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a b s t r a c t

Task-based programming models are beneficial for the development of parallel programs for several
reasons. They provide a decoupling of the specification of parallelism from the scheduling and mapping
to execution resources of a specific hardware platform, thus allowing a flexible and individual mapping.
For platforms with a distributed address space, the use of parallel tasks, instead of sequential tasks, adds
the additional advantage of a structuring of the program into communication domains that can help to
reduce the overall communication overhead.

In this article, we consider the parallel programming model of communicating parallel tasks (CM-
tasks), which allows both task-internal communication as well as communication between concurrently
executed tasks at arbitrary points of their execution. We propose a corresponding scheduling algorithm
and describe how the scheduling is supported by a transformation tool. An experimental evaluation using
synthetic task graphs as well as several complex application programs shows that employing the CM-task
modelmay lead to significant performance improvements compared to other parallel execution schemes.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Task-based approaches have the advantage to allow a decou-
pling of the computation specification for a given application
algorithm from the actualmapping and execution on the computa-
tion resources of a parallel target platform. The programmer is then
only responsible for the specification of the tasks of the applica-
tion algorithm and their interactions. The mapping onto execution
resources is usually based on a runtime prediction model and sup-
ported by a compiler tool or runtime system. Thus, the program-
mer is relieved from providing an explicit mapping. Moreover, the
runtime system can select a suitable task mapping depending on
the characteristics of the target platform, providing a portability of
the application performance.

Many different variations of task-based programming systems
have been investigated. An important distinction is whether the
individual tasks are executed sequentially on a single execution
resource (called single-processor tasks, S-tasks) or whether they
can be executed on multiple execution resources (called parallel
tasks, malleable tasks, or multi-processor tasks, M-tasks). S-tasks
are often used for program development in shared address
spaces, including single multi-core processors, and allow a flexible
program development. Efficient load balancing methods can

∗ Corresponding author.
E-mail address: djo@cs.tu-chemnitz.de (J. Dümmler).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.09.017
easily be integrated into the runtime system. Examples for such
approaches are the task concepts in OpenMP 3.0 [25], Cilk [13],
SMPSs [27], FG [6] for out of core algorithms, the TPL library
for .NET [21], or the KOALA framework [16], which provides
adaptive load balancing mechanisms. For distributed address
spaces, themain challenge is to obtain a distributed load balancing
of tasks with a low communication overhead. Thus, for load
exchange between different address spaces, tasks should not be
too fine-grained to avoid heavy communication traffic. An adaptive
load balancing technique for this scenario based on work stealing
has beenpresented in [7]. An example for an S-task runtime system
for a distributed memory environment is ClusterSs [36].

Parallel tasks are typically more coarse-grained than S-tasks,
since they are meant to be executed by an arbitrary number
of execution resources. These execution resources may need to
exchange data during the execution of a parallel task, and thus
each parallel taskmay also comprise task-internal communication.
In the standard parallel task model, the interactions between
different parallel tasks are captured by input–output relations
only, i.e., one parallel task may produce output data that is then
used as an input for another parallel task. In this case, the two
parallel tasks have to be executed one after another. Some of the
parallel tasks of the program may also be independent of each
other and provide the possibility for a concurrent execution on
disjoint sets of execution resources leading to a mixed parallel
execution. This parallel programming model is used, for example,
by the Paradigm compiler [30], the TwoL model [32], and many
other approaches [1,8,34].
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In this article, we consider an extended parallel programming
model called communicating M-tasks (CM-tasks) which addition-
ally allows communication between parallel tasks that are exe-
cuted concurrently. This additional kind of interaction between
parallel tasks provides more flexibility for the structuring of a par-
allel application and provides the possibility for amore efficient or-
ganization of these data exchanges. This is especially beneficial for
solvers for ordinary differential equations and multi-grid solvers.
On the other hand, it also leads to additional restrictions of the ex-
ecution order, since parallel tasks communicating with each other
during their execution have to executed concurrently and cannot
run one after another. As a consequence, new scheduling and load
balancing methods are required for CM-task programs.

The contributions of this article include a detailed discussion of
the CM-task programming model along with a comparison with
standard parallel tasks and the proposal of a compiler framework
that supports the development of CM-task applications. The
framework generates an efficient executable MPI program from
a CM-task specification provided by the application programmer.
The core component of the framework is the static scheduler,
which includes different scheduling algorithms that have been
adapted to fit the requirements of the CM-task model. The
article defines the underlying scheduling problem and describes
these algorithms in detail. An experimental evaluation for
several complex application programs shows that the scheduling
algorithm for CM-tasks can lead to significant performance
improvements compared to execution schemes resulting from
other schedules. Applications from scientific computing offering
a modular structure of different program components can benefit
considerably from the CM-task model and the programming
support.

The rest of the article is organized as follows. Section 2 describes
the CM-task programming model. A compiler tool supporting the
development of CM-task applications is presented in Section 3.
The CM-task scheduling problem is defined in Sections 4 and 5
proposes an appropriate scheduling algorithm. Section 6 presents
an experimental evaluation. Section 7 discusses related work and
Section 8 concludes the article.

2. CM-task programming model

This section discusses the programming with CM-tasks and
highlights the benefits of CM-tasks over standard parallel tasks.

2.1. Structure of CM-task programs

The CM-task programming model exhibits two well-separated
levels of parallelism: an upper level that captures the coarse-
grain task structure of the application and a lower level that
expresses parallelism within the tasks of the upper level. A CM-
task program consists of a collection of CM-tasks where each CM-
task implements a specific part of the application in a way that
an execution on an arbitrary number of execution resources is
possible. Each CM-task operates on a set of input variables that it
expects upon its activation and produces a set of output variables
that are available after its termination. Additionally, there may be
communication phases in which data is exchanged between two
or more CM-tasks that are executed at the same time on disjoint
sets of execution resources.

A CM-task can be a parallel module performing parallel com-
putations (basic CM-task), e.g., a data parallel matrix multiplica-
tion, or can have an internal structure activating other CM-tasks
(composed CM-task). The internal parallelism of basic CM-tasks is
realized using an SPMD programming approach; message passing
may be used for distributed memory platforms while an imple-
mentation based on Pthreads or OpenMPmay be advantageous on
clusters with large SMP nodes. In the following, we assume that
each CM-task is executed by a number of MPI processes, i.e., task-
internal data exchanges are implemented with MPI. This implies
that each CM-task defines a data distribution among the executing
processes for each structured input or output variable used.

