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a b s t r a c t

In this paper, we consider the problem of assigning the sensing task to cover maximum number of

targets while minimizing the energy consumption of the sensing operation. To this end, we define the

sensing task as an optimization problem of adjusting the sensing range parameter jointly with selection

of nodes in a target coverage mission. We derive an energy consumption model for the sensing

operation and propose a distributed greedy-based heuristic. Each node extracts a priority value based

on its utility function, which is related to the distances of targets from that node. Nodes with less

priority reduce their sensing range before their neighbors and optimal adjustment of sensing range of

active nodes is done via a dual-based algorithm. We further extend the algorithm for scenarios with

dynamic movements of targets and for localization of possible targets between neighboring nodes.

Comparison of simulation results with three other methods, shows an average reduction of 30% and a

maximum of 38% in the sensing energy consumption by reducing the overlaps at an average of 56%. As

a result of adjusting the sensing ranges and reduced overlaps, energy consumption is distributed more

uniformly in the network, which consequences in increasing the network lifetime by 26%.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Wireless Sensor Networks (WSNs) consist of small-sized low
cost sensor nodes with limited resources of computation, energy
and wireless communications. Researchers are mostly interested
in these networks for applications including long time monitoring
of environments, event detection and mobile target tracking
missions. Target tracking via WSNs encompasses challenging
problems such as, target (point) coverage (Wang, 2010; Karl and
Willig, 2005; Ghosh and Das, 2008), tracking protocols (Naderan
et al., in press-a), target localization (Wang et al., 2008, 2004;
Nanmaran et al., 2009), and coverage scheduling (Esnaashari and
Meybodi, 2010).

From the application layer point of view, a WSN’s mission (or
application) can be represented as a set of tasks, in which each
node runs a specific task (Frank and Romer, 2005; Nakamura
et al., 2009). Common tasks in WSN’s applications may be
mentioned as sensing, processing, acting and communicating. In
general, an application may allow assignment of more than one
task on a single sensor or it may limit the number of nodes which
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execute the same task (Pathak and Prasanna, 2010). Abstract
definitions of the task assignment problem in WSNs have used
Directed Acyclic Graph (DAG) for representation, in which depen-
dencies of tasks to each other are showed by directed edges
connecting the task vertices (Pathak and Prasanna, 2010; Xie and
Qin, 2008; Tian and Ekici, 2007).

In target coverage missions, the sensing range parameter is used
to characterize the sensing capability of a sensor node. Different
sensor types have different sensing ranges (Wang, 2010, Section
2.2.2), while more developed and complicated sensors apply differ-
ent sensing ranges for one specific sensor. Examples of such
adjustable sensing range nodes are available commercially as in
Photoelectric Sensors, E2K-C data sheet and have been studied in
some recent coverage-related researches as in Wu and Yang (2004),
Wang and Medidi (2007), Boukerche and Fei (2007), Cardei et al.
(2006) and Dhawan et al. (2006). In general, the sensing parts of a
sensor node must be designed in a power efficient fashion, due to
the fact that continuous sensor signal processing must be provided,
especially in coverage related missions, while on the other hand
data communication is periodic and triggered by events (Wang and
Medidi, 2007; Asada et al., 1998). In particular, some recent studies
have showed that increasing the sensing levels, increases network
lifetime significantly and with adjustable sensing ranges the energy
consumption related to the sensing operation is optimized (Wang
and Medidi, 2007; Cardei et al., 2006).

In this paper, we firstly investigate energy consumption
models related to the sensing operation in WSNs and derive an
energy consumption model for the sensing operation in target
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coverage (and tracking) applications. We have assumed the
sensing range parameter as a continuous parameter since, energy
changes continuously in contrast to the discrete assumption in
Cardei et al. (2006). Our energy consumption model includes
three affecting parameters: (1) the distance between a sensor and
target with a quadratic relation, (2) the sampling rate and (3) the
number of covered targets.

Secondly, we define the sensing task assignment as an opti-
mization problem by adjusting the sensing range parameter
jointly with the selection of sensor nodes; which is based on
the definition introduced in Rowaihy et al. (2008) and Misra et al.
(2009). According to this model, nodes which are assigned the
sensing task have to adjust their sensing ranges to cover max-
imum number of targets while minimizing the related energy
consumption. Nodes that cannot cover any target or their nearby
targets are covered by neighbor nodes are not assigned the task
and they are turned off. We define the utility of a node as a
function of the distances of all targets to that node. The resulted
optimization problem is Mixed Integer Programming (MIP) and it
is NP-hard, thus, we turn into heuristic algorithms to reach near
optimal results. We present a distributed heuristic, which is a
combination of a heuristic together with a dual-based method.
We extend the algorithm to include scenarios with dynamic
movements of targets with an additional change for localization
of some targets by three sensors. Results of our contribution in
this study compared with Cardei et al. (2006) reveal:
�
 Optimized adjustment of sensing ranges by using the dual-
based method.

�
 Decreased conflicts of packet transmissions by setting the

priority timers according to the utility function.

�
 Reduced overlaps of sensing ranges as a consequence of decreased

number of conflicts.

�
 Extension of network lifetime by uniformly distributing the

energy consumption of nodes throughout the network.

The rest of this paper is organized as follows: in Section 2 we
review some of the recent related works. In Section 3, we define
our assumptions and problem formulation. In Section 4, we
present the distributed solutions. In Section 5, we evaluate our
algorithm by simulation experiments with discussion on the
results. Finally, in Section 6, we conclude the paper.
2. Related work

In this section, we have investigated related literature under
the following two categories.

2.1. Energy consumption model of sensing

Obtaining a unique or a general model for energy consumption
of sensing is nearly impossible due to the wide variety of sensor
types and different parameters affecting energy consumption.
Reaching an approximate expression in this context requires
determining the application with specifics of the sensor type
(Karl and Willig, 2005). Regardless of this, some directions can be
found in the literature on this concept. For instance, in Wang and
Medidi (2007) and Cardei et al. (2006), the authors have used
linear (es¼y(rs)) and quadratic (es¼y(rs

2)) models, with rs as the
sensing range of node s, for their simulation experiments without
delving into details.

