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a b s t r a c t

This paper investigates the problem of allocating parallel application tasks to processors in heterogeneous
distributed computing systemswith the goal of maximizing the system reliability. The problem of finding
an optimal task allocation for more than three processors is known to be NP-hard in the strong sense. To
deal with this challenging problem, we propose a simple and effective iterative greedy algorithm to find
the best possible solution within a reasonable amount of computation time. The algorithm first uses a
constructive heuristic to obtain an initial assignment and iteratively improves it in a greedy way. We
study the performance of the proposed algorithm over a wide range of parameters including problem
size, the ratio of average communication time to average computation time, and task interaction density.
The viability and effectiveness of our algorithm is demonstrated by comparing it with recently proposed
task allocation algorithms for maximizing system reliability available in the literature.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Distributed systems have become increasingly popular as cost-
effective alternatives to traditional high performance computing
systems. These systems often consist of many geographically dis-
tributed heterogeneous processors interconnected via communi-
cation networks. To effectively exploit such systems, an important
challenge is to develop task allocation algorithms that assign each
task partitioned from an application to its best suitable processor
for parallel execution. In the literature, the task allocation prob-
lem has been extensively studied with the main concern on var-
ious performance criteria, such as minimizing the total sum of
execution and communication time [8,27,31,34,37,41] orminimiz-
ing the application turnaround time [1,4,10,13,28,30]. Inherently,
distributed systems are more complex than centralized ones. In
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such a large system, machine and network failures are inevitable
and can have an adverse effect on applications executing on the
system. Hence, ensuring the reliability of distributed systems is of
critical importance along with task allocation, especially for some
mission critical applications, such as aircraft control, industrial
process control, and banking systems.

System redundancy is the traditional technique to achieve fault
tolerance and thus reliability [7,9,11,12,16,19,33]. A distributed
computing system is redundant if it possesses software redun-
dancy (e.g. task replication among processing nodes) and/or hard-
ware redundancy (e.g. multiple processors at a processing node,
andmultiple communication channels connecting each pair of pro-
cessing nodes) [11]. However, this is an expensive approach.More-
over, in many situations, the system configuration is fixed and we
have no freedom to introduce system redundancy. Hence, we have
to turn to a task allocation strategy to achieve high system reli-
ability. This paper investigates the task allocation problem with
the aim of maximizing distributed system reliability without ex-
tra hardware and/or software costs.

Several approaches have been proposed in the literature for
maximizing reliability of distributed systems without redun-
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dancy [5,15,17,21,29,38]. These allocation schemesmay be broadly
classified into twomain categories. First, there are the exact meth-
ods that try to find the optimal allocation for the given objec-
tive. Currently, the most competitive exact algorithms are based
on state space search techniques to determine the optimal solu-
tion [17,21,29]. However, the computational complexity of the re-
liability problem on distributed systems has been proved to be
NP-hard in the strong sense [20]. These methods are exponential
in nature andmay demand heavy computation time. The other ap-
proach is to develop good heuristics to solve the problem. These
techniques may give suboptimal results, but are much less expen-
sive. They are useful in applications where an optimal solution is
not obtainable within a critical time limit. The algorithms based on
this approach can be further divided into the following two sub-
categories.

The greedy heuristics construct a feasible solution from scratch
and the mapping of tasks to processors is done without backtrack-
ing. In these algorithms the tasks are first sorted on a given cri-
terion and are then mapped in that order on the processors. The
allocation of one task is dependent on the mapping of previously
scanned tasks. During the solution construction these algorithms
maintain feasibility, that is, they return allocations that respect re-
source constraints. Though the process of greedy heuristics is fast,
the solution quality is not satisfactory [29].

The meta-heuristics start from an initial solution or a set of so-
lutions and try to improve the solution(s) by utilizing some strate-
gies. In recent years, a growing body of literature suggests the use
of meta-heuristic search methods for the task allocation problem.
For example, Vidyarthi and Tripathi applied a simple genetic al-
gorithm (GA) to quickly find a near optimal allocation [35]. Attiya
and Hamam developed a simulated annealing (SA) algorithm for
the problem and evaluated its performance in comparison with
branch-and-bound technique [5]. Yin et al. presented a hybrid al-
gorithm that combines particle swarm optimization (PSO) with
a hill climbing heuristic [38]. They claimed that their approach
outperform a GA in terms of effectiveness and efficiency for the
test-cases studied. Kang et al. proposed a honey bee mating opti-
mization (HBMO) algorithm for tackling the problem [15]. Through
simulations over a wide range of parameters, they compared their
algorithm experimentally to other popular algorithms with favor-
able results.