Dependences between CM-tasks resulting from input/output
variables and the communication phases defined are captured by
the following relations:

• P-relation: A P-relation (precedence relation) from a CM-task
A to a CM-task B exists if A provides output data required by
B as input before B can start its execution. This relation is not
symmetric and is denoted by AδPB.

• C-relation: A C-relation (communication relation) between CM-
tasksA and B exists, ifA and Bhave to exchange data during their
execution. This relation is symmetric and is denoted by AδCB.

P-relations capture input–output dependences between tasks
and require the respective CM-tasks to be executed one after an-
other. Moreover, a data re-distribution operation may be required
between CM-tasks A and Bwith AδPB. This is the case if A and B are
executed on different sets of processors or if A produces its out-
put data in a different data distribution then it is expected by B.
C-relations capture communication phases in which intermediate
results are exchanged and enforce a concurrent execution of the re-
spective CM-tasks. The communication operations to realize these
data transfers are included in the respective CM-tasks, such that
optimized communication patterns can be exploited. The runtime
system has to provide a common communication context for all
CM-tasks participating in the same communication phase, e.g., by
providing a suitable MPI communicator.

A CM-task program can be described by a CM-task graph G =

(V , E) where the set of nodes V = {A1, . . . , An} represents the
set of CM-tasks and the set of edges E represents the (C and
P) relations between the CM-tasks. The set E can be partitioned
into two disjoint sets EC and EP with E = EP ∪ EC . EP contains
directed edges representing the P-relations defined between CM-
tasks. There is a precedence edge from CM-task A to CM-task B
in EP if an input–output relation from A to B exists. EC contains
bidirectional edges representing the C-relations defined between
CM-tasks. An example for a CM-task graph is shown in Fig. 1(a).

2.2. Comparison of CM-tasks with standard parallel tasks

The CM-task programming model supports two kinds of in-
teractions between CM-tasks: P-relations between data depen-
dent tasks and C-relations between tasks that communicate with
each other during their execution. In contrast, programming mod-
els based on standard parallel tasks such as Paradigm [30] and
TwoL [32] only support P-relations between the tasks. In the fol-
lowing, we show that the additional C-relations in the CM-task
model allow a more flexible formulation of the tasks compared to
the standard parallel task model. As a case study, we consider time
steppingmethods as they are often used for the numerical solution
of systems of ordinary differential equations (ODEs).

A typical task graph for these methods using only P-relations
is shown in Fig. 1(b). This standard parallel task graph shows
two time steps where parallel tasks M2, M3, and M4 perform
independent computations for the first time step, and parallel tasks
M6,M7, andM8 perform analogous computations for the next time
step. In between,M5 combines the results, e.g., for error control or
information exchange. In the standard parallel task model,M2 and
M6 cannot be combined because the result of M2 is used by M5.
As a consequence, the parallel tasks used may be too fine-grained
possibly resulting in a significant management overhead.

In the CM-task model, however, a single CM-task can imple-
ment the computations of multiple time steps, see Fig. 1(c). For ex-
ample, CM-task CM2 performs the computations of parallel tasks
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Fig. 1. (a) Example for a CM-task graph with precedence edges (annotation p) and communication edges (annotation c). (b) Dependence structure between the tasks of
a typical ODE solver in the form of a standard parallel task graph using P-relations only. (c) Possible CM-task graph for a typical ODE solver using both P-relations and
C-relations.
Fig. 2. Overview of the CM-task compiler framework. The user provides specifica-
tions for the parallel application and the parallel platform and implements the basic
CM-tasks. The CM-task compiler translates the user-provided specifications into an
executable coordination program that contains an efficient implementation of the
application on the target platform specified.

M2 and M6, and also computes the results at the end of the time
step along with CM-tasks CM3 and CM4. The communication op-
erations required to exchange the intermediate results at the end
of the time step are captured by appropriate C-relations. For the
implementation of these data transfers, orthogonal communica-
tion patterns [31] can be exploited, which leads to a reduction of
the communication overhead, see also the benchmark results pre-
sented in Section 6.
3. Programming support for CM-task applications

A major advantage of the CM-task programming model
is its flexibility to adapt the execution of an application to
the characteristics of the target platform, e.g., by selecting an
appropriate execution order for independent CM-tasks. But such
an adaption may be complex and error-prone especially for large
application programs. Therefore, the CM-task compiler framework
has been designed to assist the application developer by providing
scheduling and load balancing methods as well as a generator for
a platform-specific implementation of a CM-task program.

Fig. 2 shows an overview of the framework. As input, the
application developer has to provide

• a platform-independent specification program that describes
the high-level task structure of the parallel application, see an
example in Fig. 4,

• a platform description that defines a homogeneous target
machine by specifying a number of hardware parameters such
as the number of processors, the speed of the processors, and
the speed of the interconnection network, and

• a set of basic CM-tasks that are provided as parallel functions
to be executed on an arbitrary number of processors, e.g., using
C + MPI or a hybrid C + MPI + OpenMP model.

The CM-task compiler translates the specification program
and the platform description into an executable C + MPI
coordination program, see Section 3.3 for a detailed description of
Fig. 3. Grammar for the specification of the available task parallelism within a composed CM-task (simplified).
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Fig. 4. Specification program for the PABMmethod.
the transformation process. At runtime, the coordination program
is responsible for (i) the actual creation of the required processor
groups, (ii) the data re-distribution operations to guarantee the
correct distribution of input data before starting a CM-task, and
(iii) the actual execution of the user-provided parallel functions
implementing the basic CM-tasks on the processor groups as
defined by the computed schedule. The data re-distribution
operations are performed by a separate library that is provided as
part of the CM-task compiler framework. Twodifferent approaches
are supported for the generation of the coordination program.

• The static approach of the CM-task compiler uses a fixed
schedule, i.e., both, the execution order and the executing
processor groups of the CM-tasks are fixed at compile time and
cannot be changed at runtime. This approach is especially suited
for dedicated homogeneous platforms and requires an accurate
cost model for a good schedule. The fixed schedule enables
several static optimizations, such as the precomputation of the
communication pattern for data re-distribution operations at
compile time.

• The semi-dynamic approach of the CM-task compiler combines
a static schedule with dynamic load balancing. The static
schedule defines the execution order of the CM-tasks as well
as the initial processor groups used to execute the CM-tasks.
The semi-dynamic coordination program produced includes
profiling code that measures the execution times of the CM-
tasks at runtime of the application. The dynamic load balancing
library of the CM-task compiler framework adapts the sizes
of the processor groups based on the runtimes measured. The
semi-dynamic approach is especially suited for non-dedicated
heterogeneous platforms.
The compiler approach employed is fully transparent for the
user-supplied specification program and CM-task implementa-
tions, i.e., the application developer does not need to modify
the implementation when switching from the static to the semi-
dynamic approach or vice versa. In this article, we focus on the
static approach; the semi-dynamic approach is described in [9].

