
1

An Energy-efficient Task Scheduler for Multi-core
Platforms with per-core DVFS Based on Task

Characteristics
Ching-Chi Lin, You-Cheng Syu, Chao-Jui Chang, Jan-Jan Wu, Pangfeng Liu, Po-Wen Cheng and Wei-Te Hsu

Abstract—Energy-efficient task scheduling is a fundamental
issue in many application domains, such as energy conservation
for mobile devices and the operation of green computing data
centers. Modern processors support dynamic voltage and fre-
quency scaling (DVFS) on a per-core basis, i.e., the CPU can
adjust the voltage or frequency of each core. As a result, the
core in a processor may have different computing power and
energy consumption. To conserve energy in multi-core platforms,
we propose task scheduling algorithms that leverage per-core
DVFS and achieve a balance between performance and energy
consumption. We consider two task execution modes: thebatch
mode, which runs jobs in batches; and theonline mode in
which jobs with different time constraints, arrival times, and
computation workloads co-exist in the system.

For tasks executed in thebatch mode, we propose an algorithm
that finds the optimal scheduling policy; and for theonline mode,
we present a heuristic algorithm that determines the execution
order and processing speed of tasks in an online fashion. The
heuristic ensures that the total cost is minimal for every time
interval during a task’s execution.

Keywords-Energy-efficient; Task scheduling; Task Character-
istics; Multi-core; DVFS

I. I NTRODUCTION

Energy-efficient task scheduling is a fundamental issue
in many application domains, e.g., energy conservation for
mobile devices and the operation of green computing data
centers. A number of studies have proposed energy-efficient
techniques [1], [2]. One well-known technique is called dy-
namic voltage and frequency scaling (DVFS), which achieves
energy savings by scaling down a core’s frequency and thereby
reducing the core’s dynamic power.

Modern processors support DVFS on a per-core basis, i.e.,
the CPU can adjust the voltage or frequency of each core. As
a result, the cores in a processor may have different computing
power and energy consumption. However, for the same core,
increased computing power means higher energy consumption.
The challenge is to find a good balance between performance
and energy consumption.

Many existing works focus on specific application domains,
such as real-time systems [3], [4], [5], multimedia applica-
tions [6], and mobile devices [7]. In this paper, we considera
broader class of tasks. Specifically, we classify task execution
scenarios into two modes: thebatch mode and theonline
mode. The workload of the former comprises batches of
jobs; while that of the latter consists of jobs with different
arrival times and time constraints. We divide the jobs in
the online mode into two categories:interactive and non-
interactivetasks. Aninteractivetask is initiated by a user and

must be completed as soon as possible; while anon-interactive
task may not have a strict deadline or response time constraint.
In the online mode, tasks can arrive at any time.

An example of theonlinemode is an online judging system
where users submit their answers or codes to the server. After
performing some computations, the server returns the scores
or indicates the correctness of the submitted programs. In
this scenario, user requests areinteractive tasks that require
short response times. Note that the response time refers to the
acknowledgement of receipt of the user’s data, not the time
taken to return the scores. By contrast, the computation of user
data innon-interactivetasks is not subject to time constraints.

To conserve energy in multi-core platforms, we propose
task scheduling algorithms that leverage per-core DVFS and
achieve a balance between performance and energy consump-
tion. In our previous work [8] , we have made the following
contributions.

• We present a task scheduling strategy that solves three
important issues simultaneously: the assignment of tasks
to CPU cores, the execution order of tasks, and the CPU
processing rate for the execution of each task. To the best
of our knowledge, no previous work has tried to solve the
three issues simultaneously.

• To formulate the task scheduling problems, we propose
a task model, a CPU processing rate model, an energy
consumption model, and a cost function. The results of
simulations and experiments performed on a multi-core
x86 machine demonstrate the accuracy of the models.

• For the execution of tasks in thebatchmode, we propose
an algorithm calledWorkload Based Greedy(WBG),
which finds the optimal scheduling policy for both
single-core and multi-core processors. Our experiment
results show that, in terms of energy consumption, WBG
achieves 46% and 27% improvement over two existing
algorithms respectively, with only a 4% slowdown and
13% speedup in the execution time.

• To execute tasks in theonlinemode, we propose a heuris-
tic algorithm calledLeast Marginal Cost(LMC), which
assignsinteractiveand non-interactivetasks to cores. It
also determines the processing speeds that minimize the
total cost of every time interval during a task’s execution
in an online fashion.

In this paper, we have improved our work with the follow-
ing extensions.

• For batch mode, we define the “dominating position set”,

Simon

Simon

replace "The key contributions of this work are as follows."

Simon

replace "The key contributions of this work are as follows."

Simon

This paragraph is new.

Simon

This paragraph is new.

Simon

2

which determines the frequency of each batch task ac-
cording to its position in the task queue. We also de-
rive an algorithm that computes the dominating position
ranges efficiently. The algorithm runs inΘ(|P |), where
P is a non-empty set of discrete processing rates on a
core.

• For online mode, we propse a method to compute the total
cost efficiently with dynamic task insertion and deletion.
The time complexity of cost computation isΘ(1). With
this algorithm, we can reduce the overhead of our Least
Marginal Cost.

The remainder of this paper is organized as follows. In the
next section, we formally define the models for executing
tasks, determining the core processing rates, and reducing
energy consumption. In Section III, we discuss the proposed
Workload Based Greedyalgorithm, which derives the optimal
scheduling policy for thebatch mode. We also provide a
theoretical analysis to prove the optimality of the algorithm. In
Section IV, we discuss the proposed heuristic algorithm,Least
Marginal Cost, for the online mode. The experiment results
are presented in Section V; Section VI reviews related works;
and Section VII contains our concluding remarks.

II. M ODELS

A. Task Model

A task comprises a sequence of instructions to be executed
by a processor. We define a taskjk in a task setJ as a tuple
jk = (Lk, Ak, Dk), whereLk is the number of CPU cycles
required to completejk, Ak is the arrival time ofjk, andDk is
the deadline ofjk. If jk has a specific deadline,Dk > Ak ≥ 0;
otherwise, we setDk to infinity, which indicates thatjk is not
subject to a time constraint.

For thebatch mode, we make two assumptions about the
tasks to be executed. First, tasks are non-preemptive, which
means that a running task cannot be interrupted by other
tasks. In practice, this non-preemptive property reduces the
overheads of task switching and migration. Second, we assume
that tasks are independent and can be scheduled in an arbitrary
order. As the tasks in a batch are not interdependent and can
be executed simultaneously , we assume that the arrival time,
Ak, of every task is 0. The implication is that the scheduler
has the timing information about all the tasks to be processed
and it can run the tasks in any order based on the current
scheduling policy.

For the online mode, we divide tasks into two categories
according to their time constraints.Interactivetasks are those
with early and firm deadlines, so the response time is cru-
cial for such tasks.Non-interactivetasks are those with a
late deadline or no deadline. We also make the following
assumptions aboutonline mode tasks. (1) The number of
cycles needed to complete a task is known because it can
be estimated by profiling. (2) The tasks are independent of
each other. (3) A task can preempt other tasks that have a
lower priority. In theonline mode, a task’s priority depends
on its category.Interactivetasks have higher priority thannon-
interactivetasks.