Because of the intractable nature of the task assignment prob-
lem, new effective techniques are always desirable to obtain
the best-possible solution in an efficient manner. The iterated
greedy (IG) heuristic is an effective stochastic local search algo-
rithm recently developed for combinatorial optimization prob-
lems. Though simple and easy to implement, the IG algorithm has
exhibited state-of-the-art performances for several problems in
computer science and engineering fields, such as set covering prob-
lems [22], flow shop scheduling problems [23,25,26], sequencing
single-machine tardiness problems [40], dynamic parallelmachine
scheduling [39], just to name a few. In our previous work, the IG
algorithm has also been successfully applied to task assignment
problems where the goal is to minimize the total sum of execution
and communication time [14]. Thus, we intend to further extend
the application of IG to the task allocation problem for maximizing
reliability of heterogeneous distributed computing systems.

It is noteworthy tomention that in their standard forms, each of
these meta-heuristics has a unique search mechanism that allows
them to find high quality solutions. As we will detail, IG works
by iterating over greedy constructive heuristics. The proposed
method does not belong to the larger class of population based
evolutionary algorithms, which generate solutions to optimization
problems using techniques inspired by natural evolution, such as
fitness evaluation, selection, crossover and mutation.

The rest of this paper is organized as follows: In the next sec-
tion, the problem thatwill be addressed in this paper is formulated.
Fig. 1. (a) Examples of a program with two tasks, (b) TIG model for this program.

The proposed IG heuristic is elaborated in Section 3. The computa-
tional results of applying the proposed algorithm to the problem
instances are provided in Section 4, as well as comparisons of the
performance against three state-of-the-art meta-heuristics from
the relevant literature. Finally, some concluding remarks are made
in Section 5.

2. Problem formulation

Different task allocationmodels for reliability have been used in
the literature. In this work, we follow [5,15,17,29,38] to formulate
the task allocation problem for maximizing system reliability.

2.1. Problem statement

The distributed system is assumed to consist of a set of het-
erogeneous processors interconnected via high-speed networks in
an arbitrary fashion. The processors may have different resource
capacities and the communication links may have different band-
widths. A failure rate is associated with each component (proces-
sor or communication link) in the system. Failures of components
are assumed to be statistically independent and follow a Poisson
distribution. We also assume the target system contains dedicated
communication hardware so that computation can be overlapped
with communication.

In the distributed system, an application to be assigned is mod-
eled as an undirected graph called task interaction graph (TIG),
where the vertices represent the tasks partitioned from the ap-
plication and the undirected edges represent the inter-task com-
munication demands. In this model, temporal dependencies in the
execution of tasks are not explicitly addressed: all the tasks are
considered simultaneously executable and communications can
take place either at any time or intermittently during the program
execution. The TIGmodel iswell suited tomodeling coarse-grained
applications that alternate computation phases and communica-
tions inside tasks [24]. Fig. 1(a) shows an example of a program
with two tasks, t0 and t1, which are composed of different com-
putation phases and communications, as represented inside each
task. The corresponding TIG model is shown in Fig. 1(b).

Due to the heterogeneity of processors, a task may take differ-
ent execution time if it is executed on different processors. A vector
is associated with each task representing the expected execution
time of the task on different processors in the system, where these
values depend on the work to be performed by the task as well as
on the attributes of processors and can be obtained based on task
profiling and analytical benchmarking [3,18,36]. The execution of
a taskwill consume a specific amount of resource from its assigned
processor. Similarly, if two communicating tasks are executed on
different processors, the inter-task communication may take dif-
ferent time if transmitted through different communication paths.
If they are assigned to the sameprocessor, the communication time
is assumed to be negligible since the communication via shared-
memory ismuch faster than that throughmessage passing over the
network. The goal is concerned with finding a task allocation that
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maximizes the system reliability and satisfies all of the resource
constraints.

The notations that will be used in our problem formulation are
listed below:

N The number of tasks forming an application
K The number of processors available in the distributed

system
ti ith task of an application
pk kth processor in the distributed system
X An N × K binary matrix corresponding to a task allocation
xik An element of allocation matrix X; xik = 1 if task ti is

assigned to processor pk, and xik = 0 otherwise
eik The expected execution time of task ti on processor pk
dij The data quantity to be transmitted between tasks ti and

tj measured in some units
wkl The transmission rate of communication path between

terminal processors pk and pl
λk The failure rate of processor pk
µkl The failure rate of communication path between terminal

processors pk and pl
mi The resource requirement of task ti from its execution

processor
Mk The available resource capacity of processor pk

2.2. Reliability model

The reliability of a distributed system is defined as the proba-
bility that the system can execute the entire application success-
fully [5,29,38]. That is, the system reliability is the product of the
probability that each processor is operational during the time of
processing the tasks assigned to it, and the probability that each
communication path is operational during the active period of
data communication between the terminal processors of the path.
Hence, successful execution of an application is mainly dependent
on reliability of the system components and on the distribution of
the application tasks to the available processors in the system. In
the following we first present reliability expressions to the system
components and then provide an explicit objective function to the
system reliability.