In general, the energy consumption model of sensing is
different from that of communication range (Miorandi et al.,
2008). Active sensors (e.g., radar and sonar), in contrast to passive
ones, have a larger amount of energy consumption since sensing
relies on wave propagation laws (Miorandi et al., 2008). According
to examples of sensors with adjustable sensing ranges in
Photoelectric Sensors and E2K-C data sheet, their operation
resembles active sensors; hence, the energy consumption of the
sensing operation is considerable. The most important parts of a
sensor, common in most sensor types that consume energy are as
(Karl and Willig, 2005; Asada et al., 1998; Raghunathan et al.,
2002): (1) Signal sampling, (2) conversion of physical signals to
electrical ones, (3) analog to digital conversion, and (4) spectrum
analyzer operating on A/D outputs.

Conversion of physical signals to electrical ones and its quality
(power, noise) depend on the received signal power, which itself
depends on the distance between signal source and the sensor (Karl
and Willig, 2005, Section 13.2.1). This conversion also affects the A/D
convertor operation. Hence, we can deduce that the energy con-
sumptions of parts 2 and 3 are dependent to distance. One of the
relations, under the name general sensing model is as (Wang, 2010;
Karl and Willig, 2005; Ghosh and Das, 2008):ad�b s,zð Þ, where a is a
constant, b is the attenuation exponent and d(s,z) is the Euclidean
distance. In fact, the quality of the received signal attenuates with
power b of distance. We assume b¼2 which is also consistent with
the assumptions in Wang and Medidi (2007) and Cardei et al.
(2006).

For part 1, increasing the sampling rate of a sensor not only
increases the energy consumption related to the sensing part, but
also increases the computation and communication energies, as
well. In our assumptions in Section 3, we have assumed that all
targets within the same sensing range of a node are sampled with
an equal rate, independent of their distance to that node.

For part 4, the more the number of events detected at the
analyzer, the more is the energy consumption (Gu et al., 2009).
Hence, with our target tracking application the more the number
of targets detected by a sensor, the higher is its energy consump-
tion. We have formulated these assumptions in Section 3 to
derive an expression for the energy consumption related to the
sensing operation.

2.2. Task assignment and sensor selection

Primary works on the joint optimization of a continuous
parameter with selection variables via the NUM framework are
presented in Rowaihy et al. (2008) and Misra et al. (2009). In
Rowaihy et al. (2008), the sensors are allocated to a task based on
the combination of sensor attributes and task requirements by
adjusting the rate parameter for selected sensors. Misra et al.
(2009), introduced the joint optimization problem of sensor
selection with maximization of total utility which is dependent
on the rate allocation problem.

In addition, the problems of task assignment and sensor
selection for WSNs, apart from each other, are widely studied
by the research community. For instance, Edalat et al. (2009)
solve the task assignment problem with a price-based solution.
Nakamura et al. (2009) assign the routing roles to nodes based on
a distributed heuristic to the minimal Steiner tree. Pathak and
Prasanna (2010), Xie and Qin (2008) and Tian and Ekici (2007)
used the DAG mode to represent the task allocation problem.
While in Xie and Qin (2008) and Tian and Ekici (2007), the
authors mainly focus on task scheduling, Pathak and Prasanna
(2010) aim at minimizing the communication and computation
costs for task assignment. On the other hand, the problem of
sensor selection has been also investigated in Rowaihy et al.
(2007) and for many target tracking applications as in Wang et al.
(2004), Isler and Bajcsy (2006) and Liu and Cao (2009). Some
other application or problems joined with sensor selection
include: utility-based selection (Bian et al., 2006), node localiza-
tion (Kaplan, 2006), formulated in an information theoretic



Table 1
Parameters and decision variables used in our model.

Parameter/

variable

Definition

S The set of sensor nodes

N Cardinality of S or the number of sensor nodes

s, i Indices for sensor nodes, as either sA S or s¼1, y, N

Z The set of targets

M Cardinality of set Z or the number of targets

j, k Indices for targets, i.e., j¼1, y, M

Targ(s) The set of targets covered by node s

NBR(s) The set of neighbors of node s

d(s,j) Euclidean distance between sensor s and target j

xs Selection variable for sensor node s

rs Sensing range of sensor s, rs
minrrs rrs

max

TZ A time interval with static targets, Z¼1, y, NL

tZs sth iteration of time intervalZ, s¼1, y, n

es
rem Remaining energy of node s

es
cns Energy consumption of the sensing operation for node s

As Constant relating the energy consumption with rs

e11 Required energy for conversion of one sample signal for one

target
smp
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framework (Chu et al., 2002), and via convex optimization (Joshi
and Boyd, 2009).

Overall, we claim that our work is different from Rowaihy et al.
(2008) in terms of problem formulation and the sensing range
parameter which we aim to optimize, and it is based on the
definition of task allocation in Misra et al. (2009). It differs from
Pathak and Prasanna (2010) in the sense that we define the
sensing task as an optimization problem, while Pathak and
Prasanna assumed the abstract definition of tasks by using the
binary assignment matrix representation. On the other hand, our
work mostly resembles Cardei et al.’s (2006)study, as the authors
also seek near optimal values of the sensing ranges in Cardei et al.
(2006). While the optimization objective in Cardei et al. (2006) is
maximizing the cover sets and ours is the number of covered
targets, we have implemented the distributed algorithm in Cardei
et al. (2006) for comparison. Moreover, we have implemented a
genetic algorithm for comparison with our method since genetic
algorithms, as an example of soft computing methods likewise to
Esnaashari and Meybodi (2010), attempt to find near optimal
solutions of optimization problems.
ns Sampling rate for all targets covered by sensor s

ntyp
smp Typical sampling rate that a sensor requires to detect the

target

Usj (.) Utility of node s for covering target j

ms(.) Energy price variable (variable according to iterations)

gs(.) Overlapping price variable (variable according to iterations)

a(t) Step size variable for ms(t)

b(t) Step size variable for gs(t)

y Constant for the degree of overlaps, 0ryr1
3. Assumptions and problem formulation

Our target tracking network consists of a set of sensor nodes S

(9S9¼N), and a set of targets, Z (9Z9¼M). We use the selection
variable for sensor nodes xs to differentiate between active and
sleep nodes, i.e. xs¼1 if s is active and xs¼0 otherwise. In other
words, xs represents the assignment of the sensing task to node s.
Each sensor s, with sensing range rs40, covers a subset of targets,
Targ(s) where 9Targ(s)9r M. NBR(s) is the set of neighbor nodes of
node s. Table 1 briefly shows our notation explained in this section.

