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ABSTRACT

Wireless sensor networks (WSNs) are emerging as an effec-
tive means for environment monitoring. This paper inves-
tigates a strategy for energy efficient monitoring in WSNs
that partitions the sensors into covers, and then activates
the covers iteratively in a round-robin fashion. This ap-
proach takes advantage of the overlap created when many
sensors monitor a single area. Our work builds upon previ-
ous work in [13], where the model is first formulated. We
have designed three approximation algorithms for a varia-
tion of the SET K-COVER problem, where the objective is
to partition the sensors into covers such that the number of
covers that include an area, summed over all areas, is maxi-
mized. The first algorithm is randomized and partitions the
sensors, in expectation, within a fraction 1 — 1 (~.63) of
the optimum. We present two other deterministic approx-
imation algorithms. One is a distributed greedy algorithm
with a % approximation ratio and the other is a centralized
greedy algorithm with a 1— % approximation ratio. We show
that it is NP-Complete to guarantee better than }—g of the
optimal coverage, indicating that all three algorithms per-
form well with respect to the best approximation algorithm
possible in polynomial time, assuming P # NP. Simula-
tions indicate that in practice, the deterministic algorithms
perform far above their worst case bounds, consistently cov-
ering more than 72% of what is covered by an optimum solu-
tion. Simulations also indicate that the increase in longevity
is proportional to the amount of overlap amongst the sen-
sors. The algorithms are fast, easy to use, and according
to simulations, significantly increase the longevity of sensor
networks. The randomized algorithm in particular seems
quite practical.

*Zoé Abrams is supported by NSF/CCR-0113217-001.

JrResearch supported by NSF CAREER Award 0133968 and
a Terman fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN' 04, April 26-27, 2004, Berkeley, California, USA.

Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

Ashish GoelT
Stanford University
Management Science and
Engineering Department

ashishg@stanford.edu

Serge Plotkin
Stanford University
Computer Science

Department

plotkin@cs.stanford.edu

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Algorithms

Keywords

Analysis of Algorithms, Wireless Sensor Networks, Energy
Conservation

1. INTRODUCTION

We study the problem of designing an efficient and dis-
tributed algorithm that partitions the sensors in a WSN
into k covers such that as many areas are monitored as fre-
quently as possible. The problem of choosing which cover
a sensor will belong to is abstracted into a variant of the
SET K-COVER problem, in which we are given a finite set
S of elements, corresponding to the areas to be monitored,
a collection {S;}}_; of subsets of S, where each S; repre-
sents a sensor and contains the areas that sensor monitors
from S, and a positive integer k£ > 2. The goal is to find a
partition ¢ of the subsets into k covers ci, ..., ckx where each
cover is a set of subsets, such that N({) = Zle |Us ec; S5
is maximized. Informally, we are maximizing the number of
times the areas are covered by the partition.

The SET K-COVER problem can be used to increase the
energy efficiency of WSNs. A single area in a WSN may be
covered by multiple sensors due to the ad hoc nature of sen-
sor placement, topological constraints, or perhaps to com-
pensate for the short lifetime of a sensor by placing multiple
sensors close together. Therefore, in an effort to increase
the longevity of the network and conserve battery power, it
can be beneficial to activate groups of sensors in rounds, so
that the battery life of a sensor is not wasted on areas that
are already monitored by other sensors. In addition, certain
batteries last up to twice as long when used in short bursts
as opposed to continuously [2]. Therefore, activating a sen-
sor only once every k time units can extend the lifetime of
its battery.

The SET-K-COVER problem can also be used to im-
plement event-driven querying, which has been shown can
provide significant reductions in power consumption [10].
WSNs that support event-based queries may place many
sensors close together, that will be utilized when a specific



event occurs. These sensors need only become active after
notification that the event has taken place. Rather than us-
ing all the sensors all the time to monitor for events, SET-K-
COVER solutions provide a simple way for sensors to share
in the monitoring of an event, so that their energy resources
can be conserved.