The reliability of processor pk during a time interval t is e−λkt

[5,29]. Under a task allocation X , the time required for the execu-
tion of the tasks assigned to processor pk is

N
i=1 xikeik, and then

the corresponding processor reliability can be formulated as

Rk(X) = e−λk
N

i=1 xikeik . (1)

Similarly, the reliability of the communication path connecting
processors pk and pl during a time interval t is e−µklt [5,29]. Under
a task allocation X , the time required for data communication be-
tween the terminal processors pk and pl is

N
i=1


j≠i xikxjldij/wkl,

then the corresponding path reliability is given by

Rkl(X) = e−µkl
N

i=1


j≠i XikXjldij/Wkl . (2)

As the system reliability requires that all involved components
are operational during the elapsed time for executing an applica-
tion, the system reliability with the task allocation X is computed
as follows:

R(X) =

K
k=1

Rk(X)

K
k=1


k≠l

Rkl(X) = e−Z(X) (3)

where

Z(X) =

N
i=1

K
k=1

λkxikeik +

N
i=1


j≠i

K
k=1


k≠l

µklxikxjldij/wkl. (4)
The first term of the function Z(X) reflects the unreliability
caused by the execution of tasks on processors of various reliabil-
ities and the second term reflects the unreliability caused by the
inter-processor communication through different paths of various
reliabilities.

Maximizing the system reliability is equivalent to minimizing
Z(X). With system resource constraints taken into account, the
task allocation model for system reliability is formulated as
follows:

Minimize Z(X) (5)
s.t.

K
k=1

xik = 1 ∀i = 1, 2, . . . ,N (6)

N
i=1

mixik ≤ Mk ∀k = 1, 2, . . . , K (7)

xik ∈ {0, 1} ∀i, k. (8)

Constraint (6) states that each task should be assigned to ex-
actly one processor. Constraint (7) ensures that the total resource
requirements of the tasks assigned to each processor must not ex-
ceed its resource capacity. Constraint (8) guarantees that xik is a
binary variable.

The model above defines a 0–1 integer programming problem
with a quadratic objective and it is known to be NP-hard [20].
Although exact algorithms such as A∗ algorithms and branch and
bound have been proposed [17,21,29], they are computationally
very expensive. An alternative is to find high quality solutions
efficiently using meta-heuristics. In this paper, we propose a new
IG algorithm for this purpose.

3. Iterated greedy algorithm

The IG algorithm starts from an initial solution and then tries
to improve the incumbent solution by iterating over three main
phases: destruction, construction and acceptance criterion. During
the first phase, some components are randomly extracted from the
incumbent solution. In the second phase, a new complete candi-
date solution is reconstructed using a greedy constructive heuris-
tic; hopefully, the new solution is better than the one obtained
from the previous iteration. Afterwards, an acceptance criterion is
used to decidewhether the newly constructed solutionwill substi-
tute the current one or not. By applying these phases in an iterative
way, one seeks for high quality solutions. Besides, an optional local
search procedure can be easily added to improve the constructed
solutions. A generic IG algorithm is outlined in Fig. 2 [25]. In the fol-
lowing subsections, we will detail all the components tailored for
the task allocation problem with the goal of maximizing system
reliability.

3.1. Initial solution

Aswith all iterative-improvement-based heuristics, the IG algo-
rithm starts from an initial solution. For the task allocation prob-
lem under investigation, we use the greedy constructive heuristic
(Alg3) proposed by Shatz et al. [29] to rapidly obtain an initial feasi-
ble solution. The basic idea of Alg3 is that to reduce the system un-
reliability, tasks with longer execution time should be allocated to
more reliable processors (with smaller λ values), and tightly cou-
pled tasks (tasks heavily communicating with each other) should
be allocated to the same processor or to neighboring processors
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Fig. 2. An outline of a generic iterated greedy algorithm.

withmost reliable links. Before entering into details, the definition
of task communication cost is given by [29]

The communication cost for task ti: Ci =

N
j=1

dij. (9)

The task communication cost, Ci, is a measure of the inter-task
communications involving task ti. Thus, Ci > Cj means that task
ti communicates more with other tasks than task tj does.

Based on the objective function (4), the algorithm below first
sorts the tasks in non-increasing order of task communication cost
(Step 1) and then assigns all tasks one by one such that each time
a task is assigned, the system unreliability incurred is minimized
(Steps 2 and 3). The time complexity of this algorithm is O(NK).

Step 1: Order all tasks in T = (tl, t2, . . . , tN) so that the task com-
munication costs are in non-increasing order.

Step 2: Assign tl to the processor pk for which e1kλk is minimum
over all processors and no system constraint is violated.