B. Processing Rate

Modern processors support dynamic voltage and frequency
scaling (DVFS) on a per-core basis; therefore, each core in
a processor may have its own processing rate or frequency.
Let P = {p1, p2, p3, . . .} be a non-empty set of discrete pro-
cessing rates a core can utilize based on the hardware, with
0 < p1 < p2 < p3 < . . . < p|P |. We usepjk

from set P to
denote the processing rate of a taskjk. Different processors
provide different processing rates. For example, the processing
speeds offered by the Intel i7-950 processor range from 1.6,
1.73 to 3.06 GHz; while those of the ARM Exynos-4412 CPU
range from 0.2, 0.3 to 1.7 GHz.

We also make some assumptions about the processing rate
for the batchmode andonline mode. In thebatchmode, the
processing rate of a CPU core does not change during a task’s
execution. A core only switches to a new frequency when it
starts a new task. By contrast, in theonline mode, a core can
change its processing rate any time based on the scheduling
decisions.

C. Energy Consumption

For a taskjk, let ek denote the energy consumption in
joules; tk denote the execution time in seconds; andpjk

be
the processing rate used to executejk. Recall thatLk the
number of cycles needed to complete taskjk. We define
E(p) and T (p) as the energy and the time required to
execute one cycle with processing ratep on a CPU core ,
with the property that0 < E(p1) < E(p2) < E(p3) < . . . and
0 < . . . < T (p3) < T (p2) < T (p1). Because we assume that
a core’s processing rate is fixed while running a task in the
batchmode, we can formulate the energy consumptionek and
execution timetk of task jk as shown in Equations 1 and 2.

ek = LkE(pjk
) (1)

tk = LkT (pjk
) (2)

III. TASK SCHEDULING IN THE BATCH MODE

In this section, we discuss our energy-efficient task schedul-
ing approach forbatchmode execution. We consider running
tasks with and without deadlines in both single core and multi-
core environments. As a result, we have four combinations of
tasks and environments. Below, we formally define the energy-
efficient task scheduling problem in each of the four scenarios,
and present our theoretical findings for the defined problems.

A. Tasks with Deadlines

We define the problem of scheduling tasks with deadlines
on a single core as follows. Given a set of tasksjk, the
number of execution cycles neededLk, the tasks’ deadlines
Dk, the possible processing rates of the coreP , the energy
consumption and time consumption functionsE and T , and
the total energy budgetE∗, the goal is to determine the
execution order of the tasks and their processing rates, such
that every task can be completed before its deadline and the
overall energy consumption is less thanE∗.

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

Simon

add

Simon

add

Simon

add

3

We call the above problemDeadline-SingleCore, and reduce
thePartition problem to show thatDeadline-SingleCoreis NP-
complete. LetA = {a1, . . . , an} be a set of positive integers.
The partition problem involves determining if we can partition
A into two subsets so that the sums of the numbers in the two
subsets are equal. Given a problem instanceA = {a1, . . . , an},
we construct a problem instance inDeadline-SingleCoresuch
that one problem can be solved if and only if the other one
has a solution.

Theorem 1: Deadline-SingleCoreis NP-complete.
Proof: We construct a problem instance inDeadline-

SingleCoreas follows. There aren tasksj1, . . . , jn; and the
number of cycles needed for the firstn tasks isLi = ai, as
in the given partition problem instance. We useS =

∑n

i=1 ai

to denote the total number of cycles required to completen
tasks. There are only two processing rates: low speedpl and
high speedph; the latter is twice as fast as the former. We
also assume thatT (pl) = 2, T (ph) = 1, E(ph) = 4 and
E(pl) = 1, based on the assumption that the dynamic part of
the energy consumption is proportional to the square of the
frequency. This assumption follows the classical models in
the literature [9]. The time constraint is1.5S and the energy
constraint is2.5S. The deadline of every task is1.5S.

Now we have1.5S time and2.5S energy to run then tasks.
BecauseT (ph) andT (pl) equal 1 and 2 respectively, we need
to select the number of tasks whose sum is at leastS/2 to
run at high speedph so that all the tasks can be completed in
1.5S time. In addition, becauseE(ph) and E(pl) are 4 and
1respectively, we need to select the number of tasks whose
sum is at leastS/2 to run at low speedpl so that the energy
consumption of all the tasks does not exceed2.5S.

We conclude that the total number of cycles required for
tasks that run at high speedph is the same as that for the tasks
that run at low speedpl. Hence, thePartition problem can be
solved if and only if a solution is found for ourDeadline-
SingleCoreproblem. The theorem follows.

Theorem 1 states that the problem of deciding the pro-
cessing rate for tasks with deadlines under time and energy
constraints on a single core is NP-complete. The single-
core results can be extended to multi-cores as follows. We
define theDeadline-MultiCoreproblem in a similar way to
the Deadline-SingleCoreproblem, and prove that it is NP-
complete. We only consider two cores, each of which has the
same speedp with T (p). The deadline constraint is set as
S/2; we do not consider the energy constraint. The problem
is exactly the same as partition problem; therefore,Deadline-
MultiCore is also NP-complete.

Theorem 2: Deadline-MultiCoreis NP-complete.

B. Tasks without Deadlines on a Single Core Platform

Next, we consider the problem of scheduling tasks without
deadlines. Given a set of tasks and the number of cycles
needed to process them, the goal is to find the execution order
and the processing rate for each task so that the overall “cost”
is minimized.

If we only consider energy consumption, we could run every
task at the lowest processing rate in order to minimize the en-
ergy used, but it would degrade the performance. On the other

hand, running every task at the highest processing rate so asto
minimize the total execution time would waste energy. Thus,
the cost function must consider both the energy consumption
and the execution time. Our cost function converts the two
parameters into monetary values. We define the cost of a task
jk as the sum of its energy cost and temporal cost. The energy
costCk,e of taskjk is the amount of money paid for the energy
used to execute the task. Recall thatE(pjk

) is the amount of
energy in joules required to execute one cycle with processing
ratepjk

on a core. Therefore, the total energy in joules needed
to run a taskjk with processing ratepjk

is LkE(pjk
); and the

amount of money paid for the energy isReLkE(pjk
) as shown

in Equation 3, whereRe is a positive constant, which means
the cost of a joule of energy.Re can be regarded as the amount
paid for one joule of energy in an electricity bill.

Ck,e = ReLkE(pjk
) (3)

Similarly, we define thetemporal costCk,t of task jk as
the amount of money paid to compensate a user for waiting
for his/her job to be completed. Recall thatT (pjk

) is the time
in seconds required to execute one cycle with processing rate
pjk

on a core, so the total time needed to run a taskjk with
processing ratepjk

is LkT (pjk
). Without loss of generality,

we assume that the execution order of tasks isj1, . . . , jn;
therefore, the turnaround time for taskjk is comprised of
the time waiting forj1, . . . , jk−1 to be completed and the
execution timeof jk itself. As a result, the turnaround time
of jk is

∑k

i=1 LiT (pji
). In addition, the temporal cost of task

jk is Rt

∑k

i=1 LiT (pji
) as shown in Equation 4, whereRt

is also a positive constant, which means the amount paid for
every second a user has to wait for the execution of his/her
task. Rt can be regarded as anopportunity cost, which is
the amount of money we could earn if we could move the
resources elsewhere. Alternatively,Rt can be thought of as
the amount a user is willing to pay for a computing service,
such as Amazon EC2.