There is previous research on scheduling sensor activa-
tion to reduce energy consumption used for monitoring in
WSNs. In [19], when a sensor awakes, it probes to see if
there is a nearby sensor covering the areas it will be cov-
ering. [14] schedules sensors for monitoring using a back-
off mechanism, where a sensor becomes off-duty when its
neighbors can monitor the areas it covers. The approach
in [18] is to create a working schedule for each sensor node
by sharing the time spent monitoring an area among all
sensors that monitor that area. Papers [19] and [14] con-
sider performance in terms of the total energy consumed.
[18] has several design goals in mind, including total energy
consumption, reducing variation in energy consumption be-
tween nodes, and covering as many of the areas as possible.
In contrast, our work focuses on maximizing coverage while
balancing energy consumption between sensors and given
a desired lifetime of the network. Also, previous research
evaluates the performance of proposed algorithms through
simulations. This paper provides algorithms with analytical
guarantees on their performance, in addition to evaluation
through simulations. Note that our analysis resembles that
in [9].

Previous results on the Set K-Cover problem [13] solve a
fair version where the objective is to maximize k such that
every cover contains all the elements. In many environ-
ments, requiring that a cover contain all the elements may
be too strict. Consider, for instance, that there is a single
area that is monitored by only one sensor but all other ar-
eas are monitored by hundreds of sensors. Except for that
single area, all other areas could be covered for much longer
by dividing the sensors into covers. But in the fair version,
we cannot partition the sensors at all because only one par-
tition would be able to monitor that one area. Therefore,
we relax the requirement that every cover contain all the
elements.

We explore three algorithms that solve the SET K-COVER
problem: randomized, distributed greedy, and centralized
greedy. In the randomized algorithm, each sensor simply
assigns itself to a cover chosen uniformly at random from
the set of all possible covers. In the distributed greedy algo-
rithm, each sensor assigns itself, in turn, to the cover with
the minimum intersection between the areas the sensor mon-
itors and the areas monitored by the cover thus far. The
centralized greedy algorithm is similar to the distributed
greedy, except that an area in the intersection is weighted
based on how likely it is to be covered by some other sensor
later on in the assignment process.

The performance of our three algorithms are summarized
in Table 1. One metric for the performance of our algorithms
is the worst case ratio between the number of times the areas
are covered, according to the algorithm’s partition, and the
optimum number of times the areas can be covered by any
partition. This ratio is referred to interchangeably as the
performance guarantee and the approximation ratio. Our
simulations show that for high density networks, the SET
K-COVER partition can simultaneously achieve high k and
high coverage at each time instant. Simulation results indi-

cate that the increase in longevity is a constant function of
the density of the network. In Table 1, |E| is the number of
sensor-area pairs such that the given sensor covers the given
area, and c is a scaling factor(perhaps dependent on other
problem parameters). The running time of an algorithm is
the number of time units the sensor network needs to create
the partition (within the distributed or centralized setting
in which the algorithm is presented). |Smax| is the cardinal-
ity of the largest subset. There is no worst case guarantee
on fairness for the distributed and centralized greedy algo-
rithms. However, in simulations, calculations of the area
that is covered by the least number of covers, relative to the
number of sensors that are capable of covering it, suggest
the algorithms achieve reasonable fairness.

We find, in accordance with “No Free Lunch Theorems” [17]
that there is a trade-off between the complexity (both in
terms of running time and simplicity) and the performance
guarantee. The randomized algorithm is remarkably simple,
robust, easy to use, and easy to code. It is also fair in two
respects.

1. In expectation, an area is covered within 1 — % of the
maximum number of times possible.

2. With high probability, the least covered area is covered
within Inn of the maximum number of times possible

The randomized algorithm does bears some risk since its ap-
proximation ratio is an expectation. The distributed greedy
algorithm has a deterministic approximation ratio, but the
ratio is smaller than the ratio for the randomized algorithm,
and both the running time and the requirements of the net-
work are slightly higher. Finally, the centralized greedy al-
gorithm gives the best possible guarantee for some variants
of the problem, but it may not always be possible to design
a distributed implementation.

We show that it is NP-Complete to guarantee better than
% of the optimal coverage, indicating that all three algo-
rithms perform well with respect to the best approximation
algorithm possible in polynomial time assuming P # NP.
The hardness of approximation is obtained by a reduction
from the E4-SET SPLITTING problem.