We aim to find the optimal sensing range rs of sensor nodes in
a network with some targets. It is assumed that a sensor s is able
to dynamically adjust its sensing range rs by any arbitrary amount
(as long as rs40), i.e., each sensor’s sensing range is a continuous
variable and elastic (Naderan et al., in press-b).

We divide the total duration of the target tracking network
into time intervals TZ, Z¼1,y, NL, in which targets are assumed
to be static in these intervals and NL is the number of time
intervals. Each interval TZ consists of a number of iterations tZs,
s¼1,y, n, such that the network converges to its optimal values.
Each sensor node s has a finite supply of remaining energy,
es

re(ðTZÞ at the beginning of time interval TZ.
We represent the consumed energy during the sensing opera-

tion at node s as a function of rs as es
cns(rs). to obtain a relation for

energy consumption of the sensing operation we consider that by
increasing rs, sensor s can cover targets with farther distances, i.e.,
d(s,z)prs. On the other hand, the A/D convertor part of the sensor
consumes more energy to amplify received signals with more rs.
According to this fact and the discussion on Section 2.1 about the
attenuation of the quality of the received signal, we have (Wang
and Medidi, 2007; Cardei et al., 2006):

ecns
s rsð Þp

Asr2
s if rmin

s rrsrrmax
s

0 otherwise

(
ð1Þ

Another assumption of our model was its dependence on
sampling rate and the number of targets detected. Suppose that
the required energy for conversion of one sample signal of one
target is e11, and the sampling rate for all targets covered by
sensor s with sensing range rs is ns

smp. We denote sampling rate by
n since, it can be defined as the number of samples in one time
unit (second). We can write the energy consumption of node s

related to the sampling rate and number of covered targets as:

ecns
s rsð Þpe11nsmp

s 9Targ sð Þ9 ð2Þ
We also assumed that all targets within the sensing range rs of
node s are sampled with an equal rate, independent of their
distance to sensor node s. Hence, we have:

nsmp
s ¼

nsmp
typ

rs

& ’
ð3Þ

where nsmp
typ is the typical sampling rate that a sensor requires to

detect the target. By combining (1) and (2) and replacing nsmp
s in

(2) with (3), we have:

ecns
s rsð Þ ¼ Asr

2
s e11

nsmp
typ

rs
9Targ sð Þ9¼ Ase11nsmp

typ 9Targ sð Þ9rs ð4Þ

where we have omitted the d e notation since, es
cns(rs) can be any

fractional value.
Since, the consumed energy of a node s must be less than its

remaining energy, we have:

ecns
s rsð Þrerem

s ) Ase11nsmp
typ 9Targ sð Þ9rsrerem

s ð5Þ

which we have replaced es
cns(rs) with the relation in (4). Combin-

ing (5) with the assignment variable xs, (the selection variable for
node s) results:

Ase11nsmp
typ 9Targ sð Þ9rsrxse

rem
s ð6Þ

If node s is not active, xs¼0 and it consumes no energy,
es

cns(rs)¼0; thus, es
cns(rs)r0. If node s is active, xs¼1 and it has a

sensing range rs; hence, es
cns(rs)res

rem.
Moreover, we define the utility of node s for covering target j

at distance d(s,j) by the following function:

Usj rsð Þ ¼
1� d s,jð Þ

rr
if d s,jð Þrrs

0 otherwise

(
ð7Þ

which is non-linear in terms of rs. Therefore, for each target j, ifPN
s ¼ 1 xsUsj :ð Þ40 then target j is covered by at least one sensor

node. Accordingly, we require:

rmin
s rrsrrmax

s , rmin
s 40 ð8Þ
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which turns into:

rmin
s xsrrsrrmax

s xs ð9Þ

when combined with the selection variable xs.
We desire to maximize the total number of covered targets by

nodes; thus, we can write the NUM-CS problem (NUM for Cover-
age and Selection) as in (10):

NUM�CS : ð10Þ

Maximize
XN

s ¼ 1

XM
j ¼ 1

:xsUsj rsð Þ:0 ð10� 1Þ

s:t: : Usj rsð Þ ¼
1� d s,jð Þ

rr
if d s,jð Þrrs

0 otherwise

(
ð10� 2Þ

Ase
cns
1,1nsmp

typ :
XM
j ¼ 1

xsUsj rsð Þ:0rsrxse
rem
s for all s¼ 1, � � � ,N ð10� 3Þ

xsr
min
s rrsrxsr

max
s for all s¼ 1,. . .,N ð10� 4Þ

xsA0,1,rmin
s 40 ð10� 5Þ

such that :::0in the objective function in (10-1) is the l0-norm
which is the number of non-zero elements of a vector. Constraint
(10-3) is the same as (6) with the difference of replacing 9Targ(s)9
with norm-0. NUM-CS is solved in each time interval TZ which is
supposed to have static targets. Furthermore, NUM-CS is MIP and it
is NP-hard (Pathak and Prasanna, 2010; Rowaihy et al., 2008), hence,
we turn into heuristics in the next section.
4. Distributed algorithms for NUM-CS

In this section, we first provide a dual-heuristic distributed
algorithm, namely Dual-Heuristic based Distributed algorithm for
NUM-CS or DHD-CS, as presented in Algorithm 1. We secondly
extend DHD-CS, to support movements of targets in consecutive
time intervals TZ. In addition, with a slight modification on DHD-CS
we provide more accuracy for targets locations by using three
sensors for some of the targets.