3.1. Specification language

The platform-independent specification program defines the
available basic CM-tasks along with a cost estimation, the internal
structure of the composed CM-tasks as well as the data types and
data distribution types used for the input and output parameters of
the CM-tasks. Supported data types encompass scalars and multi-
dimensional array structures. A data distribution type can either
be an arbitrary block-cyclic distribution over a multi-dimensional
processormesh or a replicated storage on an arbitrary subset of the
processors.

Thedefinition of a basic CM-task startswith the keyword cmtask
followed by a unique name, a parameter list and a cost expression.
The parameter list includes input and output parameters with
their respective data types and data distribution types as well as
special parameters that are communicated along the C-relations.
The cost expression is defined as a symbolic formula in closed form
depending on the number of executing processors p and platform
specific parameters whose values are provided in the separate
machine description input, see Section 3.2 for a more detailed
discussion of the cost model.

Composed CM-tasks are defined by using the keyword cmgraph
followed by a name, a parameter list similar to basic CM-
tasks, and a hierarchical module expression. One distinguished
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composed CM-task represents the entire application; this CM-task
is denoted by using the keyword cmmain instead of cmgraph. The
module expression consists of activations of (basic or composed)
CM-tasks and predefined operators which define the maximum
degree of task parallelism that may be exploited by the CM-
task compiler framework. Operators are available to define a
consecutive execution, to define a concurrent execution, and to
define data independence such that the framework can select a
suitable execution order. Fig. 3 gives an overview of the available
operators. The P-relations and C-relations of the CM-task program
are defined implicitly using appropriate variable names in the
parameter lists of the CM-task activations.
Example specification. As an example application we consider the
implicit parallel Adams–Bashforth–Moulton (PABM) method [37]
which is suitable for solving stiff systems of ordinary differential
equations (ODEs) [15]. The PABMmethod performs a large number
of time steps that have to be executed one after another due to
data dependences between successive steps. Within a time step,
K stage vectors are computed and then combined to the final
approximation of this step.

Fig. 4 shows an appropriate CM-task specification program. The
data type and data distribution type definitions have been omitted
to improve readability. Three basic CM-tasks are defined in lines
7–10: the CM-task initstep initializes the first time step, the
CM-task pabmstep computes one of the K stage vectors for a
single time step, and the CM-task updatestep updates the step
size for the next time step. The CM-task pabmstep has three input
parameters (x and h with data type scalar, and y_k1 with data
type vector and data distribution type block), one input/output
parameter (y_k), and one parameter that is used to exchange
data during its execution with other CM-tasks (ort). The cost
expressions associated with the basic CM-tasks are omitted and
will be discussed in Section 3.2.

The module expression of the composed CM-task pabm defines
an activation of CM-task initstep (line 20) and a while-loop
(lines 21–25) that have to be executed one after another due to
the seq-operator on line 19. The loop is executed until the current
time index x reaches a predefined limit X. The term #100 on
line 21 defines an estimate of the number of iterations and is
used by the CM-task compiler framework to predict the resulting
execution time of the entire application. The body of thewhile-loop
contains a cparfor-loop which defines K activations of CM-task
pabmstep that have to be executed concurrently. All K activations
are connected by C-relations, since the communication parameter
ortcomm is passed to each one. The seq-operator on line 22 defines
that CM-task updatestep cannot be executed until the entire
cparfor-loop has been terminated.

3.2. Cost model

In the specification program, the costs for basic CM-tasks are
described in form of symbolic runtime formulas [3,20]. A symbolic
runtime formula TA for a basic CM-task A is a function whose
structure reflects the computation and communication operations
performed byA including the data exchanges along the C-relations.
TA typically has the form

TA(p) =
ops(A)

p
∗ Top + Tcomm(A, p),

where ops(A) is the number of arithmetic operations of A, Top is the
average execution timeof an arithmetic operation on the execution
platform, and Tcomm(A, p) is the sumof the internal communication
times of A when executed on p processors.

The communication time Tcomm(A, p) depends on the number
and type of the communication operations inside A and is specified
using cost formulas for the communication primitives provided by
the MPI library. For example, the execution time of a broadcast
operation that uses a binomial tree of depth log(p) can be
estimated by a function

Tbc(p, b) = (τ + tc ∗ log(p)) ∗ b,

where p is the number of processors participating in the operation,
b is the amount of data to be transferred, and τ and tc are hardware-
specific parameters. These formulas are provided in the separate
platform description input file.

The symbolic runtime formula for a specific basic CM-task A
can either be obtained by hand, e.g., by fitting measured execution
times to a function prototype, or automatically extracted from the
source code of A by a suitable compiler tool [19]. For example, the
execution time of the basic CM-task pabmstep that computes a
single stage vector in a K -stage PABM method, see Fig. 4, can be
described by

Tpabmstep(p) = (I + 1) ∗
d
p

∗ Teval + (2K + 1 + 3I) ∗
d
p

∗ Top

+ Tag


K ,

d
p


+ Tbc


K ,

d
p


+ (I + 1) ∗ Tag


p
K

,
d
p


.

In this formula, I denotes the number of fixed point iterations
performed by the PABM method, Teval defines the time required
to evaluate a single ODE of the d-dimensional ODE system, and
Tag(p, b) is a cost prediction for the execution of a multi-broadcast
(MPI_Allgather()) operation depending on the number of
participating processes p and the amount of data b to be
transmitted.

The costs for composed CM-tasks are built up from the costs
of the basic CM-tasks and the communication times for the
P-relations according to the hierarchical CM-task structure. For a
concurrent execution of CM-tasks CM1 and CM2, the maximum of
their cost formulas is taken; for a consecutive execution, the sum
of the cost formulas of CM1 and CM2 and the data re-distribution
costs between these CM-tasks is used. The costs for the CM-task
cmmain determine the costs for the entire application.

3.3. CM-task compiler

The CM-task compiler performs several transformation steps
to translate a specification program into an executable C +

MPI coordination program that is adapted to a specific parallel
platform, see Fig. 5 for an overview. The transformation steps
include the detection of data dependences, the computation of
a platform-dependent static schedule, the insertion of data re-
distribution operations, and the translation into the coordination
program. In the following, we describe the phases in detail.