Simulations show that the algorithms perform well above
the worst case bounds proved in the theoretical analysis.
Many simulations show the algorithms covering more than
99% of the maximum possible.

Simulations also suggest that using the sensors in rounds
has the potential to significantly increase the longevity of
sensor networks. In simulation results, the energy savings
using the SET K-COVER algorithm are directly propor-
tional to the density of the network. Significant increases in
the longevity of the network are observed when the overlap
between sensors is high. In addition, there is time gained by
extended battery lifetimes due to operation in short bursts.

The paper is organized as follows. In sections II, III, and
IV respectively, a randomized, distributed greedy, and cen-
tralized greedy algorithm are presented and analyzed. Sec-
tion V shows the hardness of approximation for the SET
K-COVER problem. Section VI contains the results of vari-
ous simulations. We conclude with open problems and areas
of further exploration.



Algorithm Assump- | Approximation Time Worst Case Network
tions Ratio Fairness Longevity
Guarantee Ratio
Randomized Minimal 1— % 1 1— % %
Expected Expected
None
Distributed Greedy Few % nk|Smax| | (.5 in simulations) %
None
Centralized Greedy Many 1-— % 2nk|Smax| | (.5 in simulations) @

Table 1: Summary of Results.

2. RANDOMIZED ALGORITHM

The randomized algorithm assigns each sensor to a cover
chosen uniformly at random. It requires no preprocessing
and makes extremely few assumptions about the network.
Its simplicity facilitates implementation, use, and mainte-
nance. It is also robust to sensor failure, and can easily
accommodate the entry of new sensors into the system. In
addition, the expected coverage is high, at least 1 — % of the
best coverage possible. This is also true per individual area,
so that the expected amount an area is covered is propor-
tional to how many sensors are capable of monitoring that
area. We can attain close to the expected performance in
practice because the algorithm is simple enough that it can
be run many times during the lifetime of the sensor net-
work. This reduces the risk that the overall performance is
far from the average.

ASSUMPTIONS:

1. It is assumed that all sensors have clocks with a unified
start time %o, so that operations can be synchronized.

2. Each sensor has a random number generator.

The following algorithm partitions the sensors into cov-
ers and is executed in parallel at each sensor starting from
initialization at time ¢ = 0.

| Randomized Algorithm at Sensor j |

Choose a random number i € {1, ..., k};
Assign sel f to cover c;;

At the end of the algorithm, sensor j belongs to cover c¢;.
During the round-robin covering of the areas, sensor j will
activate itself when cover ¢; is active.

THEOREM 1. The expected value of N(Cpgpq) 5 @ 1 — %
approzimation to OPT = N(¢*), where (g 15 the partition
created by the randomized algorithms and (™ is the partition
used by the optimum solution.

PROOF. For a single area v, we will calculate E[l,], the
expected number of covers that cover v in our solution. We

use N, to denote the number of subsets that contain v. A
cover will not contain v with probability (1 — 1) because
there are N, sets to be assigned and each has probability
% of being assigned to a particular cover. The expected
number of covers containing v is k — k(1 — 1)V So the
total expected number of times areas are covered by the
partition is 3°, E[l,] = 3, (k — k(1 — £)™*).

Let I}, be the number of times v is covered in the optimum
solution. Then, I < min(k, N,) because an area cannot be
covered by more than k covers or by more than the number
of subsets containing it. The expected number of times areas
are covered by the algorithm is at least > FE[l,] and the
total covered by OPT is at most ), min(k, Ny). To show

Bl .
% > (1—1) we will show that

Yo, % > (1—2). There are two cases.

the overall fraction

L k< N, Then, el =1 (1-H™ >1-(1-

%)k >1- % The last inequality is due to the pOW?I‘

series expansion of e”, which shows that (1— £)* < 1.

II:. k> N,
We will show that the derivative of the ratio %

with respect to IV, is negative, implying that the ra-
k—k(1—3)Nv

tio is smallest when & = N,. d}f,v( N, ) =
_1yNy (1 _n(1—L1)Nvy_ .. . .
kA-%) (1;3’(1 D71 his s negative iff
1 —N., 1 —N.,
1+In(1- - V)< (1—— ’,
I+l —2)"7) <(1-2)

which is again true due to the power series expansion
(1+t<ett#0][11]).