4.1. The basic algorithm

In DHD-CS, each node detects its neighbors in a prior phase by
sending a special INIT message and preserves their information in a
table named neighbor table. The information includes the ID of its
neighbors in the first stage, and contains a list for the target IDs and
a field for the sensing range of each neighbor during the next phases.

The greedy-based heuristic algorithm starts by setting the
sensing range of each node to its maximum value. If node s

detects no targets with its rmax
s , it is turned off and it informs its

neighbors about its state. Otherwise, the node sets a priority
timer based on the

P
Usj(.) parameter for jETarg(s). The priority

value is set such that higher priority is given to nodes with fewer
numbers of covered targets. This is due to the fact that we aim to
minimize the energy consumption of sensing for active nodes.

When the timer expires, the node checks to find out whether
any of its targets are covered by neighbor nodes. If so, it removes
such target from its list and lets the neighbor node to cover it.
After checking the list of all targets in its sensing range, it goes to
sleep if there is not any target left. Otherwise, the node sets the dsj

parameter to the distance of the farthest target not covered by
any neighbor and uses the Modified DDA-COV algorithm, Algo-
rithm 2, to reach the optimal value for the sensing range
parameter. The modified DDA-COV algorithm is described next.
After reaching the optimal value for rs, node s sends this value and
the list of covered targets to its neighbors by encapsulating this
information in a DHDPKT packet.

On the other hand, when a node receives a DHDPKT message
from one of its neighbors, it updates the corresponding entry of
that node which contains the list of IDs of covered targets.

The Modified DDA-COV algorithm is very similar to the DDA-
COV algorithm which we designed for each node to reach the
optimal value of the sensing range in Naderan et al. (in press-b).
We have provided the mathematical approach based on the dual
problem to reach the Modified DDA-COV algorithm in Appendix
A. The dual decomposition method has the power of finding the
optimal values, according to the constraints in an optimization
problem as far as the whole problem is convex. The optimization
problem may include more complicated constraints as long as
they remain convex.

We continue with our previous problem in Naderan et al. (in
press-b) with two small modifications based on the dsj parameter
and the utility function. In fact, the sensing ranges of two
neighbor nodes which were constrained by the Euclidean distance
between them in Naderan et al. (in press-b), is now restricted by
the distance of the farthest target. Furthermore, the logarithmic
utility function of Naderan et al. (in press-b) is now changed to (7)
to be consistent with this study. The resulting distributed itera-
tive algorithm is presented in Algorithm 2.

Algorithm 1, DHD-CS: Dual-Heuristic based Distributed
algorithm for NUM-CS, for each node s

Initialization:
Collect IDs of neighbor nodes by sending INIT packets
Set rs¼rs

max

Determine number of covered targets by this rs, Targ(s)
If (Targ(s)¼|) then

Set xs¼0
Send sleep state and DHDPKT to neighbors
Break

Send Targ(s) to neighbors in a DHDPKT packet
Each node s sets a timer according to its

P
jUsj(.)

Compute es
cns according to (4)

Update remaining energy (related to the sensing operation)
as
es

rem
¼es

rem – es
cns

Main procedure:
1. Upon expiring the timer:

For all jETarg(s)
For all iENBR(s)

If (jETarg(i)) then
Targ(s)¼Targ(s) – j

If (Targ(s)¼|) then
Set xs¼0
Send sleep state and DHDPKT to neighbors
Break

Set dsj¼max d(s, j) for all jETarg(s)
Run Modified DDA-COV algorithm to obtain optimal rs

Send Targ(s) and new rs to neighbors in a DHDPKT
If (rsars

max) then
Compute es

cns according to (4)
Update remaining energy (related to the sensing
operation) as
es

rem
¼es

rem – es
cns

If (es
rem re)
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Set xs¼0
Send sleep state and DHDPKT to neighbors
Break

2. Upon receiving a DHDPKT from any neighbor node:
Update the corresponding entry in the neighbor table
containing the list of covered targets of neighbor nodes.
Algorithm 2: Modified DDA-COV for each node s
Initialization: set rs(0)¼rs

min, dsj¼max d(s,j) for all jETarg(s),

and the values of ms(0), gs(0), a(0) and b(0) to arbitrary
positive values.

While ( 9rs(tþ1)-rs(t)940.001 ) and ( to iterationLimit ) do
1) Node s updates its energy and overlapping prices

according to:

msðtþ1Þ ¼ ½msðtÞ�aðtÞðerem
s �Asecns

1,1nsmp
typ 9TargðsÞ9rsðtÞÞ�

þ

gs(tþ1)¼[gs(t) - b(t)((1þy)dsj – rs(t))]þ

2) Node s locally finds its new sensing range rs(tþ1) for the next
iteration by:

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dsj

ms tð ÞAsecns
1,1

nsmp
typ 9Targ sð Þ9þgs tð Þ

� �r

rs tþ1ð Þ ¼

L0 if rmin
s rL0rrmax

s

rmin
s if rmin

s 4L0

rmax
s if L04rmax

s

8><
>:

3) a(tþ1)¼b(tþ1)¼k a(t)
4) t¼tþ1
4.2. Extension for dynamic movements of targets

To extend the DHD-CS algorithm for movements of targets in
consecutive time intervals, we have to consider two cases:
�
 A sensor node detects a target has moved out of its sensing
range.

�
 A sensor node detects a target has entered into its sensing

range.

In the first case, suppose node s detects target j has moved out
of its sensing range. If target j was the farthest covered target, s

informs neighbor nodes to find out whether target j is in their
sensing region or not by sending the message SEARCH_TARG.
According to our assumption of dividing the total network life-
time into time intervals with static targets, it is assumed that a
target cannot move distantly between two consecutive time inter-
vals. Hence, when target j moves out of the sensing region of node s,
it certainly moves to the sensing region of a neighbor node.

If any neighbor node detects target j without increasing its
sensing range, it sends a TARG_FIND message back to node s. Node
s also sends TARG_FIND to its neighbors to inform them that target j

is found and reduces its rs to rs¼max d(s, j). If node s does not
receive any replies from its neighbors (in response to the SEARCH_-
TARG message), it concludes it is better to increase the sensing
range of all nodes to rmax

s and run the DHD-CS algorithm. Hence, it
sends INC_RS message and DHD-CS algorithm is executed.