The dataflow analyzer detects the P-relations and the C-
relations between the activations of the CM-tasks. A P-relation
is inserted between CM-tasks A and B that have to be executed
one after another due to a seq-operator in case A has an output
parameter that is used as an input for B. A C-relation is inserted
between CM-tasks A and B that have to be executed concurrently
due to a cpar- or cparfor-operator if A and B have a common
communication parameter.

The static scheduler performs the scheduling in the following
three steps.

(1) The specification program is transformed into a set of CM-
task graphs. A CM-task graph is constructed for each body of a
for- orwhile-loop, each branch of the if -operator, and for each
composed CM-task graph. The parfor- and cparfor-loops are
unrolled such that different scheduling decisions can be made
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Fig. 5. Transformation steps performed by the CM-task compiler to generate a C + MPI coordination program from a user-provided specification program and platform
description.
for each iteration of these loops. Note that the bounds of these
loops need to be known at compile time. The resulting CM-task
graphs are organized hierarchically according to the nesting
of the corresponding operators. For example, the specification
program from Fig. 4 is translated into two CM-task graphs:
an upper-level CM-task graph with two nodes representing
the functioninitstep and the entirewhile-loop, respectively,
and a lower-level CM-task graph for the body of the while-
loop that contains K + 1 nodes where K nodes represent
the instances of function pabmstep and one node represents
updatestep.

(2) Next, a feasible CM-task schedule (as defined in Section 4.2)
is produced for each CM-task graph. The scheduling starts
with theCM-task graph representing the entire application and
then traverses the hierarchy of CM-task graphs. The scheduling
decisions on the upper levels determine the number of
processors that are available for the lower levels. For example,
the number of processors assigned to the entire while-loop
is equal to the number of available processors for scheduling
the loop body. The scheduling for a single CM-task graph is
described in Section 5.

(3) The resulting CM-task schedules are transformed back into an
extended specification program with additional annotations
that define the processor groups for each CM-task activation.
Additionally, the operators of the initial program are adjusted
to reflect the actual execution order defined by the computed
schedule, i.e., a par operator may be transformed into a seq
operator if the schedule defines a consecutive execution for
independent program parts.

The data distribution phase proceeds in two steps. First, it
determines suitable data distribution types in which the variables
are provided when entering a loop (for and while) or a conditional
(if ). For this purpose, a heuristic is used that tries to minimize
the number of required data re-distribution operations inside
the respective loop or conditional. Second, it inserts appropriate
data re-distribution operations, such that the input data of each
activated CM-task is provided in the correct data distribution. The
final code generation phase uses the information provided by the
previous phases to create the final output program. This phase is
implemented by a top-down traversal of the abstract syntax tree
using a syntax-directed translation scheme.

4. Scheduling of CM-task programs

This section defines the scheduling problem for CM-task
programs and discusses the constraints resulting from the
P-relations and C-relations between the CM-tasks of a program.

4.1. Cost annotations for CM-task graphs

For the definition of the scheduling problem, we assume that
the CM-task graph G = (V , E) of a CM-task program is annotated
with cost information. The execution time of each CM-task is
Fig. 6. Illustration of a possible CM-task schedule for the CM-task graph from
Fig. 1(a).

described by a function

T : V × {1, . . . , q} → R

where q is the size of the processor set Q of a (homogeneous)
target platform. The runtime T (A, |R|) of a CM-task A executed on
a subset R ⊆ Q comprises the computation time of A, the internal
communication time, as well as the time for data exchanges with
simultaneously running CM-tasks with which A has a C-relation.

The P-relation edges of the CM-task graph are associated with
communication costs

TP : EP × {1, . . . , q} × {1, . . . , q} → R

where TP(e, |R1|, |R2|) with e = (A1, A2) denotes the communica-
tion costs between CM-task A1 executed on processor set R1 and
CM-task A2 executed on processor set R2 with R1, R2 ⊆ Q . These
communication costs may result from a re-distribution operation
that is required between CM-tasks A1 and A2 with A1δPA2 if R1 ≠ R2
or if R1 = R2 and A1 provides its output in a different data distri-
bution as expected by A2.

4.2. Scheduling constraints

A schedule S of a given CM-task program maps each CM-task
Ai, i = 1, . . . , n, to an execution time interval with start time si
and a processor set Ri with Ri ⊆ Q , i.e.,

S : {A1, . . . , An} → R × 2Q with S(Ai) = (si, Ri).

An illustration of a CM-task schedule is given in Fig. 6. The
P-relations and C-relations between the CM-tasks of a program
lead to the following scheduling constraints:
(I) Consecutive time intervals. If there is a P-relation AiδPAj between
two CM-tasks Ai and Aj, i, j ∈ {1, . . . , n}, i ≠ j, then the
execution of Aj cannot be started before the execution of Ai and all
required data re-distribution operations between Ai and Aj have
been terminated. Thus, for the starting times si and sj of Ai and
Aj and executing sets Ri and Rj of processors, respectively, the
following condition must be fulfilled:

si + T (Ai, |Ri|) + TP

e, |Ri|, |Rj|


≤ sj with e = (Ai, Aj).

(II) Simultaneous time intervals. If there is a C-relation AiδCAj
between Ai and Aj, then Ai and Aj have to be executed concurrently
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(with overlapping execution time intervals) on disjoint sets of
processors Ri and Rj, i.e., the following conditionsmust be fulfilled:

Ri ∩ Rj = ∅ and

[si, si + T (Ai, |Ri|)] ∩

sj, sj + T (Aj, |Rj|)


≠ ∅.

The overlapping execution time intervals guarantee that the CM-
tasks Ai and Aj can exchange data during their execution.
(III) Arbitrary execution order. If there are no P- or C-relations
between CM-tasks Ai and Aj, then Ai and Aj can be executed in
concurrent or in consecutive execution order. For a concurrent
execution, disjoint processor sets Ri and Rj have to be used, i.e.,

if [si, si + Tg(Ai, |Ri|)] ∩ [sj, sj + Tg(Aj, |Rj|)] ≠ ∅

then Ri ∩ Rj = ∅

where Tg comprises the execution time of Ai as well as
the communication time for data exchanges with successively
executed CM-tasks Ak with AiδPAk, i.e.,

Tg(Ai, |Ri|) = T (Ai, |Ri|) +

n
k=1

TP(e, |Ri|, |Rk|)

with e = (Ai, Ak) ∈ EP .

In the following, a schedule thatmeets the constraints (I)–(III) is
called feasible. A feasible schedule S leads to a total execution time
Tmax(S) that is defined as the point in time when all CM-tasks have
been finished, i.e.:

Tmax(S) = max
i=1,...,n

{si + Tg(Ai, |Ri|)}.