O

Another attractive property of the randomized algorithm
is that the element that is covered least is not covered too
much less than the maximum number of times that it could
possibly be covered. From case I above, in expectation, an
area is covered within 1 — % of the maximum number of
times possible. The tails of the distribution over [ can also
be bounded. More precisely, consider our objective is to find



a partition of the subsets of S into k covers such that [ is
maximized, where [ satisfies Vv € S,1 < Y 1. Let I*

JweEc;
be the optimum value of [.

LEMMA 1. With high probability (greater than 1— L), the
randomized algorithm gives a solution with | > ﬁ

PrOOF. Let [, be the number of covers area v belongs
to after the randomized rounding and N, be the number of
sets containing v. p, = E[ly]
> (1= L)min(k, N,) > (1 — 1)I;. Each v falls into one of
two cases.

I: py <16Inn. We known [, is at least 1 because every
area is covered by at least 1 sensor and this sensor

must belong to some cover. Then, I, > 1 > it >
l* l* nn

-%716lnn — 24lnn’

II: @y > 161nn. Using Chernoff bounds,

Mo —Ho 1
Pr(t, < 2) < emp(2) < L
Because 5h— < 4, Pr(l, < 55—) < 2

The probability that a single [, is less than ﬁ is less
than %7 so the probability that any [, is less than ﬁ is
less than ) ;15 < % due to the Bool-Bonferroni Inequali-
ties [11]. Therefore, the probability that the result does not
}}ave Dall l, within constant is significantly small, less than

e

3. DISTRIBUTED GREEDY ALGORITHM

The distributed greedy algorithm, in contrast with the
randomized algorithm, gives a deterministic guarantee that
the produced partition covers at least half as many areas
as the best possible partition. The algorithm makes some
assumptions about what the network is able to do and also
requires some preprocessing steps.

ASSUMPTIONS:

1. A clock with a unified start time to, so that operations
can be synchronized.

2. A unique ID number taken from the set of integers
jeA{1,..n}.

3. Knowledge of the parameter k and memory for storing a
matrix of size k x |S;|, all entries initialized to 1.

4. Some way to recognize an area of interest (for instance,
geographic coordinates or a mapping from unique sensor in-
formation to an area identification number).

5. Some way to communicate with other sensors that cover
a common area (preferably in a local manner through direct
broadcasting).

3.1 PREPROCESSING PHASE

Several preprocessing steps must take place before the
partition can be created.

First, each sensor determines which areas of interest it
will be capable of monitoring once it is in an activated ’on’
state. This can be done using GPS or sensor localization
which is itself an area of active research, and algorithms to
achieve this task are described in [3], [8], and [12], among
others.

Next, each sensor must determine a method of communi-
cation with other sensors covering the areas that it covers,
which we will refer to as the sensor’s neighbors. It may be
necessary to communicate this information using a broad-
casting tree [4] or other forms of message routing. We will
give a two step distributed algorithm for stationary sensors
in Euclidean space with no obstacles. However, the specific
implementation of this task will vary between applications.

1: Every sensor broadcasts its unique sensor ID number,
the areas it monitors, and the distances to these areas,
to twice the distance of the furthest area that it mon-
itors.

2: Based on information a sensor receives in step 1, from
the set of sensors with which it knows it shares an area
in common, it records the distance from the area to the
sensor that is furthest away as its d; parameter. If this
distance is less than the distance of its broadcast in
step 1, it instead sets its d; parameter to the distance
that was used for broadcasting in step 1.

This process ensures that every sensor node knows the
broadcast distance necessary so that the other nodes cover-
ing a common area can be notified by the sensor. The d;
distance will be used by the sensor to inform other sensors
of its decisions during the partition phase.

3.2 PARTITION PHASE

In this phase, the sensors are partitioned into covers. The
algorithm is initiated at time ¢ = 0.