Step 3: For i = 2 to N do
Assign ti to the processor pk such that

f (ti) = eikλk +

i−1
j=1


l≠k

xjlµkldij/wkl (10)

is minimum over all processors and the allocation of ti to
processor pk does not violate any of the system constraints.
Apparently, f (ti) is the system unreliability incurred by
task ti under the current partial assignment.

3.2. Destruction and construction phases

The central destruction–reconstruction idea is employed for the
solution modification in the proposed method, i.e., the two proce-
dures are responsible for moving towards new regions in the solu-
tion space. The destruction procedure is applied to the incumbent
solution X . In this step, a given number d of tasks, chosen randomly
and without repetition, are removed from their current processors
and inserted into a sequence denoted as πd in the order they are
chosen. This procedure results in a partial assignment Xp and a se-
quence of d tasks which have to be reassigned to yield a complete
candidate solution. The parameter d, called destruction level, de-
termines a degree the incumbent solution should be destructed.
Apparently, the goal of such destruction is not to destroy the cur-
rent solution absolutely; on the contrary, it is desirable that the re-
sulting partial solution inherits some characteristics of the result
from previous iterations. Therefore, it is important that a proper
level of destruction is kept up. The destruction level will be deter-
mined through experimental studies (see Section 4.2). The compu-
tational complexity of the destruction phase is O(dN).
The construction phase starts with the partial assignment Xp
and sequentially reassigns the tasks in πd, one at a time, using
Step 3 of the Alg3 given in Section 3.1. In more detail, each task
in πd is reassigned onto processor pq such that

q = argmin


eπd[i]kλk +

N−d+i−1
j=1


l≠k

xjlµkldπd[i]j/wkl


,

1 ≤ k ≤ K (11)

where πd[i] denotes the task occupying position i in πd, i = {1,
. . . , d}; the argmin gives an index of themachine at which f (πd[i])
is minimized according to Eq. (10). Thus, at each construction step,
the current partial assignment is extended by allocating one task in
πd to the processor which yields the smallest system unreliability.
This process is repeated until a complete solution is constructed.
The construction phase has a computational complexity ofO(dNK).

3.3. Local search

The essence of local search is to search for a better solution (lo-
cal optimum) in the ‘‘surroundings’’, i.e. neighborhood of the cur-
rent solution. To further improve the performance of the basic IG
algorithm, a local search procedure may be applied to the solution
just constructed. There are many different alternatives for the lo-
cal search algorithm that can be considered. Following the idea of
having a simple and easily implementable algorithm, we choose
a rather straightforward local search algorithm that is based on
the transfer neighborhood. The transfer neighborhood of an assign-
ment is defined as the set of assignments that can be obtained by
considering the movement of one task from its current processor
to another one.

We implement a local search heuristic that searches this neigh-
borhood in a particular way: In each local search step, a task is
removed from its current processor (at randomandwithout repeti-
tion) and then reassigned to all possible processors that are capable
of processing the task. The current assignment X is replaced by the
best ones, only if an improvement of X can be obtained. The proce-
dure ends when no further improvements are found, i.e., when the
assignment is a local optimum with respect to the transfer neigh-
borhood. Since this local search is applied until a local optimum
is found, we can only derive the computational complexity of one
single pass. This complexity is O(N2K). The outline of this proce-
dure is shown in Fig. 3.

3.4. Acceptance criterion

Acceptance criterion determines whether the new assignment
is accepted or not as the incumbent solution for the next iteration.
One of the simplest acceptance criteria is to accept solutions with
better objective values. However, an IG algorithm using this accep-
tance criterion is prone to stagnation due to insufficient diversi-
fication [25]. Hence, we considered a simple SA type acceptance
criterion which accepts worse solutions only with a certain proba-
bility. In particular, X∗ is accepted with a probability p given by

p(T , X, X∗) =


1 if Z(X∗) ≤ Z(X)

exp

Z(X) − Z(X∗)

T


otherwise

(12)

where T is a control parameter called temperature and it is com-
puted following the suggestions of Stützle as follows [32]: After
the initial solution X0 is locally optimized to yield solution X , we



1110 Q. Kang et al. / J. Parallel Distrib. Comput. 73 (2013) 1106–1115
Fig. 3. The local search procedure based on the transfer neighborhood.
Fig. 4. Examples of (a) a task interaction graph, (b) a processor network, and (c) execution time matrix.
set the initial temperature Tinit = 0.025 × Z(X), that is, a solution
which is 2.5% worse than the current one is accepted with prob-
ability 1/e. The temperature is lowered every iteration during the
run of the algorithm according to a geometric cooling scheme, by
setting Ti+1 = 0.9 × Ti.

3.5. Termination condition

The termination condition usually involves a fixed number of
iterations or execution time, or the detection of a stagnation sit-
uation. Since our algorithm will be compared to other heuristics,
the stopping criterion is the computational time here. The compu-
tation time is usually proportional to the problem scale, and it can
be determined experimentally based on the observation that all al-
gorithms can converge before the cutoff time (see Section 4.3).