The problemof finding a feasible schedule S thatminimizes Tmax(S)
is called scheduling problem for a CM-task program.

5. Scheduling algorithm

This section proposes a scheduling algorithm for CM-task
graphs with annotated cost information that proceeds in four
phases. In the first phase, CM-tasks that are connected by
C-relations are combined to form a so-called super-task. The tasks
within a super-task have to be executed concurrently due to
communication between them, see Constraint (II) from Section 4.2.
The aggregation of CM-tasks to super-tasks transforms the CM-
task graph into a super-task graph with generalized P-relations
between the super-tasks. The second phase determines a group
layout within each super-task by using a load balancing algorithm.
The third phase computes an execution order and determines
processor groups for the super-tasks by taking the generalized
P-relations of the super-task graph into account. This phase is
similar to the scheduling of standard parallel tasks and, thus,
a layer-based or a critical-path based approach can be utilized.
The final phase combines the results of the previous steps and
generates the final CM-task schedule. In the following, the phases
of the algorithm are described in detail.

5.1. Transformation of the CM-task graph

The first phase identifies CM-tasks that are connected by
C-relations and combines them into larger super-tasks as defined
in the following.

Definition 1 (Super-Task). Let G = (V , E) be a CM-task graph. A
super-task is a maximum subgraph Ĝ = (V̂ , Ê) of G with V̂ ⊆ V
and Ê ⊆ EC such that each pair of CM-tasks A, B ∈ V̂ is connected
by a path of bidirectional edges in Ê.

Each CM-task and each bidirectional C-relation edge of a CM-
task graph belongs to exactly one super-task. A single CM-task
without C-relations to any other CM-task forms a super-task
Algorithm 1: Load balancing for a single super-task.
1 begin
2 let Ĝ = (V̂ , Ê) be a super-task with V̂ = {A1, . . . , Am};

3 set LĜ(Ai,m) = 1 for i = 1, . . . ,m;
4 for (p = m + 1, . . . , q) do
5 set LĜ(Ai, p) = LĜ(Ai, p − 1) for i = 1, . . . ,m;

6 find CM-task Ak ∈ V̂ with maximum value of
T (Ak, LĜ(Ak, p − 1));

7 increase LĜ(Ak, p) by 1;

by itself. The problem of finding the super-tasks of a CM-task
graph is equivalent to discovering the connected components of
an undirected graph, considering the C-relations as undirected
edges. Using the super-tasks constructed, the CM-task graph is
transformed into a super-task graph as defined next.

Definition 2 (Super-Task Graph). Let G = (V , E) be a CM-task
graph comprising l super-tasks Ĝ1 = (V̂1, Ê1), . . . , Ĝl = (V̂l, Êl).
The super-task graph corresponding to G is a directed graph G′

=

(V ′, E ′)with a set of l nodes V ′
= {Ĝ1, . . . , Ĝl} and a set of directed

edges E ′
= {(Ĝi, Ĝj) | there exists A ∈ V̂i, B ∈ V̂j with AδPB}.

Fig. 7(a) and (b) show an example CM-task graph with the
corresponding super-task graph. Fig. 7(c)–(e) illustrates the
scheduling phases described in the following subsections.

5.2. Load balancing for super-tasks

The second phase is an iterative load balancing algorithm
shown in Algorithm 1 that determines the number of processors
used to execute the CM-tasks inside a specific super-task Ĝ. The
algorithm tries to find an assignment such that the execution time
of the entire super-task Ĝ is at a minimum. The load balancing
decision depends on the number of processors available for the
execution of Ĝ. The super-task Ĝ can be executed on any number
of processors between m and q where m is the number of CM-
tasks inside Ĝ and q is the total number of processors available.
The number of processors must be at least m because all m CM-
tasks of a super-task have to be executed concurrently to each
other. Since the exact number of processors available for super-
task Ĝ is determined not until the next phase of the scheduling
algorithm, all possible numbers p of processors are considered,
i.e., m ≤ p ≤ q. The result of the load balancing algorithm is a
super-task allocation LĜ for Ĝ, where LĜ(A, p) specifies how many
processors are allocated to CM-task A inside super-task Ĝ when p
processors are available for the entire super-task Ĝ.

Algorithm 1 starts with p = m and assigns a single processor to
each CM-task of the super-task Ĝ (line 3). In each step, the number
of available processors p is increased by one and the additional
processor is assigned to the CM-task Ak that has the largest
parallel execution time within the current super-task allocation.
This usually decreases the execution time of Ak, and another CM-
task may then have the largest execution time.

An alternative method to determine the number of processors
for each CM-task is to use the sequential execution time and to
assign

LĜ(Ai, p) = p ·
T (Ai, 1)

Aj∈V̂

T (Aj, 1)

processors to CM-task Ai ∈ V̂ . Compared to this approach, the
iterative assignment of Algorithm 1 has the advantage that it
takes scalability effects into account, captured by using the parallel
execution time.
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Fig. 7. Illustration of the scheduling algorithm for CM-task graphs. (a) Initial CM-task graph consisting of CM-tasks {1, . . . , 13}. (b) Corresponding super-task graph with
super-tasks A = {1}, B = {2, 3}, C = {4}, D = {5}, E = {6}, F = {7, 8, 9}, G = {10}, H = {11, 12}, and I = {13}. (c) Subdivision of the super-task graph into five consecutive
layers W1 = {A}, W2 = {B, C,D}, W3 = {E, F}, W4 = {G,H}, and W5 = {I}. (d) Possible schedule for the super-task graph consisting of a subschedule for each layer of the
graph according to Algorithm 2. (e) Schedule for the original CM-task graph including load balancing from Algorithm 1.
5.3. Costs for super-task graphs

Using the super-task allocation LĜ, the cost of a super-task Ĝ can
be calculated by the cost function defined below.

Definition 3 (Costs For Super-Task Graphs). LetG = (V , E)be a CM-
task graph and G′

= (V ′, E ′) its corresponding super-task graph. A
node Ĝ = (V̂ , Ê) of G′ executed on p processors has costs

T ′(Ĝ, p) =


∞ if p < |V̂ |

max
A∈V̂

T (A, LĜ(A, p)) otherwise.

A directed edge êij = (Ĝi, Ĝj) with Ĝi = (V̂i, Êi), Ĝj = (V̂j, Êj), i ≠ j,
has costs

T ′

P(êij, pi, pj) =


e∈RE

TP(e, LĜi(A, pi), LĜj(B, pj))

with RE = {e = (A, B)| there exists A ∈ V̂i, B ∈ V̂j with AδPB}.