[ Distributed Greedy Algorithm at Sensor j |

Whilet < j
If message is received that an area v € S; will be
monitored by another sensor in cover c;,
then change the entry in row i, column v,
from 1 to 0;
Ift =3
Choose i € {1, ...k} such that the sum along row
i is largest;
Assign self to cover c;;
Broadcast in formation about this decision
to neighbors;

The above distributed greedy algorithm is simple and re-
quires only nk|Smax| time. Next we show that it is guaran-
teed to cover more than half of what the optimum partition
is capable of covering.

THEOREM 2. The distributed greedy algorithm is a % ap-
proximation for the SET K-COVER Problem.

PROOF. Proof by construction. We will iterate back through

the n subsets, creating a copy of Sj, called S} at its lo-
cation ¢; in OPT. The number of newly covered elements
by S} is a(S}) and the number of elements covered by S
at the moment it was assigned to ¢; at time t = j will
be called «(S;). Because S; was assigned to c;, and be-
cause «(S7) only decreases by the addition of more covers
as we are iterating backward, o(S}) < «(S;). In addition,
>, a(87) + 32, a(S;) > OPT since this assignment sub-
sumes the sets assigned to their optimal positions. Combin-
ing equations, »>. a(S;) > oL O



4. CENTRALIZED GREEDY ALGORITHM

The centralized greedy algorithm has a better approxima-
tion ratio than the distributed greedy algorithm, and this
ratio is tight for some instances of the problem. However,
the communication and storage requirements for deploying
this algorithm in a distributed setting are more involved
than the above algorithms and may vary greatly between
applications. We do not propose this as a distributed al-
gorithm but instead show that in a centralized setting, the
performance of the randomized algorithm can be made into
a deterministic guarantee. We leave as an open problem the
implementation of this algorithm in a distributed setting.

This algorithm is the same as the distributed greedy al-
gorithm except that each area is assigned a weight of (1 —
%)y“fl where vy, is the number of subsets containing area v,
in the given time step, that have not yet been assigned to a
cover. Now, instead of summing entries in the rows of the
matrix, the matrix is multiplied with a |S;| X 1 vector corre-
sponding to the weights of the areas covered by the sensor.
The sensor is then assigned to the column which is largest
in the 1 X k vector resulting from the matrix multiplication.
Through this process, the algorithm chooses a cover c¢;, for
a given subset S;, that maximizes the weighted sum of un-

_ 1yyp—1
covered elements, vaesj/\vgusj e, 1-2 , instead

of simply Eu:vesjmgzusjeci s 1 as in the distributed greedy

algorithm. This is an intuitive algorithm in that each subset
is assigned to the cover where it covers the largest possible
number of uncovered elements, weighted according to how
likely it is that the element will be covered in future itera-
tions.

| Centralized Greedy Algorithm |

Initialize C = {c1 := 0, ..., cx, := 0};

For j:=1untiln
find i = argmax; Yy,

u:veSjAugzusjECi Sj(l -
¢i = ¢; US; (assign S to the cover ¢;);

We will prove that this algorithm gives a 1— % approxima-
tion ratio by showing that the above greedy algorithm is the
derandomization of random assignment using the method of
conditional expectation.

THEOREM 3. The centralized greedy algorithm is a 1 — %
approximation for the SET K-COVER Problem.

ProoF. We would like to show that at each decision, the
conditional expectation, given that decision, is greater than
the expectation before being conditioned on that decision.
Suppose we are at the step where we are assigning subset
Sj. We want to assign S; to a cover such that the expected
number of areas covered, conditioned on having assigned to
cover c;, is maximized. More precisely, if we denote by a;;
the assignment of subset j (in iteration j) to cover ¢; and
by p. all subset-cover assignments from previous rounds, we
want to choose ¢ that maximizes Y F[l,|pa Aaji]. Because
we maximize at every step, by linearity of expectation, the
conditional expectation cannot decrease. Therefore, at the
end of the algorithm, we have an assignment for which the
objective function is at least expected initial value [15].

The subset S; will only effect E[ly|pa A ajs] if it contains
area v so we will ignore vertices not in S; in our decision.