Ck,t = Rt

k∑

i=1

LiT (pji
) (4)

To obtainCk, the cost of taskjk, we combine the energy
costCk,e and the temporal costCk,t. Using the weighted sum
of the energy and flow time as the cost objective function is
based on previous works [10], [11]. The total cost of all tasks,
denoted asC, is calculated by Equation 8.

Ck = Ck,e + Ck,t (5)

= ReLkE(pjk
) + Rt

k∑

i=1

LiT (pji
) (6)

C =

n∑

k=1

Ck (7)

=

n∑

k=1

(ReLkE(pjk
) + Rt

k∑

i=1

LiT (pji
)) (8)

Equation 8 is difficult to analyze due to the interaction
between a task and all the tasks ahead of it in the execution

Simon

Simon

change "total execution time" to "turnaround time"

Simon

change "total execution time" to "turnaround time"

Simon

add

4

sequence. We consider this problem from another perspective.
Instead of computing the waiting time caused by other tasks
(the second term in Equation 6), we compute the amount
of delay that a task causes for other tasks. Consider a task
jk. If jk runs at processing ratepjk

, the energy cost will be
ReLkE(pjk

) and the time cost will be(n−k+1)RtLkT (pjk
)

for itself and the tasks after it. That is, the temporal cost
of jk will be RtLkT (pjk

), and that of taskjk+1 will be
RtLkT (pjk+1

), and so on. We can rewrite Equation 8 as
follows:

C =

n∑

k=1

(ReLkE(pjk
) + (n− k + 1)RtLkT (pjk

)) (9)

=

n∑

k=1

(ReE(pjk
) + (n− k + 1)RtT (pjk

))Lk (10)

=

n∑

k=1

C(k, pjk
)Lk (11)

Note that we defineC(k, p) as

C(k, p) = ReE(p) + (n− k + 1)RtT (p) (12)

Now we can rewrite Equation 8 as follows:

C =

n∑

k=1

C(k, pjk
)Lk (13)

Equation 13 shows that when we want to minimize
C(k, pjk

) in order to minimizeC, it is not necessary to
considerLk, the number of cycles needed to execute taskjk.
We only need to find the processing ratepjk

that minimizes
C(k, pjk

) for each k. In other words, the minimum value
of C(k, pjk

) only involvesk, the position of the task in the
execution sequence, and it is independent of the task assigned
to that position.

Lemma 1:The decision about the processing ratepjk
re-

quired to minimizeC(k, pjk
) only depends onk, the position

of the task in the execution sequence.
Lemma 1 implies that we can calculate the minimum

C(k, pjk
) for each k beforehand ifP , E, T , Re, and Rt

are known. As a result, we can find the optimalpjk
that

will minimize eachC(k, pjk
), and then determine the best

processing rate without any knowledge of the workload.
Lemma 2:Let C(k) = minp∈P C(k, p), C(k) is a decreas-

ing function ofk, i.e. C(k + 1) < C(k).
Proof: Let the optimal processing rate ofC(k) be p. If

we usep as the processing rate forC(k + 1), then we have
C(k+1, p)−C(k, p) = −RtT (p) < 0. Therefore,C(k+1) ≤
C(k + 1, p) < C(k, p) = C(k).

Lemma 3:For any four real numbersa, b, x, y wherea ≥ b
andx ≥ y, thenax + by ≥ ay + bx.

Proof:

(a− b)(x− y) ≥ 0 (14)

=⇒ ax− ay − bx + by ≥ 0 (15)

=⇒ ax + by ≥ ay + bx (16)

Theorem 3:There exists an optimal solution with the min-
imum cost, where the tasks are in non-decreasing order of the
number of cycles.

Proof: Recall that C(k) = minp∈P C(k, p). From
Lemma 1, we know that when the task execution order is
j1, . . . , jn, the minimum total cost is as follows:

C =
n∑

k=1

C(k)Lk (17)

From Lemma 2, we know thatC(k) is a decreasing function
of k; and from Lemma 3, we know that the cost will not
increase if a task with a small number of cycles is switched
with a task in front of it that has more cycles. By repeating
this process on an optimal solution until there are no tasks to
switch, the tasks will be in non-decreasing order of the number
of cycles required to complete them, and it is still an optimal
solution.

To eliminate n (the number of tasks) for generality, we
define LB

k , jB
k , CB(k, p), CB(k) as follow: (“B” means

backward)

LB
k = Ln−k+1 (18)

jB
k = jn−k+1 (19)

CB(k, p) = C(n− k + 1, p) = ReE(p) + kRtT (p) (20)

CB(k) = min
p∈P

CB(k, p) (21)

Define fi(k) = CB(k, pi) = (ReE(pi)) + (RtT (pi))k.
By definition, pi is the best choice forjB

k i.f.f. fi(k) =
mins fs(k). By Inequation 25, we know that for any two
different processing ratespa and pb with pa < pb, pb is no
worse thanpa i.f.f. k ≥ Re(E(pb)−E(pa))

Rt(T (pa)−T (pb))
.

fa(k) ≥ fb(k) (22)

⇐⇒ ReE(pa) + RtT (pa)k ≥ ReE(pb) + RtT (pb)k(23)

⇐⇒ RtT (pa)k −RtT (pb)k ≥ ReE(pb)−ReE(pa)(24)

⇐⇒ k ≥
Re(E(pb)− E(pa))

Rt(T (pa)− T (pb))
(25)

DefineDp, the “dominating position set” ofp, to be the set
of k such thatp is the best choice forjB

k (choose the higher
processing rate in case of a tie). (SoDp1

, Dp2
, . . . , Dp|P |

is
a partition of natural numbersN) To find Dp for eachp ∈ P
is equivalent to find the lower envelope off1, f2, f3, . . . , f|P |.
Due to fi are linear functions withy = b + ax form, it is
equivalent to find the lower (convex) hull in the dual space
(transform liney = b + ax to point (a, b)), and the elements
in each dominating position set will be consecutive. (So we can
call “dominating position set” as “dominating postition range”
instead.) In conclusion, we can find the dominating position
ranges efficiently via Algorithm 1, which runs inΘ(|P |).