The cost information is needed for the scheduling algorithm for
super-task graphs presented next.

5.4. Scheduling of the super-task graph

A super-task graph resembles a standard parallel task graph.
However, there is an important difference: the scheduling problem
for a super-task graph has the additional restriction that the
number of processors assigned to a super-task must not be below
the number of CM-tasks included in this super-task. This constraint
guarantees that a concurrent execution of all CM-tasks within one
super-task is possible. As a consequence, scheduling algorithms
for parallel tasks have to be modified to take this requirement
into account. The scheduling of parallel tasks is often performed
by either a layer-based or a critical-path-based approach. In the
following, we consider these two categories of algorithms in detail.

5.4.1. Layer-based scheduling of the super-task graph
Layer-based scheduling algorithms are well suited for parallel

applications consisting of multiple consecutive phases each
of which performing computations that can be captured by
independent tasks. In this subsection, we propose a scheduling
algorithm for a super-task graph G′ that is based on a layer-
based scheduling algorithm for parallel tasks [32] and additionally
exploits the load balancing information fromAlgorithm 1. The new
scheduling algorithm is called CM-Layer and proceeds in two steps.

In the first step, the super-task graph G′ is partitioned into
layers of independent super-task nodes such that the consecutive
execution of the layers leads to a feasible schedule for the entire
Algorithm 2: Scheduling algorithm for a single layer of the
super-task graph.
1 begin
2 letW = {Ĝ1, . . . , Ĝr} be one layer of the super-task

graph G′
= (V ′, E ′) consisting of r CM-tasks;

3 let f = max
i=1,...,r

|V̂i| be the maximum number of CM-tasks

in any super-task of W ;
4 set Tmin = ∞;
5 for (κ = 1, . . . ,min{q − f + 1, r}) do
6 partition the set Q of q = |Q | processors into disjoint

subsets R1, . . . , Rκ such that
|R1| = max

 P
κ


, f


and R2, . . . , Rκ

7 have about equal size;
8 sort {Ĝ1, . . . , Ĝr} such that T (Ĝi, |R1|) ≥ T (Ĝi+1, |R1|)

for i = 1, . . . , r − 1;
9 for (j = 1, . . . , r) do

10 assign Ĝj to the group Rl with the smallest
accumulated execution time and |Rl| ≥ |V̂j|;

11 adjust the sizes of the subsets R1, . . . , Rκ to reduce
load imbalances;

12 Tκ = max
j=1,...,κ

accumulated execution time of Rj;

13 if (Tκ < Tmin) then Tmin = Tκ ;

super-task graph. The partitioning is performed by a greedy
algorithm that runs over the super-task graph in a breadth-first
manner and puts as many super-tasks as possible into the current
layer. An illustration is given in Fig. 7(c).

In the second step, the layers are treated one after another and
the scheduling algorithm given in Algorithm 2 is applied to each
layer. The goal of the scheduling algorithm is to select a partition
of the processor set into κ processor groups. Each of these groups
is responsible for the execution of a specific set of super-tasks
that are also selected by this algorithm. An illustration of such a
group partitioning and a corresponding assignment of super-tasks
is given in Fig. 7(d).

The scheduling algorithm for a single layer W with r = |W |

super-tasks tests all suitable values for the number κ of processor
groups with κ ≤ r and selects the number of groups that leads to
the smallest overall execution time (line 5). For a specific value of
κ , the set of q processors is partitioned into subgroups such that at
least one of the groups is large enough to execute any super-task of
W . In particular, the largest processor group R1 contains at least f
processors where f denotes the maximum number of tasks which
any of the super-tasks contains in its node set V̂1, . . . , V̂r (line 3).
If f ≤ q/κ then a distribution into κ processor groups of equal size
is chosen (line 6). If f > q/κ then one processor group is made
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large enough to contain exactly f processors and the rest of the
processors is evenly partitioned into κ − 1 processor groups. For
the assignment of super-tasks to processor groups, a list scheduling
algorithm is employed that considers the super-tasks one after
another in decreasing order of their estimated execution time
(line 7). The group Rl of processors for a specific super-task Ĝj is
selected such that Rl is large enough to execute Ĝj and assigning
Ĝj to Rl leads to the overall smallest accumulated execution time
(line 9).

Afterwards, an iterative group adjustment is performed to
reduce load imbalances between the processor groups (line 10).
In each iteration step, two groups of processors Ri and Rj are
identified such that moving a processor from Ri to Rj reduces the
total execution time of the layer while Ri is still large enough to
execute all super-tasks assigned to it. The procedure stops when
there is no such group left.

5.4.2. Critical-path based scheduling for super-tasks
Critical-path based scheduling algorithms for parallel task

graphs consist of two steps: an allocation step that assigns a
number of processors to each parallel task and a scheduling step
that determines an execution order and maps the parallel tasks
onto groups of processors. To adapt critical-path based scheduling
algorithms for parallel tasks to the scheduling problem for super-
task graphs it is sufficient tomodify the allocation step adequately,
since this step can guarantee that each super-task is scheduled on
a sufficiently large processor group by the scheduling step. Many
different heuristics have been proposed for the allocation step. In
the following, we consider the allocation steps of the algorithms
CPA [29] and CPR [28] and describe their modification for super-
tasks.

Both algorithms employ an iterative approach for the allocation
step. The iteration starts with an allocation of a single processor to
each parallel task. In each step of the iteration, a parallel task is
selected and its allocation is increased by one. CPA only considers
tasks on the critical path and stops the iteration when the length
of the critical path drops below a given threshold. Due to the
increased allocation, the critical path may change in each iteration
step. CPR on the other hand, first selects a parallel task, increases
its processor allocation by one and runs the scheduling step. The
change of the allocation is committed if the resulting schedule
is better than any previously computed schedule. Otherwise the
change is revoked and another parallel task is considered. CPR
stops if the currently computed schedule cannot be improved by
assigning an additional processor to any task.

Both algorithms only increase the processor allocation of the
parallel tasks, i.e., the allocation cannot drop below the initial
allocation for any task. To account for the minimum number of
processors required by the super-tasks, the initial allocation for
each super-task used in the first iteration step has to be greater or
equal to the number of CM-tasks included in the respective super-
task. Thus, we modify the allocation step by initially assigning
exactly m processors to a super-task including m CM-tasks. The
modified algorithms resulting from CPA and CPR combined with
the transformation of the CM-task graph into the super-task graph
and the load balancing from Algorithm 1 are denoted as CM-CPA
and CM-CPR, respectively.