The second case only happens when an additional target from
outside enters the monitoring region. If a target remains inside
the monitoring region and a sensor node detects it, this target has
certainly moved out of the sensing range of a neighbor node.
Therefore, a SEARCH_TARG message for this target was received
previously. Hence, for the second case, node s has detected a new
target j in its sensing region and it has not received a SEARCH_-
TARG message before. Thus, node s sends the list of its targets to
neighbors in a DHDPKT. On the other hand, if it has received a
SEARCH_TARG before, it replies with a TARG_FIND message and
sends the list of its targets to its neighbors. The pseudo code of the
complete algorithm for Dynamic DHD-CS and a flowchart of it are
presented in Algorithm 3 and Fig. 1, respectively. The three cases
mentioned in the bottom of Fig. 1 are used in Section 4.4 for
evaluation of packet exchanges.

Algorithm 3, Dynamic DHD-CS: DHD-CS for dynamic target
movements,for each node s

Initialization:
Run DHD-CS at least one time so that each node reaches a
sensing range.

Main procedure:
1. If (node s detects target j has moved out of its sensing region)

then
Send SEARCH_TARG to neighbors.
Set timer TIMER1

2. If (node s detects target j has entered its sensing region) then
If (this node has not received any SEARCH_TARG) then

Send Targ(s) to neighbor nodes

Else
Send TARG_FIND to neighbors.
Send Targ(s) to neighbors.

3. Upon expiring TIMER1:
If (this node has not received any TARG_FIND) then

Send INC_RS to neighbors.
Run DHD-CS algorithm.

4. Upon receiving a SEARCH_TARG message:
If (this node detects a new target) then

Sends TARG_FIND to the sender of SEARCH_TARG
message

5. Upon receiving a TARG_FIND message:
If (this node has sent a SEARCH_TARG) then

Update the entry corresponding to the sender of
TARG_FIND message in the neighbor table.
Send TARG_FIND to neighbors.
Update maxDsj: maxDsj¼max d(s, k) for all
kETarg(s)-j.
Run Modified NUM-COV to find optimal rs.

6. Upon receiving a INC_RS message:
Run DHD-CS algorithm.
4.3. Modification for target localization

The basic DHD-CS algorithm reduces the sensing ranges of
nodes to not cover common targets due to energy considerations.
In spite that with the factor y in the Modified DDA-COV algorithm
(which is also existent in the DDA-COV algorithm), a node
controls the degree of overlap between its own sensing ranges
and that of its neighbors, another improvement can be made to
the algorithm to localize possible targets between three or more
sensor nodes.
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Fig. 1. Flowchart for algorithm Dynamic DHD-CS.

M. Naderan et al. / Journal of Network and Computer Applications 36 (2013) 262–273 267
To this end, we make a modification to the basic DHD-CS
algorithm when each node is deciding to reduce its sensing range.
By this modification, if node s detects that a target j is covered by
more than three neighboring nodes, it can determine its location
according to the Trilateration algorithm. Otherwise, in case of
covering the target by one or two neighbors, it removes that
target from its list which is similar to the basic DHC-CS algorithm.
With this improvement, mostly common targets can be localized
by three sensors, since they are more likely to be covered by
overlaps of sensing ranges of neighbor nodes. The changes in the
pseudo code of DHD-CS for this modification, namely DHD-CS-
LOC, are presented in Algorithm 4.
4.4. Analytical evaluations for overheads of algorithms

In this section, we analyze the overhead of algorithms by
evaluations of their packet exchanges and time. The packet
overhead of DHD-CS algorithm is similar to Cardei et al.’s (2006)
distributed algorithm. At worst case, each node sends a DHDPKT
to its neighbors with a single MAC layer broadcast upon time r

expiration. Therefore, packet overhead of DHD-CS algorithm is
O(N). Its time complexity is dependent on the sum of total timer
values, which may take a long time when the number of nodes is
high. We have verified this result in Naderan et al. (in press-b) for
300 nodes and more.
In DHD-CS timers are set according to the utility function
which is a function of distances of targets to nodes. Compared to
Cardei’s algorithm, this timer selection results in more distinct
values. Consequently the collision of packets is reduced and on
the other hand, the number of correct packet transmissions is
increased. This result is verified and more discussed in Section 5.

Packet overhead of Dynamic DHD-CS algorithm is presented in
Table 2. According to the cases mentioned in Fig. 1, for case 1, just
one broadcast of DHDPKT to neighbors is needed. For case 2, one
broadcast for SEARCH_TARGET, and one broadcast of INC_RS to
neighbors are needed and after that the DHD-CS algorithm is
executed. For case 3, one broadcast of SEARCH_TARGET, two
broadcasts of TARG_FIND and one broadcast of the DHD-PKT are
needed. It can be seen that the addition of external packets for
Dynamic DHD-CS is very low.

Modification of the DHD-CS algorithm for localization imposes
no packet overhead, as can be seen from Algorithm 4. Only a
condition is checked to determine whether the target is covered
by three or more neighbors or not.

Finally, the convergence of the Modified DDA-COV algorithm is
strongly dependent to the selection of positive step sizes. This
issue and the choice of step sizes in this paper are mentioned in
Appendix A and in Naderan et al. (in press-b). Furthermore, the
iterations loop is executed internally inside each node, and there
is no need for each node to exchange the values with its neighbors
at each iteration, in contrast to the DDA-COV algorithm in
Naderan et al. (in press-b).



Table 2
Transmitted packets overhead in Dynamic DHD-CS.

Case Overhead of packets

1 1 broadcast of DHDPKT to neighbors

2 1 broadcast of SEARCH_TARG to neighborsþ1 broadcast of INC_RS to neighborsþ1 run of DHD-CS

3 1 broadcast of SEARCH_TARG to neighborsþ2 broadcasts of TARG_FIND to neighborsþ1 broadcast of DHDPKT to neighbors

Table 3
Number of nodes with the corresponding size of the area and number of targets.