Suppose an area v that is in subset S; is covered in exactly
x covers before the assignment of S;. Then the expected
number of times v will be covered is F[l,] =k — (k—x)(1 —
%)y“. Regardless of where S; is placed, y, will decrease by
1. If v is newly covered in some cover, x will increase by 1,
otherwise z will remained unchanged. Let us consider both
scenarios:

I: Element v is not newly covered by S; in the assignment
aji. Then,
1.y, —
Bllulpa Azl = k = (k= 2)(1 = )"
II: Element v is newly covered by S; in the assignment
aji. Then,

Ellylpa Naji] =k—(k—x—1)(1—£)"!
=k (k= a)(1 - B (1 fye

The component of the conditional expectation that our

choice of assignment affects is whether or not an element

falls into scenario I or II. If it is in scenario II, the profit is

the last term of the above equation, (1—4)¥*~'. So we want

P _ 1y\y,—1 :
to maximize Zv:uesjmgusjecisj(l ) . This results

in the above greedy algorithm.

We now have an algorithm that deterministically performs
as well as the expected performance of the randomized al-
gorithm. [

5. HARDNESS OF APPROXIMATION

For specific cases, our algorithm is tight. In particular,
SET K-COVER is a generalization of the E4-SET SPLIT-
TING problem, and it is NP-hard to design an approxi-
mation algorithm for E4-SET SPLITTING that performs
better than our algorithm. We will first show a weaker
statement, that the general case cannot be approximated
to better than %. We will begin with some necessary defi-
nitions.

Definition 1. In the E4-SET SPLITTING problem we are
given a ground set V' and a number of sets R; C V each of
size exactly 4. Find a partition Vi, V2 of V' to maximize the
number of 7 with both R; N'Vi and R; N V2 nonempty.

The hardness of approximation for E4-SET SPLITTING
has been well studied, leading to the following result using
PCP [7].

THEOREM 4. It is NP-hard to distinguish between instances
of Max E4-SET SPLITTING where all the sets can be split
by some partition and those where any partition splits at
most a fraction % + € of the sets, for any € > 0.

We use the above definitions to show the hardness of SET
K-COVER.

THEOREM 5. [t is NP-Complete to a-approximate the SET
K-COVER problem with a > % + € for any € > 0.

PROOF. Given an approximation algorithm A for the SET
K-COVER problem, we could use it to approximate E4-SET



SPLITTING. Suppose we would like to approximate an in-
stance I of the E4-SET SPLITTING problem. We can cre-
ate an instance I’ of the SET 2-COVER, problem. For every
variable of the ground set V in I, there is a subset in I’. For
every set R; C V in I, there is an element in the set S of I
A subset in problem I’ contains an element of S iff the cor-
responding variable from V belonged to the corresponding
set R;. The proof is by contradiction. Assume o = }—2 +e€
for some € > 0.

Case 1: All the sets can be split in I. Then the optimum
in I’ is 2|S| and we run algorithm A on I’ and are guaranteed
to cover at least (12 + €)2|S| = (2 + 2¢)|S| elements.

Case 2: Only a fraction g + € of the sets can be split in
I. Then the optimum in I’ is less than (% + €)|S|, and any
solution to I’ will be less than this value.

Therefore, we could use A to distinguish between instances
of I that can be split completely and instances where only a
fraction % +e of the sets can be split, which would contradict

8
Theorem 4. [

In fact, after more precise analysis of the centralized greedy
algorithm in the context of E4-SET SPLITTING, we see
that the algorithm achieves an approximation ratio of ex-

15 ; :
actly 15 and is therefore tight.

THEOREM 6. The centralized greedy algorithm is the best
approzimation algorithm possible in polynomial time assum-
ing P # NP for specific instances of the SET K-COVER
problem.

PrOOF. Consider instances where the number of covers
is k = 2 and every area is contained in exactly 4 subsets,
implying N, = 4, Yv. From the proof of Theorem 1, the ap-
Ell,] _ (k—k(1—1)Nv) 45 0

min(k,Ny) k 16"

proximation ratio Vv is

The centralized greedy algorithm is therefore the best ap-
proximation possible in polynomial time assuming P # NP
when we constrain the parameters £ and N, .