5.5. Building a CM-task schedule

In the final step, the schedule computed for the super-
task graph and the allocation functions for the super-tasks are
combined into the resulting CM-task schedule. For each super-
task, this phase has to determine specific processor groups for
the included CM-tasks based on the allocation computed in the
load balancing step. Different selections might lead to different
re-distribution costs between CM-tasks of different layers. Thus,
to reduce communication costs, this step tries to assign CM-tasks
connected by a P-relation to the same or at least to overlapping
sets of processors. Fig. 7(e) shows the resulting schedule for the
example CM-task graph.

6. Experimental evaluation

This section discusses experimental results obtained by apply-
ing the scheduling algorithms proposed in the previous section to
synthetic CM-task graphs as well as to complex application bench-
mark programs.

6.1. Simulation results

First, we compare the schedules obtained by the algorithms
CM-Layer, CM-CPA, and CM-CPR with data parallel and task parallel
schedules. A data parallel schedule denotes that each super-task
of the super-task graph is executed on all available processors,
i.e., the individual super-tasks are executed one after another.
The assignment of processors to the CM-tasks inside a super-
task is computed using the load balancing procedure from
Algorithm 1. The task parallel schedule is obtained by assigning
a single processor to each CM-task and using a modified list
scheduling approach to compute a feasible execution order.

For the simulation, three different test sets of CM-task graphs
are used. Each test set comprises 100 different CM-task graphs
with the same number of nodes n, n ∈ {10, 100, 1000}. The
CM-task graphs have been created using an extended version of
a graph generation algorithm for directed acyclic graphs [23].
The extended algorithm performs n2 steps to generate a CM-task
graph with n nodes starting with a CM-task graph consisting of
n nodes and no edges. In each step, the algorithm selects two
nodes at random. If these nodes are connected by a (directed or
bidirectional) edge, then this edge is removed from the current
graph. Otherwise, the algorithm decides at random whether to
connect these two nodes with a directed or with a bidirectional
edge. The new edge is only inserted if the resulting CM-task
graph remains feasible, i.e., it does not contain cycles of directed
edges or conflicting constraints of the execution order defined by
the directed and bidirectional edges. At the end, the algorithm
inserts an entry node that precedes all nodes without an incoming
directed edge and an exit node that succeeds all nodes without an
outgoing directed edge.

The parallel execution time of the synthetic CM-tasks is
simulated according to the model for parallel tasks used in [24].
This model assumes that each CM-task processes N data elements.
The computational complexity W (A) of a CM-task A is either
a · N (simulating the processing of a

√
N ×

√
N image), a ·

N logN (simulating the sorting of an array with N elements), or
a · N3/2 (simulating the multiplication of two dense

√
N ×

√
N

matrices), where a is a parameter that is picked uniformly from
the interval [26, . . . , 29

]. The parallel execution time of a CM-task
A executed on p processors is modeled according to Amdahl’s law,
i.e., T (A, p) = α∗W (A)+(1−α)∗W (A)/p, whereα is the fraction of
non-parallelizable code that is picked uniformly from the interval
[0, . . . , 0.25].

Fig. 8 (left) shows the relative performance for different
combinations of the number of CM-tasks in the CM-task graph
and the number of processors of the platform. The relative
performance is computed by first dividing the makespan of the
individual schedules obtained by CM-Layer by themakespan of the
corresponding schedules obtained by the respective algorithm and
then computing the average of the resulting values. The figure also
shows theminimumandmaximumvalues obtained in the division
for each scheduling algorithm. CM-CPR is not shown for CM-task
graphs with n = 1000 nodes, since this algorithm requires several
hours or even multiple days to schedule such large graphs due
to its high complexity. The results show that CM-Layer produces
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Fig. 8. (Left) Relative performance of different scheduling algorithms in comparison to CM-Layer; (right) runtime of the CM-task scheduling algorithm depending on the
number of CM-tasks n of the CM-task graph and the number of processors q of the target platform.
Table 1
Overview of the hardware and software configurations of the parallel platforms.

Platform name CPU type CPU clock/peak performance Nodes Cores per node MPI library Interconnection network

CHiC AMD Opteron 2218 2.6 GHz/5.2 GFlops/s 530 2 × 2 MVAPICH Infiniband
‘Santa Rosa’ v1.0 10 GBit/s

JuRoPA Intel Xeon X5570 2.93 GHz/11.72 GFlops/s 2208 2 × 4 ParaStation Infiniband
‘Nehalem’ MPI v5.0 40 GBit/s

SuperMIG Intel Xeon E7-4870 2.4 GHz/9.6 GFlops/s 205 4 × 10 IBM Infiniband
‘Westmere-EX’ MPI v5.2 40 GBit/s
the best schedules on average. In particular, the mixed parallel
schedules obtained by CM-Layer are always superior to a standard
data parallel and a standard task parallel execution. CM-CPA and
CM-CPR are outperformed on average, but may produce up to
80% better results than CM-Layer for specific CM-task graphs. This
usually happens for very deep CM-task graphs where CM-Layer
constructs many layers with only a few super-tasks each.

The runtime of CM-Layer depicted in Fig. 8 (right) has been
measured on an AMD Opteron ‘‘‘Istanbul’’’ system clocked at 2.1
GHz. The results show that even large CM-task graphs with 1000
nodes can be scheduled in less than 0.3 s for a platform with
1024 processors. This low execution time makes this algorithm
especially suited for the integration into a tool like the CM-task
compiler.

6.2. Hardware description

The application benchmarks are executed on three parallel
platforms, see Table 1 for an overview of the most important
parameters. The Chemnitz High Performance Linux (CHiC) cluster
consists of 530 nodes, each equipped with two AMDOpteron 2218
dual-core processors clocked with a clock rate of 2.6 GHz. The
peak performance of a single core is 5.2 GFlops/s. The nodes are
interconnected by an SDR Infiniband network and the MVAPICH
1.0 MPI library is used.

The JuRoPA cluster is built up of 2208 nodes, each consisting
of two Intel Xeon X5570 (Nehalem) quad-core processors. The
processors run at 2.93 GHz leading to a peak performance of 11.72
GFlops/s per core. A QDR Infiniband network connects the nodes
and the ParaStation MPI library 5.0 is used.