Number of nodes Size of the network (m2) Number of targets

50 150�150 25

100 200�200 50

200 400�400 100

300 500�500 150

400 600�600 200

500 700�700 250

600 800�800 300

700 900�900 350

800 1000�1000 400

900 1100�1100 450

1000 1200�1200 500
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Algorithm 4, DHD-CS-LOC: modification to DHD-CS
algorithm for localization, for each node s
Main procedure:
1. Upon expiring the timer:
2. For all jETarg(s)

Set cnt¼0
For all iENBR(s)

If jETarg(i) then
þþcnt

If cntZ3
Target j can be localized by at least 3 sensors

If 1rcntr2
Target j is covered by another neighbor
Targ(s)¼Targ(s) – j

3. If Targ(s)¼| then
xs¼0.
Send sleep state and DHDPKT to neighbors.
Break.
5. Simulation results

In this section, we define the series of simulation experiments to
evaluate the performance of the basic DHD-CS algorithm. We
implemented the algorithm in Castalia 3.2 simulator (The Castalia
Website), which is based on OMNeTþþ platform (The OMNetþþ
Website). The main modules in Castalia have modeled sensor nodes,
wireless channel and physical processes. We used the physical and
MAC layers and implemented DHD-CS, Cardei (Cardei et al., 2006),
DDA-COV (Naderan et al., in press-b), and a genetic algorithm in the
application layer for comparison. The main drawback of the two
latter algorithms is that they do not guarantee that the optimal
value(s) are found. In the DDA-COV and genetic algorithms, all
nodes are active, even if there are not any targets in the maximum
sensing range of some nodes. In contrast, in DHD-CS and Cardei’s
algorithms nodes that detect no targets within any sensing range are
turned off, hence, more energy is conserved. We have used six
measures to evaluate these algorithms:
�
 energy consumption related to the transmission of packets,
i.e., send and receive;

�
 energy consumption related to the sensing operation;

�
 average number of transmitted packets per node;

�
 sum of logarithms of sensing ranges of all nodes;

�
 percentage of sleep nodes;

�
 total network lifetime.

Since the energy consumption of wireless transmission is much
higher than that of the sensing operation, we used the average
energy per node for the first measure and the sum of energies of all
nodes for the second measure. Moreover, the sum of logarithms of rs

of all nodes presents a measure of the length of sensing ranges,
which are going to be adjusted by the DHD-CS algorithm.
5.1. Scenarios and initial values

We have used networks with random placements of nodes and
targets in all scenarios. Parameters of the Modified DDA-COV
algorithm are chosen according to Naderan et al. (in press-b):
values of the step sizes, a(t) and b(t), are a(tþ1)¼b(tþ1)¼ka(t),
in which 0oko1 and we used k¼0.7. Thirty iterations are
needed for convergence of the Modified DDA-COV.

The initial energy of a node, which is spent during the
transmission operations (send/receive), is set to 18,720 Jules, the
typical energy of two AA batteries used in Castalia 3.2. We have
added the energy resource of the sensing operation as a separate
part and each node has an initial value of 100 Jules for the sensing
operation. Maximum sensing range for each node is set to 30 m
and for Cardei’s algorithm 6 levels between 1 and 30 m are
chosen arbitrarily as {1.1, 7.5, 15, 20, 25, 30} as advised by
Cardei et al. (2006). The communication range of nodes is set to
be nearly 20 m (�5 dB as the transmission power), the radio
model is CC2420 (CC2420 data sheet, 2007) and the MAC layer
protocol used is TMAC implemented in Castalia 3.2 (Tselishchev
et al., 2010). Each point of the graphs is the average of five runs
for random placement of nodes and targets, and each run of the
algorithms lasts for 3600 s. We have increased the number of
nodes, number of targets and the area according to Table 3.
Parameters and their values for the genetic algorithm are also
given in Table 4.

5.2. Results for the DHD-CS algorithm

Figure 2 shows the average energy consumption per node during
the communications for DHD-CS in comparison with Cardei, DDA-
COV and genetic algorithms. It can be seen that DHD-CS and Cardei’s
algorithms have the same energy consumption while, the DDA-COV
and genetic algorithms have near each other values with an extreme
difference from DHD-CS and Cardei. This is due to the iterative-
based nature of the DDA-COV and genetic algorithms in which, each
node sends its sensing range to its neighbors in each iteration and, a
total of 30 iterations are executed in these simulations. Furthermore,
the reason that DHD-CS and Cardei have nearly the same energy
consumption during communication, despite DHD-CS has a few
more packet exchanges, is that the energy consumption of nodes for
communication is dependent on their time of activity and the



Table 4
Parameters and their value for the genetic algorithm.

Parameter Value

Population number 20

Number of generations 30 (the same as the number of iterations)

Number of runs for each scenario 20

Distribution of the current population if it is better than the previous one 30% the best chromosome, 40% children by mutation, 40% children by cross over

Distribution of the current population if it is worse than the previous one 50% the best chromosome, 50% children by mutation
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operation of the MAC protocol. Hence, in DHD-CS and Cardei’s
algorithms nodes have nearly the same time of activeness, while for
DDA-COV and genetic algorithms this time is much more since, they
need a specific number of iterations.

Figure 3 shows sum of energy consumptions of all nodes relating
to the sensing operation for DHD-CS compared to the other three
algorithms. It can be seen that for small number of nodes (less than
300 nodes), the algorithms have nearly the same amount of energy
consumption, while for large numbers of nodes (more than 600
nodes) our DHD-CS algorithm has the least energy consumption.
DDA-COV and the genetic algorithms have near each other values
and their values are more than DHD-CS and less than Cardei’s
algorithm. The reason that these two algorithms perform better than
Cardei’s in Fig. 3 is that despite of their iteration-based operation,
they adjust the sensing ranges of nodes better. In addition, Cardei’s
algorithm always consumes more energy for the sensing operation
than the other three algorithms, which shows nodes have a lot of
overlap in their sensing ranges (this issue is also approved by Fig. 6).
In fact, in Cardei’s algorithm nodes start with rmax

s and the priority
timer is set such that nodes with more targets have higher priority.
Thus, at the end of algorithm operation, nodes with more sensing
ranges stay active. The maximum difference between DHD-CS and
Cardei’s algorithms seen in Fig. 3 is for 1000 nodes, which is 38%
reduction in the energy consumption for the sensing operation and
an average value of 30% reduction.

