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ABSTRACT

The proliferation of networked mobile devices that can cap-
ture and communicate various kinds of data provides an
opportunity to design novel man-machine sensing environ-
ments of which this paper considers participatory sensing.
To achieve energy efficiency and reduce data redundancy, we
propose Aquiba protocol that exploits opportunistic collab-
oration of pedestrians. Sensing activity is reduced according
to the number of available pedestrians in nearby area. The
paper investigates the benefit of opportunistic collaboration
in large-scale scenarios through simulation studies. To take
microscopic interaction of social crowds into consideration,
we adapt the social force model and include it as one of three
mobility models applied in our studies. Though the simu-
lation results depend on mobility models, they validate the
benefit of opportunistic collaboration employed by Aquiba
protocol.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—wireless communication; C.3 [Spe-
cial-Purpose and Application-Based Systems]: Real-
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1. INTRODUCTION
Proliferation of mobile cellular subscribers as well as ad-

vances in MEMS-based sensor technology and low-power RF
design has realized the practical usage of mobile sensing de-
vices for the purpose of participatory sensing [3, 4, 6] in ur-
ban areas. Such ubiquity of cellular phones and embedded
sensors allows people to capture and share ambient informa-
tion as they go about their daily lives—working, playing, and
moving (on foot, by car, by bike, or by public transporta-
tion). They can provide a dynamic, easy-to-deploy sensing
infrastructure in complex urban environments where (dense)
deployment of stationary sensing devices is not possible due
to various physical and social constraints. Accordingly, ur-
ban inhabitants can capture all kinds of detailed data about
all physical spaces they can access. Such ambient data can
be captured either directly from internal sensors that are
integrated with cellular phones or indirectly from external
wireless sensors embedded in environments. The captured
data can be shared automatically without any human in-
tervention or interactively on the basis of user operations
through Data Commons [6] that involve a collection of open
public-domain data spaces, and evolve over time based on
citizen participation.

Recently, participatory sensing has been studied in sev-
eral aspects including data collection strategies [17], recruit-
ing participants [20], integration with social networks [14],
and so on. When focusing on the issue of data collection,
a mobile sensing device collects information independently
without considering the existence of nearby devices [17, 7,
11]. Real-time collaboration among strangers in participa-
tory sensing environments receives little attention from re-
searchers, though the idea of opportunistic collaboration in
our work is inspired by the literature on ad hoc, sensor, and
delay-tolerant networks [25, 21, 23, 22, 13]. It is plausible
that the use of cellular phones as sensory devices might re-
sult in the presence of a large number of densely located
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mobile sensors in an urban area. As a result, it is quite
likely that the ambient information collected by many of
the cellular phones would be redundant. To cope with such
problem, this paper proposes Aquiba protocol which is a gen-
eral approach to exploit opportunistic collaboration in ur-
ban sensing environments. Aquiba considers collaboration
without community bonds, i.e., the collaboration could take
place automatically among strangers, even without them be-
ing aware of it. In particular, sensing tasks of each cellular
phone are reduced autonomously according to the availabil-
ity of nearby mobile sensing devices; thereby energy con-
sumption is also reduced correspondingly.
To study Aquiba in large-scale scenarios, computer sim-

ulation is a promising tool because of low cost, fast and
flexible implementation. Patterns of human movement play
a critical role in such a simulation-based study [1]. There-
fore we include three mobility models, i.e., random way-
point, Manhattan, and extended social force models, in our
study in order to investigate the benefit of opportunistic
collaboration under different moving patterns of pedestri-
ans, though the objective is not to compare or evaluate the
mobility models. This paper particularly considers the ex-
tended social force model because it includes social interac-
tions among pedestrians and also takes streets, sidewalks,
walls and other elements that affect pedestrians into consid-
eration. It is important to consider the dynamics of pedes-
trian crowds according to macroscopic as well as microscopic
elements to effectively study opportunistic collaboration in
participatory sensing environments.

2. OPPORTUNISTIC COLLABORATION
In this section, the problem formulation is given and fol-

lowed by the description of Aquiba protocol.