3.6. An illustrative example

To illustrate how the IG algorithm works, consider a simple al-
location problem consisting of 5 tasks and 4 processors as shown
in Fig. 4. The weights associated with nodes in Fig. 4(a) indicate
the resource requirements of tasks; while those in Fig. 4(b) show
the available resource capacities of processors. For simplicity, we
assume that all communication paths have the same bandwidth
and the inter-task communication time is directly labeled on the
edges in Fig. 4(a). The execution time of each task on every proces-
sor is shown in Fig. 4(c). Table 1 gives the failure rates of all commu-
nication paths; while the failure rates of processors are shown in
Table 2.
Table 1
Failure rates of communication paths for the example.

p1 p2 p3 p4

p1 – 0.00029 0.00023 0.00021
p2 0.00029 – 0.00025 0.00020
p3 0.00023 0.00025 – 0.00027
P4 0.00021 0.00020 0.00027 –

Table 2
Failure rates of processors for the example.

p1 p2 p3 p4

0.00009 0.00008 0.00009 0.00007

For illustrative simplicity, the solution is encoded as an integer
vector S of size N while the ith integer of the vector represents the
index k (1 ≤ k ≤ K) of the processor to which task ti is assigned.
Fig. 4 shows the encoding of a solution to the problem instance in
Fig. 3. For example, S[1] = 4means that the first task is assigned to
the fourth processor. Formally, S[i] = k implies that xik = 1, and
xil = 0, ∀l ≠ k. A partial assignment means that some tasks are
unassigned; the value of the ith element equal to x indicates that
the ith task has not been assigned yet.

ApplyingAlg3 to this example results in the following algorithm
trace:

Calculate task communication costs:
C1 = 23, C2 = 39, C3 = 33, C4 = 15, C5 = 20.
Order tasks as T = (t2, t3, t1, t5, t4).
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Fig. 5. Example for the application of one iteration of the IG algorithmwithout local
search to an instance.

Calculate the values of e2kλk (1 ≤ k ≤ 4) to obtain (0.00207,
0.00016, 0.00126, 0.00322).

The second value is the minimum so assign t2 to p2.
Calculate the values of f (t3) for all possible assignments to

obtain (0.00420, 0.00008, 0.00426, 0.00247).
The second value is the minimum so assign t3 to p2.
The algorithm allocates the remaining tasks in a similarway, re-

sulting in the initial solution as shown in Fig. 5. For this assignment,
the system reliability is

exp(−0.01304) = 0.987.

Fig. 5 illustrates the application of one IG iteration to the prob-
lem instance without considering the local search phase and using
d = 3. The example shows that starting from the solution given by
the Alg3 (R = 0.987) a new solution of R = 0.991 is reached by
removing t5, t3 and t1 and reassigning them in the way described
above. This new solution is accepted by the acceptance criterion
since it is better than the starting solution. Furthermore, this new
assignment is known to be an optimal solution for the instance
with an exhaustive enumeration. Of course, this will not always
be the case.

4. Experimental evaluation

The task allocation problem investigated in this paper is con-
cerned with the various execution time of the same task on
heterogeneous processors, the various inter-task communication
overheads which occur when tasks communicate each other
through different channels, and the different failure rates of pro-
cessors and communication links. Resource constraints imposed
by the processors in the target system further complicate the prob-
lem. Hence, it is hard to derive some performance bounds theoret-
ically. For this reason we choose to test the proposed IG algorithm
by a comprehensive experimental evaluation and comparisonwith
the other recently proposed algorithms for the problem at hand.
We have implemented the SA of Attiya and Hamam [5], the hybrid
PSO (HPSO) of Yin et al. [38], and the HBMO of Kang et al. [15] in
that they are recently proposed meta-heuristics for the problem
considered. Also, the constructive heuristic algorithm Alg4 pro-
posed by Shatz et al. [29] has been implemented for comparison
purpose. Additionally, we have compared our proposed method
against a commercial solver IBM-ILOG CPLEX 12.4, which we will
simply refer to as CPLEX. All the algorithms are coded in MATLAB
7.10 and executed on a 1.86 GHz PentiumDual processorwith 1 GB
main memory running under a Windows XP environment.
4.1. Experiment settings

Because there are no generally accepted benchmark problems
for the task allocation with the goal of maximizing reliability in
heterogeneous distributed computing systems, we have chosen to
evaluate the comparative algorithms by simulating a wide range
of scenarios similar to those used by other researchers [5,15,17,
29,38]. The scenarios are generated using different parameters, as
described below:

• Number of tasks in the application TIG (N).
• Number of processors in the distributed computing system (K ).
• Task interaction density (D). It is the probability that there is

an interaction between two tasks, the task interaction density
quantifies the ratio of the inter-task communication demands
for a TIG and can serve as one of the key factors that affect the
problem complexity.