6. SIMULATION RESULTS

We performed simulations using all three algorithms. Prob-
lem instances were generated by setting parameters |S| (num-
ber of areas), n (number of subsets), and |F| (number of
edges). Then a bipartite graph is created, where the edges
are chosen uniformly at random from all possible subset-
area pairs. A subset is then considered to contain an area if
it has an edge connecting it with that area. For each set of
parameters, ten problem instances were generated and the
numbers in the tables below are the average result over all
ten instances.

‘We chose this approach as opposed to an approach where
areas are points in Euclidean space and sensors sense within
a radius of their location (as in [13]) because the latter
limits the variety of applications. For instance, consider the
sensors are embedded in vehicles, animals, or robots that
are moving around in some physical space, then the set of
problem instances are much richer and our test scenarios
capture this richness of possible applications.

6.1 Performance Compared to the Optimum

Simulations show that in practice, when compared to the
optimum, our algorithms perform better than their worst

case bounds. We bound the optimum by noting that the
objective function of the optimum partition cannot be larger
than k * |S|, since we can cover at most all the areas in all
covers. We can also not hope to achieve more coverage than
there are edges. Thus we have two possible upper bounds
for the optimum objective function that are listed in the
column labeled OPT bound.

Simulations indicate that the deterministic greedy algo-
rithm achieves performance that is on the order of 10-20%
better than the randomized algorithm. The performance of
the deterministic and centralized greedy solutions are strik-
ingly close, differing by less than 1% in every instance of the
problem that was tested.

We see the randomized algorithm is consistent with theo-
retical analysis, with the worst performance achieving 63%
coverage, which is quite close to the analysis of 1 — %

Both deterministic algorithms perform significantly above
their worst case bounds, with the lowest ratio covering more
than 72% of the maximum possible. Many instances perform
even higher, with four instances achieving higher than 99%
of the maximum possible.

6.2 Increased Network L ongevity

Our simulations used the SET K-COVER algorithms to
partition the sensors into k covers such that when we rotate
among the k covers, more than 80% of the areas are covered
within the sliding window of k previous time steps. Specif-
ically, we maximize k such that the total coverage is more
than .8kn. Since every set belongs to some cover, every area
is covered at least once every k time steps. The lifetime of
our solution is compared with the straightforward approach
of activating all the sensors every time step until the percent
covereage over the previous k time steps drops below 80%.
We assume that all sensors have the same amount of power
initially, that their energy depletes at the same rate, and
that they are all capable of lasting for several time steps.
Therefore, if the SET K-COVER can achieve the specified
goal of 80%, then this signifies the lifetime of the network
is more than & — 1 times longer than the lifetime when the
straightforward approach is used. Because we only require
information from 80% of the nodes on average, this approach
is most valuable for WSNs where it is not necessary to col-
lect information from all the data in every time step. In
a WSN where network longevity is of primary importance
this approach uses k times less energy to collect the required
information.

Our simulations try several values of k, which is difficult
to do in a distributed setting. However, it is possible to
find a good value for k£ in advance through simulations or
mathematical properties of k. WSN designers can choose
k such that, in expectation, the solution has the desired
properties. Alternatively, running simulations in advance
allows designers to make a good choice for the value of k
ahead of time.

Our simulations show a significant increase in the life-
time of a network that uses the SET K-COVER solution.
In Figure 1, the value of k is plotted for problem instances
with varying density. For all 3 algorithms, the increase in
longevity is proportional to the connectivity. This is ex-
pected, since a highly connected graph has more redundancy
that the SET K-COVER approach can utilize to increase the
lifetime of the network. This relationship between connec-
tivity and energy savings is reflected in the simulations.



n |E| OPT bound Random | Distributed | Centralized
Greedy Greedy

1000 | 5000 5000 3950 4837 4832
1000 | 10000 10000 6330 7625 7647
1000 | 20000 10000 8655 9677 9727
500 5000 5000 3951 4626 4628
500 10000 10000 6305 7277 7296
500 20000 10000 8640 9443 9470
2000 | 5000 5000 3961 4953 4954
2000 | 10000 10000 6345 8047 8068
2000 | 20000 10000 8665 9908 9959