2.1 Problem Formulation
We consider participatory sensing system as follows: (i) a

system consists of a server, cellular phones, and sensors; (ii)
each cellular phone is equipped with cellular and short-range
communication transceivers; (iii) the sensors are embedded
in either the cellular phones or environment to capture am-
bient data; (iv) the server issues a query including desired
temporal sensing resolution Ri (e.g., once per second) for
each kind of sensing data i for each sensing area Ai; (v)
each cellular phone is able to acquire location information.

2.2 Aquiba Protocol
There are two approaches of Aquiba protocol, i.e., egali-

tarian and selective distributions, as follows.

2.2.1 Egalitarian Distribution

Upon receiving the query from the server, each mobile
sensing device periodically checks whether it is within Ai.
If it is within Ai, it starts sensing activity by capturing
and uploading data at the rate of Ri, and tries to perform
collaborative sensing whenever possible. Aquiba employs a
straightforward approach to study the possibility and benefit
of opportunistic collaboration, i.e., each pedestrian reduces
upload rate to Ri

pi+1
, where pi is the number of detectable

pedestrians in Ai. Though the upload rate of each pedes-
trian is reduced, the collective sensing resolution perceived
at the server is still maintained at Ri. Without such col-
laboration, all pi +1 pedestrians independently upload data

at the fixed rate Ri, which leads to the collective sensing
resolution of at least (pi + 1)Ri at the server.

To acquire pi, each pedestrian in Ai uses short-range ra-
dio to broadcast beacon packets periodically. A pedestrian
maintains the list of nearby pedestrians from received bea-
cons by setting an expiry time for each pedestrian and delet-
ing the expired ones from the list. Knowing the exact num-
ber of pedestrians in Ai leads to the highest benefit, though
it is not a requirement of Aquiba. One possible way to
achieve more accurate list of pedestrians is to include the
current list in the beacon packets.

2.2.2 Selective Distribution

Selective distribution follows the egalitarian except the
process of determining the sensing rate of each pedestrian.
Not all the pedestrians in Ai, but selected ki representatives
of them (ki < pi + 1) take the responsibility of uploading
data at the rate of Ri

ki

due to some underlying reasons such

as different levels of remaining battery, individual prefer-
ences and skills, and so on. The most simplistic method to
select ki is to choose them randomly. We can also select
them strategically based on the statuses and preferences of
pedestrians. An alternative method for selecting represen-
tatives is to use clustering, which is a promising solution for
certain types of sensing tasks that focus on meaningful sub-
sets of pedestrians in the area. The clustering can be done
by either centralized or distributed manners.
Centralized clustering: The centralized approach uses
the K-means algorithm [19] to form a cluster of pedestri-
ans in Ai. When entering a sensing area, a pedestrian
sends a measurement vector (x1, x2, . . . , xn) including its lo-
cation information to the server. Based on the received data,
the server performs supervised K-means clustering in order
to minimize the total intra-cluster variance of the received
data. The server then selects the pedestrian whose measure-
ment vector is the closest to the centroid of the cluster as the
cluster representative and informs the representatives of the
selection. The selected representatives continue to carry out
the sensing task until they leave the sensing area. If some
representative leaves the sensing are, the sensing rate needs
to be modified in order to maintain the collective sensing
resolution perceived at the server. If none of the represen-
tatives exist, the selection process will start all over.
Distributed clustering: The distributed approach utilizes
short-range radio for carrying out clustering, and adopts the
idea of the low-energy adaptive clustering hierarchy protocol
[8]. Each pedestrian elects itself to be the cluster representa-
tive with some defined probability (P) that is proportional
to ki. The probability can be inversely proportional to (i)

the number of nearby pedestrians, i.e., P = ki

pi
, or (ii) the

size of the sensing area, i.e., P = a ki

Ai

, where a is a constant.

Once the pedestrians have elected themselves to be cluster
representatives, they announce this role to other pedestrians
using short-range radio. Other factors such as remaining
battery can also be included when determining the proba-
bility of being cluster representatives.

3. EVALUATION METHODOLOGY
The characteristics of mobility models are discussed in

this section, followed by the details of simulation setup and
two performance metrics for evaluation.
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3.1 Mobility Models
Each mobility model has different characteristics includ-

ing spatial dependence, geographic restrictions, spatial node
distribution, and several properties related to connectivity
graph [1, 16]. Since the performance of protocol varies dras-
tically across mobility models, we include three mobility
models in our study. We briefly discuss each mobility model
as follows (the details can be found in the references).

