K.S. Gupta, Energy proportionality and the future: metrics and directions, in: 39th International Conference on Parallel Processing
Workshops (ICPPW), IEEE Computer Society, San Diego, California, USA, 2010, pp. 461–467.

[4] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing systems under different operating conditions, IEEE Transactions on
Parallel and Distributed Systems 22 (8) (2011) 1374–1381.

[5] R. Bajaj, D.P. Agrawal, Improving scheduling of tasks in a heterogeneous environment, IEEE Transactions on Parallel and Distributed Systems 15 (2)
(2004) 107–118.

[6] X. Qin, T. Xie, An availability-aware task scheduling strategy for heterogeneous systems, IEEE Transactions on Computers 57 (2) (2008) 188–199.
[7] F. Ding, K. Li, An improved task scheduling algorithm for heterogeneous system, in: International Joint Conference on Computational Sciences and

Optimization (CSO), IEEE Computer Society, Sanya, Hainan Island, China, 2009, pp. 90–94.
[8] A. Shokripour, M. Othman, H. Ibrahim, S. Subramaniam, New method for scheduling heterogeneous multi-installment systems, Future Generation

Computer Systems 28 (8) (2012) 1205–1216.
[9] R. Chang, C.Y. Lin, C.F. Lin, An adaptive scoring job scheduling algorithm for grid computing, Information Sciences 207 (2012) 79–89.

[10] H.F. Sheikh, I. Ahmad, Z. Wang, S. Ranka, An overview and classification of thermal-aware scheduling techniques for multi-core processing systems,
Sustainable Computing: Informatics and Systems 2 (3) (2012) 151–169.

[11] S. Albers, H. Fujiwara, Energy-efficient algorithms for flow time minimization, ACM Transactions on Algorithms 3 (4) (2007).
[12] M. Goraczko, J. Liu, D. Lymberopoulos, Energy-optimal software partitioning in heterogeneous multiprocessor embedded systems, in: 45th ACM/IEEE

Design Automation Conference (DAC), ACM/IEEE, Anaheim, California, USA, 2008, pp. 191–196.
[13] A. Bokar, M. Bozyigit, C. Sener, Energy-aware dynamic server selection and task allocation, in: 23rd International Symposium on Computer and

Information Sciences (ISCIS), IEEE, Istanbul, Turkey, 2008, pp. 1–6.
[14] A. Boker, M. Bozyigit, C. Sener, Scalable energy-aware dynamic task allocation, in: International Conference on Advanced Information Networking and

Applications Workshops (WAINA), IEEE Computer Society, Bradford, UK, 2009, pp. 371–376.
[15] G. Terzopoulos, H.D. Karatza, Performance evaluation and energy consumption of a real-time heterogeneous grid system using DVS and DPM,

Simulation Modelling Practice and Theory 36 (2013) 33–43.
[16] S. Darbha, D.P. Agrawal, Optimal scheduling algorithm for distributed-memory machines, IEEE Transactions on Parallel and Distributed Systems 9 (1)

(1998) 87–95.
[17] V. Liberatore, Multicast scheduling for list requests, in: Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), IEEE, San Francisco, California, USA, 2002, pp. 1129–1137.
[18] J. Li, M. Qiu, J. Niu, T. Chen, Battery-aware task scheduling in distributed mobile systems with lifetime constraint, in: 16th Asia and South Pacific Design

Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2011, pp. 743–748.
[19] T. Yang, A. Gerasoulis, DSC: scheduling parallel tasks on an unbounded number of processors, IEEE Transactions on Parallel and Distributed Systems 5

(9) (1994) 951–967.
[20] J. Liou, M.A. Palis, A comparison of general approaches to multiprocessor scheduling, in: Proceedings of the 11th International Parallel Processing

Symposium (IPPS), IEEE Computer Society, Geneva, Switzerland, 1997, pp. 152–156.
[21] S. Zikos, H.D. Karatza, Performance and energy aware cluster-level scheduling of compute-intensive jobs with unknown service times, Simulation

Modelling Practice and Theory 19 (1) (2011) 239–250.
[22] G.L. Stavrinides, H.D. Karatza, Scheduling real-time DAGs in heterogeneous clusters by combining imprecise computations and bin packing techniques

for the exploitation of schedule holes, Future Generation Computer Systems 28 (7) (2012) 977–988.
[23] I. Ahmad, Y. Kwok, On exploiting task duplication in parallel program scheduling, IEEE Transactions on Parallel and Distributed Systems 9 (9) (1998)

872–892.
[24] D. Bozdag, U. Catalyurek, F. Ozguner, A task duplication based bottom-up scheduling algorithm for heterogeneous environments, in: 20th International

Parallel and Distributed Processing Symposium (IPDPS), IEEE, Rhodes Island, Greece, 2006.
[25] H. Topcuoglu, S. Hariri, M. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel

and Distributed Systems 13 (3) (2002) 260–274.
[26] Tom’s Hardware, Power Consumption: System/CPU Peak. <http://www.tomshardware.com/charts/desktop-cpu-charts-2010/Power-Consumption-

System-CPU-Peak,2435.html> (last visited August 2013).
[27] Tom’s Hardware, Power Consumption: System Idle, <http://www.tomshardware.com/charts/desktop-cpu-charts-2010/Power-Consumption-System-

Idle,2434.html> (last visited August 2013).

http://refhub.elsevier.com/S1569-190X(13)00137-8/h0005
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0005
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0005
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0010
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0010
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0010
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0015
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0015
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0015
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0020
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0020
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0025
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0025
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0030
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0035
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0035
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0035
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0040
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0040
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0045
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0050
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0050
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0055
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0060
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0060
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0060
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0065
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0065
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0065
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0070
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0070
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0070
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0075
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0075
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0080
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0080
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0085
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0085
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0085
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0090
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0090
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0090
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0095
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0095
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0100
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0100
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0100
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0105
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0105
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0110
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0110
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0115
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0115
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0120
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0120
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0120
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0125
http://refhub.elsevier.com/S1569-190X(13)00137-8/h0125
http://www.tomshardware.com/charts/desktop-cpu-charts-2010/Power-Consumption-System-CPU-Peak,2435.html
http://www.tomshardware.com/charts/desktop-cpu-charts-2010/Power-Consumption-System-CPU-Peak,2435.html
http://www.tomshardware.com/charts/desktop-cpu-charts-2010/Power-Consumption-System-Idle,2434.html
http://www.tomshardware.com/charts/desktop-cpu-charts-2010/Power-Consumption-System-Idle,2434.html

	An energy-efficient process clustering assignment algorithm for distributed system
	1 Introduction
	2 Related works and background
	2.1 List scheduling heuristics (LSH)
	2.2 Clustering heuristics (CH)
	2.3 Task duplication heuristics (TDH)
	2.4 Heterogeneous earliest finish time (HEFT)

	3 Problems formulation and constraints
	3.1 Problem formulation
	3.2 Constraints on energy consumption

	4 Energy-Efficient Process Clustering Assignment (EPC) algorithm
	5 Experimental results and discussion
	6 Conclusion
	Acknowledgments
	References