The pseudo code of the task ordering algorithm is detailed
in Algorithm 2, which runs inO(|J | log |J |). (P̂ = {p|p ∈
P ∧Dp 6= ∅} = {p̂1, p̂2, . . . , p̂|P̂ |}; p̂1 < p̂2 < . . . < p̂|P̂ |)

Simon

add this paragraph

Simon

Simon

Simon

Simon

Simon

Simon

Simon

New paragraph by You-Cheng

Simon

New paragraph by You-Cheng

Simon

New paragraph by You-Cheng

Simon

New paragraph by You-Cheng

5

Algorithm 1 Finding Dominating Position Ranges
Input: P, E, T, Re, Rt

Output: Dp (p ∈ P), P̂
1: function cross(t0, t1, t2)
2: return (t1.x− t0.x)(t2.y− t0.y)− (t2.x− t0.x)(t1.y−

t0.y)
3: end function
4: for p ∈ P do
5: Dp ← ∅
6: end for
7: P̂ ← ∅
8: initialize a stackS; top← 0
9: for i← 1 to |P | do

10: t← (p = pi, x = RtT (pi), y = ReE(pi))
11: while top ≥ 2 andcross(s[top− 1], s[top], t) ≥ 0 do
12: top← top− 1
13: end while
14: top← top + 1
15: S[top]← t
16: end for
17: lb← 1
18: for i← 1 to top− 1 do
19: nlb = ⌈ s[i+1].y−s[i].y

s[i].x−s[i+1].x⌉
20: if lb < nlb then
21: Ds[i].p ← [lb, nlb)

22: P̂ ← P̂ ∪ {s[i].p}
23: end if
24: lb← nlb
25: end for
26: Ds[top].p ← [lb,∞)

27: P̂ ← P̂ ∪ {s[top].p}

Algorithm 2 Longest Task Last

Input: J, P̂ , E, T, Re, Rt

Output: The execution orderO (a list of pairs of tasks and
corresponding processing rates that minimize the total
cost)

1: Find dominating position ranges via Algorithm 1
2: Sort the tasks inJ to makeLB

k in non-increasing ofk
3: initialize an empty listO
4: for p ∈ P̂ in ascending orderdo
5: if Dp ∩ [1, |J |] = ∅ then break
6: for k ∈ Dp ∩ [1, |J |] in ascending orderdo
7: O ← {(jB

k , p)}+ O // concatenate
8: end for
9: end for

C. Scheduling Tasks without Deadlines on Multi-core Plat-
forms

If the cores in a multi-core system are the same type,
it is called a homogeneousmulti-core system. In this sub-
section, we consider scheduling tasks inhomogeneousmulti-
core systems andheterogeneousmulti-core systems.

The cores in ahomogeneousmulti-core system have the
same energy consumption and time consumption functionsE

and T ; hence, they have the sameC function, as defined in
Equation 12. For ease of discussion, we use an indexk′ =
n−k+1 on C′ function to describe Equation 12. The index is
defined in Equation 26. The rationale is thatk starts counting
from the beginning of the sequence, whilek′ starts from the
end of the sequence;k − 1 is the number of tasks in front of
the current task, andk′ − 1 is the number of tasks behind it.

C′(k′, pj
k′) = C(n− k + 1, pjn−k+1

) (26)

First, we describe scheduling tasks in ahomogeneousmulti-
core system withR cores. From Lemma 2 we know that
C(k) is a decreasing function ofk; therefore,C′(k′) is a
non-decreasing function ofk′. As a result, we usek′ = 1
to schedule theR heaviest tasks, i.e., those that require the
highest numbers of cycles, on theR cores first. Thelast task
on each of theR cores will be one of these tasks, which
implies they will be multiplied by the smallestC′(1) so that
they contribute the least amount to the total cost. Then, we
usek′ = 2 to schedule the nextR heaviest tasks on theR
cores in the same manner. We use this round-robin technique
to assign tasks so that those with a larger number of cycles
are assigned smallerk′, and therefore smallerC′(k′). Using a
similar argument to that in Theorem 3 we derive the following
theorem.

Theorem 4:A round-robin scheduling technique that as-
signs heavier tasks to smallerk′ yields the minimum cost in
a homogeneousmulti-core system

Next, we consider aheterogeneousmulti-core system in
which all the cores may have different energy consumption and
time consumption functionsE and T . We extendC′(k′) for
a single-core system toC′

j(k
′) for a heterogeneousmulti-core

system, wherej is the index of a core and1 ≤ j ≤ R. Tasks
are assigned to cores in a greedy fashion. First, we compute
C′

j(1) for 1 ≤ j ≤ R. That is, we compute the lowestC′

value among all cores if we place a task on that core, and we
usej∗ to denote the core index whereC′ is minimized. From
the discussion in Theorem 4, we know that the heaviest task
should be placed on corej∗. We then find the minimum among
C′

j(1) for j 6= j∗ and C′
j∗ (2), and assign the second largest

task to that core. This process is repeated until all the tasks
have been assigned to cores. Note thatC′

j(k
′) is independent

of the task workload and can be computed in advance for
all cores. In practice, we can build a minimum heap to store
the C′

j(k
′) we are considering. In each round, we take the

minimum from the heap and add the nextC′(k′) to the heap
from the core that the task is assigned to. Using a similar
argument to that in Theorem 4, we can show that this greedy
method yields the minimum total cost. We have the following
theorem.

Theorem 5:Using a greedy scheduling algorithm to assign
heavier tasks to cores with smallerC′(k′) yields the minimum
cost in aheterogeneousmulti-core system.

The pseudo code of the greedy algorithm is detailed in
Algorithm 3.

IV. TASK SCHEDULING IN THE ONLINE MODE

In this section, we use an example to describe task schedul-
ing in theonlinemode. Then, we formally define the problem

6

Algorithm 3 Workload Based Greedy
Input: tasksj1, . . . , jn; the number of cyclesL1, . . . , Ln;the

set of processing rateP ; the energy consumption and time
consumption functionsE andT for all R cores;Re, the
cost of a joule of energy; andRt, the amount paid for
every second a user has to wait.

Output: An execution sequenceSj for each of theR cores,
and the processing rates that minimizes the total cost of
each task.

1: Sort the tasks byLi in decreasing order. Let the new order
of tasks bej′1, . . . , j

′
n.

2: Initialize a heapH with C′
j(1), for j between 1 andR.

3: for each taskj′i do
4: Delete the minimum elementC′

j∗(k′) from heapH .
5: Assignj′i to thek′-th position in the execution sequence

of core j∗, and set its processing rate to the one that
minimizes and definesC′

j∗(k′).
6: Add C′

j∗(k′ + 1) to H .
7: end for

of energy efficient task scheduling in theonline mode and
present our heuristic algorithm.

As mentioned in Section I, an online judging system is
a good example of scheduling in theonline mode. In such
systems, users submit their answers or codes to the server;
and after some computations, the server returns the scores
or indicates the correctness of the submitted programs. User
requests areinteractivetasks that require short response times.
Recall that the response time refers to the acknowledgment of
receipt of the user’s data, not the time taken to return the
scores. By contrast, the computations of users’ data arenon-
interactivetasks that do not have strict deadlines. Because each
non-interactivetask may be submitted by a different user, the
performance should be considered in terms of the completion
time of each task instead of the makespan of executing all
tasks.

We formally define the problem as follows. There are
two types of tasks in theonline mode: interactiveand non-
interactive. Interactivetasks are submitted by users and have
strict deadlines, so they must be completed as soon as possible.
By contrast,non-interactivetasks may not have strict deadlines
or response time constraints. Tasks can arrive at any time. The
goal of scheduling is to assign tasks to cores and determine
the processing speeds that minimize the total cost for every
time interval during the execution of tasks.

We make the following assumptions about the system. (1)
The system can be ahomogeneousor a heterogeneousmulti-
core system. (2) There is an execution queue for each core. The
scheduler assigns a task to a core based on our policy. (3) The
execution order of tasks in the same queue can be changed. (4)
A task can only be preempted by a task with higher priority.
(5) Interactivetasks have higher priority thannon-interactive
tasks. The cost function in theonlinemode considers both the
execution time and the energy consumption.