3.1.1 Random Waypoint Model

The random waypoint (RWP) model [2] is widely used be-
cause of its simplicity and wide availability. The spatial node
distribution is non-uniform, i.e., the node density is highest
at the center, whereas the node density is almost zero around
the boundary of area. Since each node moves independently
of others, the spatial dependence of RWP model is low.
In our simulation, the pause time and maximum speed

were set to 60 s and 2m/s, respectively. The simulation area
is a 200m-by-200m square space and three sensing areas are
circular regions centered at (30, 30), (60, 60), and (100, 100)
with a radius of 10m.

3.1.2 Manhattan Model

Bai et al. [1] introduced the Manhattan (MHT) model to
emulate the movement of nodes on streets defined by maps.
It is useful in modeling movement in an urban area where a
pervasive computing service between mobile devices is pro-
vided.
The map is composed of a number of horizontal and verti-

cal streets. Each street has two lanes for each direction. The
node is allowed to move along the grid of horizontal and ver-
tical streets on the map. At an intersection, the node turns
left, right, or goes straight with the probability of 0.25, 0.25,
and 0.5, respectively. The velocity ~vi(t+ 1) of a node i at a
time slot t+1 depends on its velocity ~vi(t) and acceleration
~ai(t) at the previous time slot t. Also, the velocity ~vi of a
node i is restricted by the velocity ~vj and position of the
node j preceding it on the same lane of the street.
Due to the use of lanes in opposite directions in the map,

the positive degree of spatial dependence of a node with
nodes in the same direction cancels the negative degree of
spatial dependence of the node with nodes traveling in the
opposite direction. If we consider the spatial dependence of
the nodes moving in the same direction, the spatial depen-
dence is high. The spatial node distribution is not uniform,
i.e., the node density is higher at intersections in comparison
with lanes.
Fig. 1 illustrates the 200m-by-200m map including three
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Figure 1: A map for MHT model.

circular sensing areas (A, B, and C) with a radius of 10 m
for evaluation purpose. The maximum velocity, maximum
acceleration, pause time, and safety distance were set to
2m/s, 1m/s2, 60 s, and 0.5m, respectively.

3.1.3 Extended Social Force Model

Participatory sensing not only considers macroscopic data
(e.g., the average temperature of a city) but also microscopic
data (e.g., the temperature or number of people in a train
station). We therefore need a realistic mobility model that
takes into consideration microscopic as well as macroscopic
patterns of pedestrian mobility. The social force model [10,
9] has been proposed to emulate the motion of pedestrians
as if they were subjected to social forces. The speed ~v of
pedestrian is governed by the four force terms: (i) the accel-
eration towards the next destination considering a desired
speed, (ii) the repulsive force due to borders, (iii) the sim-
ilar repulsive force due to other pedestrians, and (iv) the
attractive force due to people/objects/events. The model
also takes into consideration fluctuations due to accidental
or deliberate deviations from the optimal behavior.

We introduce the extended social force (ESF) model by
integrating the social force model with a simple probabilis-
tic route-choice behavior. At an intersection, a pedestrian
who walks on the left sidewalk of a street turns left or
goes straight with the same probability of 0.5. Similarly,
we determined the probabilities of pedestrians walking on
the right sidewalk of a street. Since the ESF model takes
into consideration spatial structures and interactions among
pedestrians, it realistically demonstrates the development of
collective behavior. Similar to the MHT model, the spatial
node distribution of ESF model is higher at intersections
in comparison with streets. The spatial dependence is the
highest among three mobility models.
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Figure 2: A map for ESF model.

A map illustrated in Fig. 2 is drawn on the basis of real
streets. Three circular sensing areas (A, B, and C) with
a radius of 10 m for evaluation purpose are also shown in
the figure. The sensing areas A, B, and C were selected as
representatives of a vertical street, a horizontal street, and
an intersection, respectively. In the simulation, the desired
speed is approximately Gaussian distributed with a mean
value of 1.3m/s and a standard deviation of 0.3m/s [9].