Table 2: For these simulations, |S| = 1000 and k = 10.
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In addition to the clear benefits in energy savings, the cov-
ers produced by our algorithms have the useful property that
they result in coverage of an area that is positively correlated
with the number of sensors covering that area. This means
that if there is a particular area in need of more frequent
monitoring, then multiple sensors could be deployed close
together to bolster the monitoring capabilities in that area.
For example, if we are monitoring traffic, we might want fre-
quent coverage of a busy highway intersection, and have less
need for vigilant sensor information about an empty coun-
try road. Figure 2 charts 200 elements for a single problem
instance, with N, plotted along the domain and % plotted
along the range. The randomized algorithm was applied 100
times on the same problem instance and the results in Figure
2 are the average over all of these runs. The optimum equals
min(%7 1) because an area cannot belong to more covers
than the number of subsets containing it. In the distributed
and centralized greedy algorithms, no [, has a value that is
less than 50% of the optimum [, it could possibly obtain.
In the randomized algorithm, the worst ratio occurs when k
= 10 and the ratio is .63 ~ 1 — % in accord with theoretical
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in Network Longevity.

analysis. We see that on average, the [, values are within
70% to 80% of the optimum. These simulations suggest that
the algorithms are fair in that every area receives coverage
relative to the number of sets that cover the area.

Another convenient property of the greedy algorithms is
that for all covers in a given solution, the number of ar-
eas covered by each cover lies within a small range. Thus,
we could use the SET K-COVER partitions if we had the
requirement that every cover monitor at least 80% of the
areas. In Figure 3 we graph the size of the minimum cover
divided by the size of the maximum cover, over several prob-
lem parameters. We see that for the distributed and central-
ized greedy algorithms, the smallest cover is always at least
60% of the largest cover. When there are many covers (as in
the problems with |E| = 2000), the ratio decreases slightly
since it is more likely to have outliers when the group is
larger. When there are many covers in the randomized al-
gorithm, however, there are a few covers with no areas at
all. As the number of covers increases, the probability there
will be a cover with little or no areas becomes larger, lead-
ing to the fast dropoff we observe in Figure 3. Therefore,



T TR K L 7
”n Lok iy g iy
SRRl
0ol PR 2! :‘EE ‘1‘1E AL 4
+Y 3 p 33 v! s S
' 3 L ] Z >
4 5 Pt
0.8 % 31 1
’ -
8 D
\' L,
0.7F N .
: R
0
11k s+ 2
v 06 ¢ 12 .
UORE
RN v o= b
Er I |
05 L 8
04t = .
03k ,; I = Randomized H
A rii1 Distributed Greedy
o= = = Centralized Greedy
,/’; 1 1 1 1 1 — T Oplimum T
0.2
2 4 6 8 10 12 14 16 18 20

Figure 2: For this problem instance, k£ = 10, |S| = 200,n = 100, and |E| = 2000.

the distributed and centralized greedy algorithms are better
suited for applications that require covers that lie within a
close range of coverage.

7. OPEN PROBLEMS

It is an interesting area of further research to determine
whether the centralized greedy algorithm can be efficiently
implemented in a distributed fashion. The main challenge
in making this algorithm distributed is that it is not clear
where the y, values that determine the weights should be
stored and how their values are to be updated in every
round. One possible solution is to run the preprocessing
phase between every sensor assignment, but this significantly
increases the communication overhead.

From a theoretical perspective, this work raises the ques-
tion of whether the centralized greedy algorithm is tight for
the general case when N, are non-uniform and k > 2. Per-
haps the recent breakthroughs in lower bound results using
PCP [6] [7] can be applied to the SET K-COVER problem.

Another open area of further study is the design of ap-
proximation algorithms for fair versions of the problem. The
approach in [13] is to design an algorithm that maximizes
k, such that all areas are included in every cover. We exam-
ined a flipped variant of the problem in section II, where,
given a value of k, the fewest number of times any element
is covered is maximized. In the optimum, the second prob-
lem subsumes the first since, by doing a binary search on k
and choosing the largest k for which k = [, we have found
the solution to the first problem. However, in a distributed
sensor network environment, it is very difficult to try many
possible values of k. More work needs to be done to give
a deeper understanding of the implications of using either
method.

Finally, it would be interesting to explore how to place
sensors and choose sensing ranges in a way that works well
in conjunction with round-robin covering.
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