• Communication to computation time ratio (CCR). It is the ratio
of the average communication time to the average computa-
tion time. Thus the average communication time between tasks
is set to the average execution time of tasks multiplied by the
CCR. By using a range of CCR values, different types of applica-
tions can be accommodated. If a TIG has a low CCR, it is consid-
ered as a computation intensive application; otherwise, it is a
communication intensive application.

The expected execution time of all tasks taking heterogeneity
into consideration are generated using the coefficient of variation
(COV ) basedmethod described in [2] because themethod provides
great control over the dispersion of the execution time values than
the common range basedmethod [6]. The COV is defined as the ra-
tio of the standard deviation of task execution time to the mean,
and its values are used to quantify task heterogeneity andmachine
heterogeneity [2]. Let the expected time to compute (ETC) matrix
be {xik}N×K where xik denotes the execution time of task i on pro-
cessor k. First, a task vector of the expected execution time which
size equals the number of tasks is generated following a gamma
distribution with a mean of 20 and a COV of 0.9 (task heterogene-
ity). Then the ETC values for each task on all the machines are pro-
duced following a gamma distribution using each element of the
task vector as the mean and a COV of 0.9 (machine heterogene-
ity). The ETCmatrix is of ‘‘inconsistent’’ type, i.e., there is no special
structure in the execution time matrix.

The values of (N, K) are set to (20, 6), (30, 8), and (40, 10), re-
spectively, to testify the algorithm with different problem sizes.
Three levels of task interaction density (0.3, 0.5, and 0.7) are used
for modeling the communication requirements among tasks. The
values of the other parameters are generated randomly following
a uniform distribution: the transmission rates of links are between
1 and 10 Mb/s; the volumes of data to be transmitted among tasks
are generated such that the CCR is 0.2, 0.5, 1.0, 2.0, or 5.0; the fail-
ure rates of processors and communication links are yielded in the
ranges (0.00005, 0.00010) and (0.00015, 0.00030), respectively;
the task resource requirements vary form 5 to 15, while the pro-
cessor capacities are generated as r × φ/M where r is a uniform
random number in the range (1.2, 2) and φ =

N
i=1 ri is the total

resource requirement across all the tasks. As such,we obtain a test-
ing data set of 45 problem instances for evaluating the comparative
performances of the competing methods.

4.2. Choice of the destruction level

A crucial issue concerns the destruction level (number of tasks
removed from a solution in the destruction phase)whichmay have
an impact on running time and the solution quality of the proposed
algorithm. To determine the appropriate value of parameter d, a
preliminary optimization stemwasperformedon several instances
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Fig. 6. Effect of different destruction level on solution quality.

Fig. 7. Effect of different destruction level on computation time.

from the above benchmark problem set. The destruction level
is varied from 0.1N to 0.9N with an increment of 0.1N . The
computational results for most instances are rather similar and,
hence, we illustrate the main findings giving a typical example
result. The computational results on an instance of (N, K , CCR,D)
being equal to (30, 8, 0.5, 1) is illustrated in Figs. 6 and 7.

From Fig. 6, it can be intuitively seen that the best performance
is obtained by the setting of d = 0.6N , so this value was adopted
for all further experiments in this study. Obviously, the bigger the
destruction level is, the more running time is needed, which is
demonstrated by the experimental results shown in Fig. 7. The
figures illustrate that the destruction level should be neither too
strong nor too weak. If the destruction level is too strong, the IG
algorithm will have excessive randomness resulting in a very low
probability of finding better solutions. On the other hand, if it is not
strong enough, the construction and the local search procedures
will rapidly go back to a previous local optimum.

4.3. Convergence analysis

To analyze the convergence behaviors and determine a com-
putation time limit for all the meta-heuristic algorithms, we have
recorded the variations of the system reliability obtained by ev-
ery algorithm at each iteration step. For the population based al-
gorithms, such as HPSO and HBMO, their best objective function
values at each iteration step are recorded. Figs. 8–10 display the
typical running behaviors of the algorithms for solving three prob-
lem instanceswith a computation time limit fixed toN×K×20ms.
Setting the time limit in this way allows more computation time
as the number of tasks or the number of processors increases. We
observe that the system reliability obtained by the IG algorithm
increases on the whole as the number of iterations increases. At
the early stage of iteration, the solution quality improves quickly,
and the inferior solution could be accepted due to the SA type ac-
ceptance criterion. At the later stage, the curves flatten off. This
phenomenon reflects the fact that the best performance of IG is
Fig. 8. The typical convergence behaviors of the IG, HBMO, HPSO, and SA for an
instance (N, K ,D, CCR) = (20, 6, 0.3, 2).

Fig. 9. The typical convergence behaviors of the IG, HBMO, HPSO, and SA for an
instance (N, K ,D, CCR) = (30, 8, 0.5, 1).