In addition to the energy consumption metric, we have measured
the average number of packets transmitted per node in Fig. 4. It can
be seen from this figure that DHD-CS and Cardei’s algorithms have
nearly the same values of packet transmissions while the DDA-COV
and genetic algorithms have extremely a large value for this
parameter. This is due to the different nature of the two latter
algorithms, which are iterative-based algorithms and packet trans-
missions are needed in each iteration of the algorithm.

In fact, in DDA-COV and the genetic algorithm, each node
sends its sensing information to its neighbors and consequently
receives from them in every iteration. On the other hand, DHD-CS
and Cardei’s algorithms are based on priority timers and sensor
nodes with no targets are turned off, which cause great savings in
the number of transmitted packets. Moreover, DHD-CS has a few
numbers of packets more than Cardei’s algorithm, which we have
illustrated this difference in Fig. 5.

As seen from Fig. 5, DHD-CS algorithm still has less than 10
packets. Furthermore, for large numbers of nodes (900 and 1000
nodes) the average number of transmitted packets for the two
algorithms reaches nearly the same values.

Figure 6 shows sum of logarithms of sensing ranges, as a measure
of values of sensing ranges, for the four algorithms. It can be seen that
the DDA-COV and genetic algorithms have close values, while they
stand mostly between values of DHD-CS and Cardei’s algorithms.
Considering this figure with Fig. 3 represents that, by using DHD-CS
algorithms nodes adjust their sensing ranges with less overlaps and
with average reduction of 56% compared to Cardei’s values. In
addition, despite we stated in Naderan et al. (in press-b) that by
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DDA-COV sensor nodes adjust their sensing ranges to optimal values,
the reason that DHD-CS has less values than DDA-COV in Fig. 6 is that
in DHD-CS nodes with no targets are turned off, while in DDA-COV all
nodes are active. The genetic algorithm also has near values to DDA-
COV since it reaches near optimal values with all nodes being active.
On the other hand, Cardei’s algorithm operates the worst in adjusting
the sensing ranges and nodes have a lot of overlaps.

Two main reasons hold for our DHD-CS algorithm to adjust the
sensing ranges better than Cardei’s algorithm. The first is the usage
of Modified DDA-COV which adjusts the sensing ranges according to
the optimal value. The second reason is the reduction of overlaps by
using a different priority timer in DHD-CS. In Cardei et al. (2006), the
value of priority timer for node s, Ws, is set as:

Bs,max ¼
Ts,max

emax
ð11Þ

Ws ¼ 1�Bs,max=Bmax

� �
ð12Þ

which indicates that the initial priority timer, Ws, is dependent on
the number of covered targets, Ts,max. Therefore, nodes with same
values of covered targets have the same priority timers, which
consequently results in transmission conflicts. This result is also
mentioned by Cardei et al. (2006) and approved here by simulation
experiments. On the other hand, we proposed the value of priority
timer for each node s as

P
usj for jETarg(s), which is dependent on

distances of nodes to targets. This consequences in more distinct
values for priority timers of nodes, and accordingly reduces conflicts
of packet transmissions. From this discussion, and Figs. 3 and 6, it
can be deduced that our DHD-CS algorithm has reduced the
problem of transmission conflicts to a great extent. On the other
hand, by setting higher priority for nodes with fewer targets, the
heuristic results in minimizing the energy consumption of the
sensing operation for active node, i.e., maximizing target coverage
by minimizing the energy consumption.

Finally, Figure 7 presents the percentage of sleep nodes of our
DHD-CS algorithm in comparison with Cardei’s. In DDA-COV and
the genetic algorithms all nodes are active, thus, they are not
included in this figure. It can be seen that Cardei’s algorithm has
more number of sleep nodes than DHD-CS, and this parameter
decreases nearly by 20% with increasing the number of nodes.
This result may mislead us at the first glance to the fact that
Cardei’s algorithm performs better in terms of energy consump-
tion. However, by considering Figs. 2 and 3, we conclude that
energy consumption is dependent on the duration of sleep/active
periods of nodes. In fact, merely sleeping nodes at the application
level does not lead to the reduction of energy consumption, since
nodes are periodically awakened in the MAC layer to receive any
probable packets.

By considering also the previous discussion on Fig. 6 about the
sensing ranges, we conclude that Cardei’s algorithm sets most of
the nodes to the sleep mode and increases the sensing ranges of
active nodes despite having overlaps. In contrast, our DHD-CS
algorithm sets a smaller number of nodes to sleep and adjusts the
sensing ranges of active nodes more accurately. Overall, this
results in a more uniform distribution of energy consumption of
nodes throughout the network and increases the network life-
time. This conclusion is depicted in Fig. 8, which shows if the
network lifetime is divided into rounds (for DHD-CS and Cardei’s
algorithm), the whole network lifetime is the sum of all rounds
when all nodes are alive. According to Fig. 8, an average of 26%
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improvement in the total network lifetime is reached by DHD-CS
in comparison with Cardei’s algorithm.
6. Conclusion and future work

In this paper, we modeled a target coverage mission via the
sensing task assignment problem to maximize the number of
covered targets subject to energy constraints. We defined a utility
function for nodes which depends on the sum of distances of
targets to each node in an MIP problem and used a selection
variable to turn off nodes with no covered targets. Since the
energy constraint of the problem is dependent on the sensing
operation, we discussed energy consumption models related to
the sensing operation and proposed a relation for it according to
the distance between a sensor and target, the sampling rate and
the number of covered targets.