Note that theWorkload Based Greedyalgorithm can be used
to redistribute all tasks to cores when a new task arrives.
According to Theorem 5, rearranging the tasks yields the

minimum cost. However, because the overhead incurred by
the time and energy used to migrate tasks could impact the
performance, we need a lightweight strategy without task
migration. To this end, we designed a heuristic algorithm,
called Least Marginal Cost, to schedule bothinteractiveand
non-interactivetasks. The algorithm assigns each newly ar-
rived task to a core, and determines the optimal processing
frequency for the task. When a new task arrives, the scheduler
finds an appropriate core for it. The most appropriate core is
the one that yields the lowest marginal cost if the newly arrived
task is executed on that core. We apply different strategies
according to the type of task.

If the newly arrived task isinteractive, it must be completed
as soon as possible. Thus, the scheduler chooses a core that
is executing a task with lower priority, preempts that task,
and executes the new task instead. After finishing the new
interactive task, the scheduler resumes the pre-empted task.
The execution order of other tasks in the queue is unchanged.
The increasing cost ofCM

j on corej is calculated as follows:

CM
j = ReLiEj(pm) + RtLiTj(pm) + RtLiTj(pm)Nj (27)

In Equation 27,CM
j denotes the marginal cost incurred

if we run an interactive task on corej; Rt and Re are the
amounts paid for every second and every joule of energy
respectively;Li is the number of cycles needed to complete
the interactivetask.Ej(pm) andTj(pm) are, respectively, the
energy consumption and the time taken for a cycle under the
maximum frequencypm of core j; and Nj is the number
of (non-interactive) tasks waiting in the queue on corej.
The Least Marginal Costalgorithm compares the marginal
costs and assigns theinteractive task to corej∗, where
CM

j∗ = min CM
j . Note that if the cores arehomogeneous, we

simply choose the core with the leastNj .
If the new task isnon-interactive, it is added to the execution

queue instead of preempting the current task. The marginal
cost of adding anon-interactivetask to a core depends on the
position of the new task in queue. According to Theorem 3,
the optimal solution with the minimum cost is derived when
the tasks are in non-decreasing order of the number of cycles.
Because the tasks in a queue are sorted in non-decreasing
order, we can perform a binary search to find the positionk
for the new task. The tasks are still in non-decreasing order
after the new task is added.

Least Marginal Costchooses a core for the newnon-
interactivetask in a greedy fashion. First, the scheduler finds
kj for each corej, wherekj is the position that the task will
be inserted. It then estimates the marginal costCM

j if the new
task is inserted in positionkj . The corej∗ with the lowest
marginal cost will be chosen. The new task is inserted in the
kj∗ -th position on corej∗. The processing frequency of each
task on corej∗ is adjusted according toC(k, pk), wherek is
the position of the task in the execution sequence.

A. Dynamic Task Insertion and Deletion

In Section III-B we show that how to schedule tasks without
deadlines on single-core platform with all tasks known in the

Simon

New section by You-Cheng

7

very beginning. In this section, we are going to show how
to schedule tasks and compute the total cost efficiently with
dynamic task insertion and deletion.

First, we define three functions:

ξ([a, b]) =

b∑

k=a

LB
k (28)

∆([a, b]) =
b∑

k=a

(k − a + 1)LB
k (29)

γ([a, b]) =

b∑

k=a

kLB
k = ∆([a, b]) + (a− 1)ξ([a, b]) (30)

Then, we can rewrite the total costC:

C =

n∑

k=1

(ReL
B
k E(pjB

k

) + kRtL
B
k T (pjB

k

)) (31)

=
∑

p∈P̂

(ReE(p)ξ(Dp) + RtT (p)γ(Dp)) (32)

So if we can build a sorted data structure (sorted byLB
k in

descending order) with efficient insertion, deletion, andξ, ∆
queries, then we can do dynamic scheduling (dynamic tasks
insertion and deletion) efficiently.

For any two nearby range[L, M] and [M + 1, R] with ξ
and ∆ known, we can compute theξ([L, R]) and ∆([L, R])
as following. There is no need to know eachLB

k in [L, R]
(associative property):

ξ([L, R]) = ξ([L, M]) + ξ([M + 1, R]) (33)

∆([L, R]) = ∆([L, M]) + ∆([M + 1, R])+
(M + 1− L)ξ([M + 1, R])

(34)

A single 1D range tree will be a suitable data structure here.
It supports insertion, deletion, and range queries for things
with associative property inO(log N), whereN is the number
of tasks it contains. (1D range tree is simplest case of range
tree, it’s basically a balanced binary search tree, with each
node keeps (1) the number of nodes, (2)ξ, (3) ∆, of its subtree
to meet our requirements.) With this data structure, we can
perform insertion and deletion inO(log N) and compute the
total cost inO(|P̂ | log N) (via Equation 32).

This result is still improvable. We can keep (1) two pointers
to the lower boundary node and the upper boundary node,
(2) ξ, (3) ∆, for each dominating position ranges. Once an
insertion or deletion occur, we can maintain these information
in O(|P̂ |+log N) due to the fact that the number of different
elements of the set of tasks before and after an insert/delete
operation for each dominating position ranges is no more
than two. So the time complexity of insertion and deletion
increase toO(|P̂ |+log N) and the cost computation decrease
to Θ(1) due toC is maintained in insertion or deletion. Notice
that Θ(1) predecessor and successor operation are required
to achieve this time complexity, we can do it by keep the
predecessor and the successor pointer in each node like in
doubly linked list. In addition, dynamic∆ range query is no
longer required, Whileξ range query (simple range sum) is
still needed.

Algorithm 4 Initialize for Single-Core Dynamic Scheduling

Input: P̂ , E, T, Re, Rt

Output: D, Z, α, β, a, b, x, d, C
1: Find dominating position rangesD via Algorithm 1
2: Initialize an empty 1D range treeZ (sorted in descending

order)
3: C ← 0
4: for i← 1 to |P̂ | do
5: αi ← NULL; βi ← NULL
6: ai ← lowerbound(Dp̂i

); bi ← ai − 1
7: xi ← 0; di ← 0
8: end for

Algorithm 5 Insert a task
Input: L: the number of cycles of the incoming task

1: ptr← insert(Z, L)
2: kB ← rank(ptr)
3: i← argi kB ∈ Dp̂i

4: if kB = ai then αi ← ptr
5: if kB > bi then βi ← ptr
6: bi ← bi + 1
7: xi ← xi + L
8: di ← di+(kB−ai+1)×∗ptr+ range sum(Z,[kB+1, bi])

9: while bi > upperbound(Dp̂i
) do

10: ptr ← βi

11: di ← di − (bi − ai + 1)× ∗ptr
12: xi ← xi − ∗ptr
13: bi ← bi − 1
14: βi ← predecessor(βi)
15: i← i + 1
16: αi ← ptr
17: if ai > bi then βi ← ptr
18: bi ← bi + 1
19: xi ← xi + ∗ptr
20: di ← di + xi

21: end while
22: C ←

∑|P̂ |
i=1 ReE(Dp̂i

)xi + RtT (Dp̂i
)(di + (ai − 1)xi)

V. EVALUATION

Our experimental platform is a quad-core x86 machine that
supports individual core frequency tuning. The CPU model is
Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz. Each core has
12 frequency choices. The power consumption is measured
by a power meter, model DW-6091. The energy consumption
is the integral of the power reading over the execution period.
Because other components in the system consume energy, we
first measure the power consumption of an idle machine and
deduct the idle power reading from our experiment results.