Fig. 10. The typical convergence behaviors of the IG, HBMO, HPSO, and SA for an
instance (N, K ,D, CCR) = (40, 10, 0.7, 0.5).

achieved. Therefore, it is demonstrated that IG is of effective and
efficient ability of global search. It is also observed that all the al-
gorithms can converge before termination. Based on the observa-
tions, we set the computation time limit to N × K × 20 ms for the
following experiments.

Our experiments show that CPLEX with default settings is suc-
cessful on problem instances of small size but fails to solve any of
the problem instances described in Section 4.1 due to running out
of memory. To obtain feasible solutions for comparison purpose,
we set the solution of Alg4 as the starting point of CPLEX and its
maximum allowed running time is set to N × K × 100 ms which
is five times CPU time of the competing meta-heuristics. CPLEX
works on the mixed integer programming model (5)–(8) and gives
the optimal solution if it stops before the time limit or a feasible
solution otherwise.
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Table 3
Comparison of IG with SA, HPSO, HBMO, Alg4, and CPLEX.

Instances IG SA HPSO HBMO Alg4 CPLEX
(N, K) D CCR Rard Ravg Rstd Rard Ravg Rstd Rard Ravg Rstd Rard Ravg Rstd Rard Ravg Rard Ravg

(20, 6) 0.3 0.2 0.015 0.976 0.0002 0.183 0.974 0.0004 0.129 0.975 0.0003 0.120 0.975 0.0002 0.954 0.967 0.044 0.976
0.5 0.023 0.983 0.0002 0.471 0.979 0.0007 0.190 0.981 0.0010 0.243 0.981 0.0004 0.564 0.978 0.013 0.983
1.0 0.156 0.961 0.0015 1.287 0.948 0.0004 0.642 0.954 0.0006 0.301 0.958 0.0025 1.762 0.944 0.834 0.953
2.0 0.084 0.938 0.0007 1.790 0.921 0.0012 0.670 0.932 0.0017 0.466 0.933 0.0018 2.341 0.916 1.280 0.926
5.0 0.530 0.857 0.0031 2.433 0.836 0.0073 2.424 0.836 0.0060 0.599 0.851 0.0057 10.53 0.766 0.045 0.856

0.7 0.2 0.001 0.985 0.0001 0.164 0.983 0.0004 0.168 0.983 0.0007 0.145 0.984 0.0012 0.298 0.982 0.002 0.985
0.5 0.001 0.972 0.0001 0.121 0.971 0.0011 0.082 0.971 0.0005 0.246 0.970 0.0004 0.838 0.964 0.003 0.972
1.0 0.023 0.941 0.0003 0.571 0.936 0.0017 0.432 0.937 0.0009 0.387 0.938 0.0004 1.429 0.928 0.170 0.940
2.0 0.144 0.923 0.0012 1.881 0.906 0.0006 0.724 0.917 0.0016 0.859 0.915 0.0015 2.839 0.897 0.668 0.917
5.0 0.788 0.809 0.0041 2.735 0.787 0.0034 2.175 0.792 0.0073 1.624 0.796 0.0017 4.050 0.777 1.199 0.800

(40, 10) 0.3 0.2 0.016 0.963 0.0002 0.101 0.962 0.0002 0.227 0.961 0.0016 0.485 0.959 0.0002 0.584 0.958 0.187 0.961
0.5 0.156 0.943 0.0013 0.599 0.937 0.0021 0.608 0.937 0.0020 0.515 0.938 0.0013 2.120 0.923 1.865 0.925
1.0 0.073 0.897 0.0007 0.952 0.888 0.0030 0.867 0.889 0.0049 0.554 0.892 0.0033 3.619 0.864 1.479 0.883
2.0 0.341 0.846 0.0026 1.716 0.831 0.0046 2.276 0.827 0.0136 0.831 0.839 0.0030 4.259 0.810 2.693 0.823
5.0 0.558 0.701 0.0003 3.414 0.677 0.0043 4.692 0.668 0.0123 1.064 0.694 0.0032 13.28 0.608 3.018 0.680

0.7 0.2 0.027 0.960 0.0003 0.111 0.960 0.0003 0.391 0.958 0.0010 0.644 0.955 0.0005 1.167 0.950 0.000 0.961
0.5 0.177 0.926 0.0010 0.476 0.922 0.0026 0.411 0.923 0.0019 0.727 0.920 0.0009 1.428 0.913 0.002 0.927
1.0 0.132 0.894 0.0016 0.716 0.888 0.0040 0.936 0.886 0.0009 0.977 0.885 0.0013 1.096 0.884 0.663 0.888
2.0 0.154 0.828 0.0011 2.706 0.806 0.0028 1.373 0.817 0.0032 1.039 0.820 0.0026 0.976 0.820 2.161 0.810
5.0 0.286 0.553 0.0020 3.590 0.533 0.0026 4.036 0.530 0.0016 2.233 0.540 0.0034 7.041 0.514 3.239 0.535