We presented a basic greedy-based heuristic algorithm, DHD-
CS, according to the NP-hardness nature of the problem and
derived an extension for dynamic movements of targets. With a
small modification, localization for some targets by three sensor
nodes is also possible. We implemented our algorithm with three
other methods using Castalia framework and showed that it
operates with a maximum of 38% and an average of 30% reduction
in the sensing energy consumption while adjusting sensing
ranges more accurately by reducing their overlaps to an average
of 56%. Furthermore, by accurately adjusting the sensing ranges
and turning off unnecessary nodes, DHD-CS distributes energy
consumption of nodes more uniformly than other comparing
algorithms and extends network lifetime by an average of 26%.

We are continuing the research on this work by implementing
the dynamic extension of DHD-CS algorithm for movements of
targets. An important future work for our problem is to extend
the single task assignment to two and more tasks by using a
binary assignment matrix representation together with optimiz-
ing other continuous parameters for every task.
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Appendix A. The modified DDA-COV algorithm

In this section, we derive the relations used in the Modified
DDA-COV algorithm. The Modified NUM-CS problem similar to
the NUM-COV problem of Naderan et al. (in press-b) is as:

Modified NUM�COVðU,A,Erem TZ
� �
Þ : ð13Þ

Maximize
XN

s ¼ 1

XM
j ¼ 1

Usj rsð Þ ð13� 1Þ

s:t: : es
cns ¼ Ase

cns
1,1nsmp

typ 9Targ sð Þ9rsrerem
s TZ
� �

s¼ 1,. . .,N

ð13� 2Þ

rsr 1þyð Þdsj dsj ¼maxdðs,jÞ for alljATarg sð Þ ð13� 3Þ

rmin
s rrsrrmax

s ð13� 4Þ

with the utility function defined in (7), the first constraint is as (5)
and the second constraint limits the rs with the distance of the
farthest target in its range. The Lagrangean of the Modified NUM-
COV problem is:

LMOD�NUM�COV ðr,m,gÞ ¼
XN

s ¼ 1

XM
j ¼ 1

Usj rsð Þ

þ
XN

s ¼ 1

ms erem
s �Ase

cns
1,1nsmp

typ Targ sð Þ
�� ��rs

� �

þ
XN

s ¼ 1

gs 1þyð Þdsj�rs

� �
ð14Þ

where ms and gs are interpreted as energy and overlapping prices,
respectively. Also, compared to the gsi parameters for all iENBR(s)
in Naderan et al. (in press-b), we have one parameter gs for each
node s. We can rewrite it as:

LMOD�NUM�COV ðr,m,gÞ ¼
XN

s ¼ 1

XM
j ¼ 1

Usj rsð Þ�msAse
cns
1,1nsmp

typ 9Targ sð Þ9rs�gsrs

0
@

1
A

þ
XN

s ¼ 1

erem
s msþgs 1þyð Þdsj

� �
ð15Þ

From the above expression, the Lagrangean can be separated
into many sub-problems on rs, hence, the dual function (for each
sensor s) is:

D ms,gs

� �
¼Maximize LMOD�NUM�COV ðrs,ms,gsÞ

s:t: : rmin
s rrsrrmax

s ð16Þ
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and the master dual problem is:

Minimize Dðms,gsÞ

s:t: : msZ0, gsZ0 ð17Þ

Since Us is concave and the constraints in Modified NUM-COV
are linear there is no duality gap and dual optimal prices, which
are Lagrange multipliers, exist. Hence, we first solve (17). To
obtain dual optimal prices, ms

n and gs
n, we use the gradient descent

algorithm to update the Lagrange multipliers as:

ms tþ1ð Þ ¼ ms tð Þ�a tð Þ erem
s �Ase

cns
1,1nsmp

typ 9Targ sð Þ9rs tð Þ
� �h iþ

ð18Þ

gs tþ1ð Þ ¼ gs tð Þ�b tð Þ 1þyð Þdsj�rs tð Þ
� �� 	þ

ð19Þ

where [.]þ denotes the projection onto the set Rþ of non-negative
real numbers and a(t) and b(t) are positive scalar step sizes. Now
that we have obtained mn

¼(ms
n, s¼1,y,N) and gn¼(gs

n, s¼1,y,N),
the primal optimal rn¼r(mn, gn) can be computed by individual
nodes s locally. The primal optimal rn is obtained by considering
(16). Since the Lagrangean is separable, this maximization of
Lagrangean over rs can be conducted in parallel at each source s by:

Maximize
XM
j ¼ 1

Usj rsð Þ�msAse
cns
1,1nsmp

typ 9Targ sð Þ9rs�gsrs

s:t: : rmin
s rrsrrmax

s ð20Þ

To solve (17), each node takes the derivative of the objective
function of (20) in the range [rs

min, rs
max] and by assuming Usj(rs) as

(7), which results in:

L0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dsj

ms tð ÞAsecns
1,1nsmp

typ Targ sð Þ
�� ��þgs tð Þ

� �
vuut

rs tþ1ð Þ ¼

L0 if rmin
s rL0rrmax

s

rmin
s if rmin

s 4L0

rmax
s if L04rmax

s

8><
>: ð21Þ

It is obvious that by Eqs. (18) and (19), dual variables ms(t) and
gs(t) converge to the optimal dual solutions ms

n(t) and gs
n(t) if the

step sizes are chosen such that

a tð Þ-0,
X1
t ¼ 1

a tð Þ ¼1,b tð Þ-0,
X1
t ¼ 1

b tð Þ ¼1 ð22Þ

Eq. (22) are known as non-summable diminishing step size
rule (Boyd and Vandenberghe, 2004). Other choices for determin-
ing the values of step sizes may be mentioned as the constant
value step size rule or another which we used in Naderan et al. (in
press-b) as a(tþ1)¼b(tþ1)¼ka(t). Finally, the distributed itera-
tive algorithm, namely Modified DDA-COV, is composed of
Eqs. (18), (19) and (21) executed in steps t¼1, 2, y until a
stopping criterion is reached, e.g., 9rs(tþ1)-rs(t)9o0.001. The
algorithm is presented in Algorithm2.

In addition, since in DHD-CS the dsj parameter is set before
execution of Modified DDA-COV, there is no need for node s to
send the value of rs to its neighbors in each iteration, which
results in decrease in the communication overhead compared to
the DDA-COV algorithm.
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