The frequencies of cores are computed according to our
algorithm before each experiment. To prevent interference
from the Linux OS frequency governor, we disable the
automatic core frequency scaling of Linux. The DVFS
mechanism can be disabled by setting the content in
“/sys/devices/system/cpu/cpuX/cpufreq/scalinggovernor”
to userspace, where “X” is the CPU number. Since the

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

8

Algorithm 6 Delete a task
Input: ptr

1: kB ← rank(ptr)
2: let i be the maximum integer s.t.ai ≤ bi

3: while ai > k do
4: tptr ← αi

5: di ← di − xi

6: xi ← xi − ∗tptr
7: bi ← bi − 1
8: if ai ≤ bi then
9: αi ← successor(αi)

10: else
11: αi ← NULL
12: βi ← NULL
13: end if
14: i← i− 1
15: βi ← tptr
16: bi ← bi + 1
17: xi ← xi + ∗tptr
18: di ← di + (bi − ai + 1)× ∗tptr
19: end while
20: di ← di−(kB−ai+1)×∗ptr+ range sum(Z,[kB+1, bi])

21: xi ← xi − ∗ptr
22: bi ← bi − 1
23: if ai > bi then
24: αi ← NULL
25: βi ← NULL
26: else if αi = ptr then
27: αi ← successor(αi)
28: else if βi = ptr then
29: βi ← predecessor(βi)
30: end if
31: delete(ptr)
32: C ←

∑|P̂ |
i=1 ReE(Dp̂i

)xi + RtT (Dp̂i
)(di + (ai − 1)xi)

DVFS mechanism is invalid, we can set the frequency
of an individual core by changing the content in
“/sys/devices/system/cpu/cpuX/cpufreq/scalingsetspeed”.
However, the frequency choices are limited to those in
“/sys/devices/system/cpu/cpuX/cpufreq/scalingavailable frequencies”.
After setting the frequency of core
“X”, we can verify the change from
“/sys/devices/system/cpu/cpuX/cpufreq/scalingcur freq”.

The power consumption of a core is related to its fre-
quency and voltage. In our experiments, we assume that
each frequency has a corresponding voltage. By adjusting
the frequency, a core will automatically change its operating
voltage, thus results in different power consumptions.

A. Experiment Results for the Batch Mode

In this sub-section, we first verify the accuracy of the energy
and cost models. Then, we evaluate the effectiveness of the
Workload Based Greedyalgorithm by comparing it with two
existing algorithms.

TABLE I
AVERAGE EXECUTION T IMES OF THE WORKLOADS (SECONDS)

Benchmark train input ref. input
perlbench 43.516 749.624

bzip 98.683 1297.587
gcc 1.63 552.611
mcf 17.568 397.782

gobmk 189.218 993.54
hmmer 109.44 1106.88
sjeng 224.398 1074.126

libquantum 5.146 1092.185
h264ref 218.285 1549.734
omnetpp 108.661 439.393

astar 191.073 880.951
xalancbmk 142.344 453.463

TABLE II
PARAMETERS IN BATCH MODE

pk 1.6 2.0 2.4 2.8 3.0
E(pk) 3.375 4.22 5.0 6.0 7.1
T (pk) 0.625 0.5 0.42 0.36 0.33

1) Experiment Settings:In the batch mode, we use
SPEC2006int, which contains 12 benchmarks, each withtrain
andref inputs. As a result, we have 24 different workloads. The
computation cycles needed by each workload are computed
as follows. First, we measure the execution time by running
each workload ten times on a core with the lowest frequency
(1.6 GHz) and compute the average execution time. Then,
we estimate the cycles needed by multiplying the average
execution time by the core frequency, which is the number
of cycles per second. Table I shows the average execution
times of the workloads.

Table II shows the parameters used in thebatch mode.
Recall thatE(pk) is the amount of energy in joules required to
execute one cycle on a core with processing ratepk; andT (pk)
is time in seconds needed to execute one cycle with processing
ratepk. To obtain the values ofE(pk), we measure the power
consumption of a core with 100% loading using differentpk,
and divide the result bypk. Note thatT (pk) is equal to1/pk.

We setRe andRt accordingly.Re is the amount paid for a
joule of energy, andRt is the amount paid to a user for every
second he/she has to wait for a task’s execution.

2) Model Verification: To evaluate the accuracy of the
energy model and cost model, we conduct simulations and
experiments. We use two frequencies, 1.6 GHz and 3.0 GHz;
Re is set at 0.1 cent per joule andRt is set at 0.4 cents
per second. We take the 24 workloads in Table I as input
tasks. Each workload is executed once. TheWorkload Based
Greedyalgorithm is used to generate an optimal scheduling
plan, including execution order and frequencies, for the input
workloads.

The simulator takes the average execution time of the
tasks and the parameters in Table II as inputs, simulates the
execution of the tasks based on the scheduling plan, and
generates the energy cost, time cost, and total cost.

In the experiment, we execute the 24 workloads on the quad-
core x86 machine according to the scheduling plan generated
by theWorkload Based Greedy algorithm, and collect the time
and energy data with a power meter. Then, we convert the

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

9

collected data into the cost and compare it with the simulation
result.

Figure 1 shows the comparison results between simulation
and experiment. The actual cost of executing the workloads on
the x86 machine is about 8% higher than the simulation result.
There are two possible reasons. The first one is that even if
workloads are running simultaneously on different cores, they
can still affect each other, e.g., by competing for last-level
cache or memory. Such resource contention may cause longer
execution times, and result in higher energy consumption
and overall cost. The second reason is that running different
tasks require different resources such as cache or memory
operations. Doubling the processing speed of a task does
not guarantee exactly half of the execution time. However,
we deem the 8% discrepancy acceptable because considering
all the system-level overheads would make the scheduling
problem too complicated to analyze.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Sim
Exp

N
or

m
al

iz
ed

 C
os

t (
%

)

Time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Sim
Exp

Energy

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

Sim
Exp

Total Cost

Time
Energy

Fig. 1. Comparison of The Simulation And Experimental Results

3) Comparison with Other Scheduling Methods:We con-
ducted experiments to compare the cost of our scheduling
scheme with that ofOpportunistic Load Balancing(OLB) [12]
and Power Saving. OLB schedules a task on the core with
the earliest ready-to-execute time. The main objective of OLB
is to ensure the cores are fully utilized and finish the tasks
in the shortest possible time.Power Saving, which restricts
the frequency of a core to conserve energy, is widely used
in the power-saving mode of mobile devices. For dynamic
frequency scaling, we set the Linux frequency governor to
“On-demand” for both OLB andPower Saving. If a core’s
loading is higher than 85%, the frequency governor increases
the core’s frequency to the largest available selection. Onthe
other hand, if the loading is lower than the threshold, the
frequency governor reduces the processing frequency by one
level. The loading of a core is measured every second.

First, we generate the scheduling plans withWorkload
Based Greedy, Opportunistic Load Balancing, and Power
Saving. Then, we execute the plans on the experimental
platform and measure their costs. In this experiment, we limit
the available frequencies inPower Savingto the lower half of
the CPU frequency range, i.e., 1.6, 2.0, and 2.4 GHz. As in
the previous section, we setRe at 0.1 cent per joule andRt

at 0.4 cents per second.
Figure 2 shows the cost of the three scheduling plans.