3.2 Simulation Setup
We use a discrete event simulator, ns–2 [18], to study the

egalitarian distribution of Aquiba. The properties and pa-
rameters of short-range transceiver follow the specifications
of CC2420, which is a single-chip 2.4-GHz IEEE 802.15.4
complaint and ZigBee-ready RF transceiver [24]. The trans-
mit power drain at 0 dBm is 31.32mW and the receive power
drain is 35.46mW [26]. The maximum data rate of IEEE
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802.15.4 is 250 kbps. The radio range of IEEE 802.15.4 in
simulated networks was set to 10m. When considering the
circular sensing areas with a radius of 10m, it is not neces-
sarily that all pedestrians can transmit their beacon packets
to all others in the same sensing area. We deliberately de-
termine such simulation environment in order to study the
performance of Aquiba when short-range radio cannot cover
the entire sensing area. It is intuitive that the performance
of Aquiba should be better if short-range radio is able to
cover the entire sensing area, i.e., our simulation setup is
conservative.
The simulated cellular network is assumed to be a 3G mo-

bile telecommunications network, where the maximum for-
ward and reverse link speeds were set to 3.1 and 1.8Mbps,
respectively. To determine the values of power consumption
for simulated networks, we developed a prototype of mobile
sensing device by using the Casio G’zOne W62CA cellular
phone [5] and conducted preliminary experiments. Based
on the experiments, the transmit power drain of the pro-
totype was 567.03mW and acquiring location information
using GPS chip embedded in the phone required 509.1mW
of power drain1. In the simulations, cellular phones acquire
location information whenever a sensing task is conducted in
order to include location as contextual information of sensor
data.
We varied population density by injecting 50, 100, 200,

300, and 400 pedestrians in the maps in order to analyze the
performance in the cases of crowded and uncrowded areas.
Each simulation lasted for 30 minutes and we trimmed the
first five minutes of each scenario in order to eliminate the
warm-up effect of mobility models. The desired sensing rate
Ri was set to once per second for all sensing areas.

3.3 Performance Metrics
We define two metrics for evaluation purpose as follows.

3.3.1 Sensing Resolution

For a given sensing area Ai, if the total number of packets
arrives at the server within a short period T is S, the ratio
of sensing resolution perceived by the server to Ri can then
be expressed by Eq. (1).

R =
min

(

S
T
, Ri

)

Ri

. (1)

It is apparent from the equation that R ranges from zero
(the lowest level) to one (the highest level). If users are
interested in P consecutive periods of T , R is an average of
P periods as expressed by Eq. (2).

R =

∑P

j=1 Rj

P
, where P = 1, 2, 3, . . . (2)

The definition of R can be extended to M arbitrary sens-
ing areas, i.e., Eqs. (1) and (2) become Eqs. (3) and (4), re-
spectively, when finding average R of M areas.

R =

∑M

m=1 Rm

M
. (3)

R =

∑M

m=1

[(

∑P

j=1 Rm,j

)

/P
]

M
. (4)

1The result obtained from our experiments is nearly the
same as that reported in previous work [15].
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Figure 3: Percentage of energy saving.

3.3.2 Energy Saving

The performance of Aquiba is compared with the indepen-
dent sensing approach in which the opportunistic collabora-
tion among pedestrians is not carried out. Let E and Eco

be the total energy consumed by independent and collabo-
rative sensing approaches, respectively. The percentage of

energy saved by Aquiba is (E−Eco)
E

× 100%. Note that the
energy consumed by Aquiba are from both cellular (Ec) and
short-range (Es) radios, i.e., Eco = Ec + Es.

4. SIMULATION RESULTS
Regardless of mobility models and the number of pedes-

trians, the ratios of perceived sensing resolutions R achieved
by Aquiba are nearly perfect, i.e., R approaches one which
is the highest level2. It means that Aquiba is able to report
sensing data judiciously according to Ri and Ai determined
by the server.