Average 0.184 0.893 0.0011 1.301 0.882 0.0022 1.173 0.884 0.0032 0.703 0.887 0.0018 3.059 0.868 0.978 0.885
4.4. Experimental results

Alg4 and CPLEX are deterministic and only one run is necessary.
For the stochastic approaches such as IG, SA, HPSO and HBMO,
each independent run of the same algorithm on a particular testing
instance may yield a different result; we thus run each algorithm
20 times for every problem instance and report the statistical
results. Table 3 shows the experimental results obtained from the
computations. Each cell belonging to the column with the caption
‘Rard’ reports the average relative deviation in percentage obtained
by the corresponding algorithm for each problem instance. The Rard
is computed as follows:

Rard = (Rbest − Ravg)/Rbest × 100 (13)

where Ravg is the average system reliability on a given instance
over 20 independent runs of the corresponding algorithm, and Rbest
is the best system reliability obtained by all the algorithms for
the same instance. In the resulting table, the caption ‘Rstd’ denotes
the standard deviation of system reliability values obtained by the
corresponding algorithm.

The comparative results for all algorithms present in Table 3
show that the IG algorithm performs slightly better than HBMO,
the superiority of IG over SA, HPSO and Alg4 ismore pronounced in
terms of the mean performance for all the experiments, and there
is no problem instance for which SA, HPSO, HBMO and Alg4 could
report a better performance than the IG algorithm. This is remark-
able, given the simplicity of the IG algorithm, when compared to
the much more complex algorithms (HPSO and HBMO), each of
which require to maintain a population of solutions and also more
complex recombination operators among solutions. Even though
using the solution of Alg4 as the starting point and taking more
CPU time, as commented in Section 4.3, CPLEX still performsworse
than our proposed method on average, and among the 20 problem
instances, CPLEX can only report the optimal solution for one prob-
lem. What is more, the experimental results indicate the solution
quality of CPLEX is affected by starting points,manifesting the need
for heuristic or meta-heuristic algorithms which can derive high
quality solutions to large problems within reasonable amounts of
time.

It is also observed from the results that the performance dif-
ferences become larger as the CCR increases. An intuitive explana-
tion may be that as the inter-task communication time gets larger
Fig. 11. Means plot and LSD intervals with 95% confidence level for all tested
algorithms.

compared to the task execution time, the proper allocation of a
task becomes increasingly dependent on where other tasks with
which it communicates are assigned. Hence, the guiding mecha-
nism for the search used in the IG algorithm appears to be the
main reason for the difference in performance. Furthermore, track-
ing the trends in the mean performance, as the problem scale and
the task interaction density increase, IG performsmuch better than
the other competing algorithms. In addition, the IG algorithm per-
forms best in terms of standard deviation of the system reliability,
since themean standard deviation generated by IG ismuch smaller
than those by other stochastic algorithms. The results indicate
that the IG algorithm is more suited to large-scaled task allocation
problems.

To validate the statistical significance of the observed differ-
ences in solution quality, the experimental results are analyzed by
means of an analysis of variance technique. This analysis has a sin-
gle factor, i.e., the type of algorithm with 6 levels and the aver-
age relative percentage deviation is the response variable. Fig. 11
shows themeans plot alongwith Least Significant Difference (LSD)
intervals at 95% confidence level for the tested algorithms.

As can be seen, IG is indeed statistically better than all the
other algorithms. HBMO statistically outperforms SA, HPSO, Alg4,
and CPLEX, and there is no clear statistically significant difference
between SA and HPSO at a 95% confidence level. So, it can be
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concluded that the proposed IG algorithm is more effective than
the other competing algorithms for the task assignment with the
goal of maximizing system reliability in the heterogeneous dis-
tributed computing environments.

5. Conclusions and future work

To our knowledge the first application of the IG algorithm to
the task allocation problem in heterogeneous distributed comput-
ing systems with the criterion of maximizing reliability is reported
in this paper. The proposed method is mainly composed of a so-
lution initialization, a solution modification procedure, and a very
straightforward local search heuristic. The performance of the pro-
posed algorithm is evaluated in comparison with state-of-the-art
methods on a number of randomly generated mapping problem
instances. The experimental results show that the solution quality
of the IG algorithm is better than those of the competing meth-
ods in most situations. This fact is especially remarkable if we con-
sider the high level of sophistication reached by the algorithmic
techniques that have been applied to the problem and the inherent
simplicity of the proposed methods. Therefore, these results indi-
cate that the IG technique is an attractive alternative for solving the
reliability-oriented task allocation problem in heterogeneous com-
puting systems. For future research, extending our approach for
solving other performance criterion or even multi-objective task
assignment problems is interesting.
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