Workload Based Greedyconsumes 46% less energy than
Opportunistic Load Balancingwith only a 4% slowdown in
the execution time. The total cost reduction is about 27%.

Compared withPower Saving, Workload Based Greedycon-
sumes 27% less energy and improves the execution time by
13%. The main reason is that our Workload Based Greedy
schedules the shortest tasks first with a high processing rate,
thus reduce the waiting time of other tasks as little as possible.
Also we apply slower processing rate to larger tasks, hence
reduce the energy consumption.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

W
BG

OLB
PS

N
or

m
al

iz
ed

 C
os

t (
%

)

Time

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

W
BG

OLB
PS

Energy

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

W
BG

OLB
PS

Total Cost

Time
Energy

Fig. 2. Cost Comparison of Different Scheduling Methods

B. Experiment Results for the Online Mode

We conduct a trace-based simulation to verify the accuracy
of the Least Marginal Costalgorithm. The experimental en-
vironment is the same as that in Section V-A. The workload
is a piece of the trace from Judgegirl [13], which is an online
judging system in National Taiwan University. Students submit
their codes to the system in order to solve different problems.
The length of the trace is half hours during the final exam,
which includes five problems. We treat the score querying
requests from students asinteractivetasks, and the codes they
submit asnon-interactivetasks. There are 768non-interactive
tasks and 50525interactivetasks in the trace.

In our trace-based simulation, the number of CPU cycles
required of each task can be retrieved from the trace. In
practice, we can estimate the resource requirement by profiling
or historical data. Theinteractive tasks in an online judging
system are mostly problem choosing and score querying.
We can profile the CPU cycles required to complete these
kinds of tasks while building the system. On the other hand,
the resource requirement of anon-interactivetask strongly
depends on the code submitted by users. However, we can
still predict the resource requirement of a newly arrivalnon-
interactive task by taking average of the previous completed
submissions.

We build an event-driven simulator. The simulator takes
the workload trace as input. An event can be either atask
arrival or a task completion. For task arrival, the simulator
decides the core and frequency for the new task according
to the scheduling algorithm. On the other hand, the simulator
calculates the cost of time and energy of the task for atask
completionevent. The total cost is the cost summation of every
tasks in the trace.

We compare the cost of the following scheduling strate-
gies: Opportunistic Load Balancing, On-demand, and Least
Marginal Cost. Opportunistic Load Balancing(OLB) [12]
schedules a task on the core with the earliest ready-to-execute

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

Simon

Simon

Simon

Simon

Simon

new paragraph

Simon

new paragraph

10

time. The objective of OLB is to ensure the cores are fully
utilized and finish the tasks in the shortest possible time. OLB
keeps the processing frequency of each core at the highest
level. On-demand[14] is a strategy in Linux that decides the
processing frequency according to the current core loading.
Once a core’s loading reaches a predefined threshold,On-
demandscales to the highest processing frequency of that core.
On the other hand, if the loading is lower than threshold,On-
demandreduces the processing frequency by one level. Since
On-demanddoes not schedule tasks to core, we assign the
arriving tasks to core in a round-robin fashion. In OLB and
On-demand, interactive tasks have higher priority thannon-
interactivetasks. Tasks on a core with the same priority will
be executed in a FIFO fashion.Least Marginal Costis the
strategies we propose.Re and Rt are set to 0.4 cents per
joule and 0.1 cent per second, respectively.

Figure 3 shows the cost comparison among scheduling
methods.Least Marginal Costmethod consumes 11% less
energy and spends 31% less time thanOpportunistic Load
Balancing, and has 17% less total cost. Similarly,Least
Marginal Cost method consumes 11% less energy, spends
46% less time than theOn-demandmethod, and has 24%
less total cost. The results indicate thatLeast Marginal Cost
heuristic saves energy and reduces task waiting time than
existing algorithms.

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

LM
C

OLB
OD

N
or

m
al

iz
ed

 C
os

t (
%

)

Time

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

LM
C

OLB
OD

Energy

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

LM
C

OLB
OD

Total Cost

Time
Energy

Fig. 3. Cost Comparison of Different Scheduling Mthods

VI. RELATED WORK

Dynamic Voltage and Frequency Scaling (DVFS) is a key
technique that reduces a CPU’s power consumption. There
have been several studies of using DVFS, especially for
applications in real-time system domains. The objective is
to ensure that such applications can be executed in real-time
systems without violating their deadline requirements, while
minimizing the energy consumption. Yao et al. [4] proposed an
offline optimal algorithm as well as an online algorithm witha
competitive ratio for aperiodic real-time applications. Pillai et
al. [15] presented a class of novel real-time DVS (RT-DVS)
algorithms, including Cycle-conserving RT-DVS and Look-
Ahead RT-DVS. Aydin et al. [5] developed an efficient solution
for periodic real-time tasks with (potentially) differentpower
consumption characteristics. However, the above works only
consider single-core real-time systems, so they do not deal
with the assignment of tasks to cores.

A number of recent studies of DVFS scheduling in real-
time systems focused on multi-core processors. Kim et al. [3]

proposed a dynamic scheduling method that incorporates a
DVFS scheme for a hard real-time heterogeneous multi-core
environment. The objective is to complete as many tasks as
possible while using the energy efficiently. Yang et al. [16]
designed a 2.371 approximation algorithm that reduces the
amount of energy used to process a set of real-time tasks that
have common arrival times and deadlines on a chip multi-
processor. Lee [17] introduced an energy-efficient heuristic
that schedules real-time tasks on a lightly loaded multi-
core platform. The above works focus on real-time systems
in which tasks behave in a periodic or aperiodic manner.
By contrast, the tasks considered in this paper are general
computation tasks with or without deadlines.

In addition to real-time systems, some studies have inves-
tigated using DVFS for other purposes. To minimize energy
consumption, Bansal et al. [18] performed a comprehensive
analysis and proposed an online algorithm to determine the
processing speed of tasks with deadlines on a processor that
has arbitrary speeds. Pruhs et al. [19] investigated a problem
setting where a fixed energy volumeE is given and the
goal is to minimize the total flow time of the tasks. They
considered the offline scenario where all the tasks are knownin
advance and showed that optimal schedules can be computed
in polynomial time. Albers et al. [10] developed an approach
that uses a weighted combination of the energy and flow
time costs as the objective function and exploits dynamic
programming to minimize it in an offline fashion. This is
similar to our approach, except that Albers et al. consider unit-
size tasks, whereas our tasks can be any arbitrary size. Lam et
al. [11] also studied scheduling to minimize the flow time and
energy usage in a dynamic speed scaling model. They devised
new speed scaling functions that depend on the number of
active jobs, and proposed an online scheduling algorithm for
batched jobs based on the new functions. The above works
focus on single processors with discrete speeds. However, we
consider both single and multi-core architectures in a per-core
DVFS fashion.