The results of energy saving are presented in Fig. 3. Each
mark in the figure is averaged over the three sensing ar-
eas. The percentages of energy saving achieved by Aquiba
range from 14% to as high as 77%. Energy consumption
is reduced the most in ESF model, followed by MHT and
RWP models. Energy saving of RWP is the lowest because
the population density at any given point and time is the
lowest due to high degree of freedom to move. Thereby a
pedestrian seldom meets others and the opportunity of col-
laboration is the lowest in comparison with the other mobil-
ity models. Based on the same principle, higher population
density of ESF model leads to the highest energy saving due
to the effectiveness of collaborative sensing. Energy saving
of MHT, which lies between RWP and ESF, presents an in-
teresting result. When there are 50 pedestrians (i.e., low
population density), 17% energy saving of MHT is compa-
rable to that of RWP (14%). As the number of pedestrians
increases to 400 (i.e., high population density), energy sav-
ing of MHT rapidly increases to 74% which is as high as that
of ESF (77%). Because of movement characteristics defined
by MHT and geographical restrictions determined by the
map, pedestrian crowds quickly develop when increasing the
number of pedestrians in the simulated map. Although the
characteristics of mobility model affect simulation results,
we can conclude that controlling sensing tasks by applying
Aquiba protocol does not harm sensing resolution perceived
at the server while helping in minimizing energy consump-
tion. The results also validate the efficacy of Aquiba when

2The graphs of R are omitted due to lack of space.
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Figure 4: Energy consumption.
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short-range radio cannot cover the entire sensing areas de-
termined in the simulations.
Since Aquiba uses two kinds of radios for communication

purposes, Fig. 4 details the energy consumed by short-range
(Es) and cellular (Ec) transceivers separately, and also in-
cludes the total energy consumed by both Aquiba and inde-
pendent sensing approach for comparison purposes. When
considering Es separately, it is apparent from the figures
that ESF consumes the highest energy. The underlying rea-
son is the same as described above, i.e., pedestrians in ESF
have the highest opportunity of collaborative sensing due to
the highest spatial dependence and geographic restrictions,
thereby short-range radio is used the most frequent in order
to determine the number of nearby pedestrians.
Energy consumed (or current drawn) by transceivers are

slightly different depending on manufacturers. To avoid such
inconsistency of energy consumption when conducting sim-
ulations, Fig. 5 shows the normalized number of data and
beacon packets transmitted in sensing area C when apply-
ing ESF traces. The results show that the number of data
packets generated by Aquiba is 2 to 14 times less than that
of independent sensing approach. We conclude that it is not
harmful to use low-power short-range radio in order to re-
duce the usages of high-power cellular radio. Also the addi-
tional benefit of Aquiba is to reduce redundant data packets
received at the server.

5. CONCLUSION
Systems that integrate sensing tasks into our daily lives,

such as participatory sensing, are a benefit of the devel-
opment in man-machine symbiosis that involves very close
coupling between human and electronic devices [12]. In this
paper, we have introduced Aquiba protocol that exploits op-
portunistic collaboration of man-machine systems to realize
energy-efficient participatory sensing. To investigate Aquiba
in large-scale environments, we have conducted simulation
studies by taking three mobility models into consideration
because each model has quite different characteristics includ-
ing spatial dependence, geographic restrictions, spatial node
distribution, and so on. Unlike conventional ad hoc and sen-
sor networks, participatory sensing needs a realistic mobility
model that takes into consideration microscopic as well as
macroscopic factors of pedestrian movements. Thus the so-
cial force model, which satisfies the above requirements, is
one of mobility models applied in our simulation studies.
The simulation results demonstrate that Aquiba can reduce
energy consumption 14% to as high as 77% depending on
mobility models and population densities. Though several
issues are still open for further discussion, this preliminary
study is a first step towards providing an efficient partic-
ipatory sensing in urban environments through collabora-
tive mechanisms. An issue which is worth mentioning here
is a motivation to join participatory sensing. The existing
paid service launched by the Weathernews Inc. already re-
moved this concern from us [27]. Although users must pay
a monthly fee to publish environmental data through the
Weathernews’ server, a large amount of users still join the
service because of their enthusiasm. Nevertheless, partic-
ipatory sensing can be a free service, and we can provide
participants with an incentive. For example, we may imple-
ment a points-based system that awards points that can be
redeemed coupons, gifts, services, etc.
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