Other energy-efficient algorithms have been proposed for
multi-core platforms. Bunde [20] investigated flow time mini-
mization in multi-processor environments with a fixed amount
of energy. Aupy et al. [21] performed a comprehensive
analysis of executing a task graph on a set of processors. The
goal is to minimize the energy consumption while enforcing
a prescribed bound on the execution time. They considered
different task graphs and energy models. In contrast to our
approach, their method assumes that the mapping of tasks to
cores is given, which is different to our approach.

VII. C ONCLUSION

In this paper, we propose effective energy-efficient schedul-
ing algorithms for multi-core systems with DVFS features. We
consider two task execution modes: thebatchmode for batches
of jobs; and theonline mode for a more general execution
scenario whereinteractivetasks with different time constraints
or deadlines andnon-interactivetasks may co-exist in the
system. For each execution model, we propose scheduling
algorithms and prove that they are effective both analytically

11

and empirically. The algorithms solve three problems simulta-
neously: the assignment of tasks to CPU cores, the execution
order of tasks, and the CPU core frequency for executing each
task.

For thebatch mode, we prove that (1) the decision about
the processing ratepk used to minimize the costC(k, pk)
only depends onk, the position of the task in the execution
sequence for a CPU core; and (2) the decision is independent
of the execution workload of the task. We also show that there
exists a polynomial-time optimal solution with the minimum
cost in which the tasks are assigned in a greedy fashion in
non-decreasing order of the number of cycles to the cores.
Based on our theoretical findings, we propose a scheduling
algorithm calledWorkload Based Greedy. For theonlinemode,
we propose a heuristic calledLeast Marginal Cost, which
assignsinteractiveand non-interactivetasks to cores. It also
determines the processing speeds that will minimize the total
cost of every time interval during a task’s execution.

Our experiment results show that, for thebatch mode, the
Workload Based Greedyalgorithm consumes 46% less energy
than theOpportunistic Load Balancingalgorithm, with only a
4% slowdown in the execution time. It also achieves a 27% im-
provement in energy consumption and a 13% improvement in
the execution time over the widely usedPower Savingmethod.
For theonlinemode, theLeast Marginal Costalgorithm yields
a 17% and 24% improvement in the total cost compared with
two existing algorithms in a trace-based simulation.

REFERENCES

[1] P. Grosse, Y. Durand, and P. Feautrier, “Methods for power optimization
in soc-based data flow systems,”ACM Trans. Des. Autom. Electron.
Syst., vol. 14, no. 3, pp. 38:1–38:20, Jun. 2009.

[2] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-
time systems,” inProceedings of the 37th Annual Design Automation
Conference, ser. DAC ’00. New York, NY, USA: ACM, 2000, pp.
806–809.

[3] S. I. Kim, H. T. Kim, G. S. Kang, and J.-K. Kim, “Using dvfs and task
scheduling algorithms for a hard real-time heterogeneous multicore
processor environment,” inProceedings of the 2013 Workshop on
Energy Efficient High Performance Parallel and DistributedComputing,
ser. EEHPDC ’13. New York, NY, USA: ACM, 2013, pp. 23–30.

[4] F. Yao, A. Demers, and S. Shenker, “A scheduling model forreduced
cpu energy,” in Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, ser. FOCS ’95. Washington, DC,
USA: IEEE Computer Society, 1995, pp. 374–.

[5] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez, “Determining
optimal processor speeds for periodic real-time tasks withdifferent
power characteristics,” inProceedings of the 13th Euromicro Conference
on Real-Time Systems, ser. ECRTS ’01. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 225–.

[6] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram, “Frame-based
dynamic voltage and frequency scaling for a mpeg decoder,” in
Proceedings of the 2002 IEEE/ACM International Conferenceon
Computer-aided Design, ser. ICCAD ’02. New York, NY, USA:
ACM, 2002, pp. 732–737.

[7] Y.-M. Chang, P.-C. Hsiu, Y.-H. Chang, and C.-W. Chang, “Aresource-
driven dvfs scheme for smart handheld devices,”ACM Trans. Embed.
Comput. Syst., vol. 13, no. 3, pp. 53:1–53:22, Dec. 2013.

[8] C.-C. Lin, C.-J. Chang, Y.-C. Syu, J.-J. Wu, P. Liu, P.-W.Cheng, and
W.-T. Hsu, “An engergy-efficient task scheduler for multicore platforms
with per-core dvfs based on task characteristics,” inProceedings of the
2014 IEEE International Conference on Parallel Processing, ser. ICPP
’14, 2014.

[9] J.-J. Chen, “Multiprocessor energy-efficient scheduling for real-time
tasks with different power characteristics,” inProceedings of the
2005 International Conference on Parallel Processing, ser. ICPP ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 13–20.

[10] S. Albers and H. Fujiwara, “Energy-efficient algorithms for flow time
minimization,” ACM Trans. Algorithms, vol. 3, no. 4, Nov. 2007.

[11] T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong, “Speed scaling
functions for flow time scheduling based on active job count,” in
Proceedings of the 16th Annual European Symposium on Algorithms,
ser. ESA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 647–659.

[12] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and
R. F. Freund, “A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributedcomputing
systems,”J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810–837,
Jun. 2001.

[13] “Judgegirl,” https://github.com/ntuparallellab/judgegirl.
[14] V. Pallipadi and A. Starikovskiy, “The ondemand governor: past, present

and future,” inProceedings of Linux Symposium, vol. 2, pp. 223-238,
2006.

[15] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for
low-power embedded operating systems,” inProceedings of the
eighteenth ACM symposium on Operating systems principles, ser. SOSP
’01. New York, NY, USA: ACM, 2001, pp. 89–102.

[16] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algorithm
for energy-efficient scheduling on a chip multiprocessor,”in Design,
Automation and Test in Europe, 2005. Proceedings, 2005, pp. 468–473
Vol. 1.

[17] W. Y. Lee, “Energy-saving dvfs scheduling of multiple periodic real-
time tasks on multi-core processors,” inDistributed Simulation and
Real Time Applications, 2009. DS-RT ’09. 13th IEEE/ACM International
Symposium on, 2009, pp. 216–223.

[18] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage energy
and temperature,”J. ACM, vol. 54, no. 1, pp. 3:1–3:39, Mar. 2007.

[19] S. Irani and K. R. Pruhs, “Algorithmic problems in powermanagement,”
SIGACT News, vol. 36, no. 2, pp. 63–76, Jun. 2005.

[20] D. P. Bunde, “Power-aware scheduling for makespan and flow,” in
Proceedings of the Eighteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’06. New York, NY, USA:
ACM, 2006, pp. 190–196.

[21] G. Aupy, A. Benoit, F. Dufossé, and Y. Robert, “Reclaiming the energy
of a schedule: models and algorithms,”Concurrency and Computation:
Practice and Experience, vol. 25, no. 11, pp. 1505–1523, 2013.

	Introduction
	Models
	Task Model
	Processing Rate
	Energy Consumption

	Task Scheduling in The Batch Mode
	Tasks with Deadlines
	Tasks without Deadlines on a Single Core Platform
	Scheduling Tasks without Deadlines on Multi-core Platforms

	Task Scheduling in the Online Mode
	Dynamic Task Insertion and Deletion

	Evaluation
	Experiment Results for the Batch Mode
	Experiment Settings
	Model Verification
	Comparison with Other Scheduling Methods

	Experiment Results for the Online Mode

	Related Work
	Conclusion
	References