The SuperMIG system consists of 205 nodes, each equippedwith
four Intel Xeon E7-4870 (Westmere-EX) 10-core processors. The
processors are clocked at 2.4 GHz and achieve a peak performance
of 9.6 GFlops/s per core. The interconnection is a QDR Infiniband
network and the IBM MPI 5.2 library is used.
6.3. Evaluation of the ODE benchmarks

The first set of applications are solvers for systems of or-
dinary differential equations (ODEs). In particular, we con-
sider the Iterated Runge–Kutta (IRK) method and the Parallel
Adams–Bashforth–Moulton (PABM) [37] method, see Fig. 4 for the
CM-task specification program of the PABM method. Both meth-
ods perform a large number of time steps one after another. Each
time step computes a fixed number K of stage vectors. Three dif-
ferent parallel implementations are considered: The data parallel
version computes the K stage vectors of each time step one after
another using all available processors and, thus, contains several
global communication operations. The task parallel version based
on standard parallel tasks computes the K stage vectors concur-
rently on K disjoint equal-sized groups of processors. This restricts
the task internal communication to groups of processors but leads
to additional global communication for the exchange of interme-
diate results between the processor groups. An illustration of the
task graph for two time steps and K = 3 stage vectors is shown in
Fig. 1 (b). In the task parallel version based on CM-tasks a single CM-
task computes a specific stage vector over all time steps, see Fig. 1
(c) for an illustration of the CM-task graph. The data exchange be-
tween the individual CM-tasks at the end of each time step is or-
ganized in communication phases modeled by C-relations and is
implemented using orthogonal communication [31]. All program
versions are implemented in C and use theMPI library for commu-
nication between the processors.

Two different ODE systems have been used for the benchmarks.
The first ODE system results from the spatial discretization of the
2D Brusselator equation (BRUSS2D) [14]. The second ODE system
arises from a Galerkin approximation of a Schrödinger–Poisson
system (SCHROED). The time required to evaluate the entire ODE
systemdepends linearly (BRUSS2D) or quadratically (SCHROED) on
the size of the ODE system.
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Fig. 9. Measured execution times for a single time step of the IRK method with K = 4 stage vectors and the PABMmethod with K = 8 stage vectors on 256 processor cores
of the CHiC cluster (left) and the JuRoPA cluster (right).
Fig. 10. Performance of the IRK method with K = 4 stage vectors on the CHiC cluster (left) and of the PABMmethod with K = 8 stage vectors on the JuRoPA cluster (right)
for the SCHROED system.
Fig. 9 shows the average execution times of one time step
of the IRK and PABM methods for the BRUSS2D system. The
average has been computed by dividing the total execution time
by the number of time steps performed. A typical integration
may consist of tens of thousands of time steps, thus leading to
a large overall execution time. The measurements show that a
standard data parallel implementation leads to lower execution
times compared to standard parallel tasks for the IRK method
because additional data re-distribution operations are avoided. For
the PABM method, the task parallel version with standard parallel
tasks leads to lower runtimes than pure data parallelism because
the stage vector computations are decoupled from each other and,
thus,much fewer data re-distribution operations are required than
for the IRK method. The lowest execution times are achieved by
the task parallel version based on CM-tasks for both, the IRK and
the PABM method. For example, the runtime of the data parallel
implementation of the IRK method on the CHiC cluster can be
reduced to one fifth by employing CM-tasks.

Fig. 10 shows the total performance measured for IRK and
PABM methods for the SCHROED system. The results show that
especially on a large number of processors an efficient organization
of the data exchanges as it is provided by the CM-task model is
required to obtain a high performance. This is especially true for
the CHiC cluster because the interconnection is slower than on the
JuRoPA cluster. Compared to a sequential execution, the CM-task
implementation achieves a speedupof up to 465 (IRKon1024 cores
of the CHiC cluster) and of up to 790 (PABM on 1024 cores of the
JuRoPA cluster).

Fig. 11 (left) compares the performance of the CM-task program
version produced by the CM-task compilerwith a handwritten CM-
task implementation. The relative performance shown in the figure
has been obtained by dividing the average execution time of the
handwritten version by the runtime of the generated version. The
overhead of the generated version is mainly caused by the data
re-distribution operations which are implemented by collective
communication in the handwritten version and by point-to-point
communication in the generated version. The overhead decreases
from 20% (for small ODE systems) to under 2% (for large ODE
systems) because the share of the coordination code in the total
execution time decreases with the system size.

6.4. Evaluation of the NAS benchmarks

The second set of applications is taken from the NAS Parallel
Multi-Zone (NAS-MZ) benchmark suite [38]. These benchmarks
compute the solution of flow equations on a three-dimensional
discretization mesh that is partitioned into zones. One time step
consists of independent computations for each zone followed
by a border exchange between neighboring zones. The original
implementation uses OpenMP for the computations within the
zones and MPI for the data exchanges between zones. For the
purpose of this article we use a modified version that uses MPI
also within the zones and thus allows more flexible scheduling
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Fig. 11. Relative performance of the generated version of the IRK method compared to a handwritten implementation (left) and performance of the LU-MZ benchmark
(right).
Fig. 12. Performance of the SP-MZ (left) and the BT-MZ (right) benchmarks for different arrangements of zones into CM-tasks.
decisions on cluster systems. Two different implementations
are considered: The data parallel version uses all processors
to compute the individual zones one after another. The task
parallel version uses a set of CM-tasks each implementing the
computations of a subset of the zones and C-relations to model
the border exchanges between zones assigned to different CM-
tasks. Due to the C-relations all CM-tasks form a single super-task.
Thus, the scheduling algorithms CM-Layer, CM-CPA, and CM-CPR
compute identical schedules.

Fig. 11 (right) shows the measured performance of the LU-MZ
benchmark that consists of 16 equal-sized zones leading to 16
equal-sized processor groups in the CM-task implementation. For a
lownumber of cores, data parallelism leads to a better performance
on both platforms due to a better utilization of the cache and the
avoidance of communication for the border exchanges. For a high
number of cores, the implementationwith CM-tasks shows amuch
better scalability because the number of cores per zone is smaller
leading to smaller overall synchronization and waiting times.

Fig. 12 shows the performance of the SP-MZ and BT-MZ
benchmarks which both define 256 zones in class C . We compare
program versions with 16, 64, and 256 CM-tasks where each CM-
task computes 16, 4, and 1 zones one after another, respectively.
Data parallel implementations are not competitive for these
benchmarks, because the individual zones do not contain enough
computations to employ a large number of cores. The number
of cores per zone is much smaller in the task parallel versions
leading to amuch higher performance. In the SP-MZ benchmark all
zones have the same size and, thus, equal-sized processor groups
are used to execute the CM-tasks. This is only possible when the
number of processor cores is a multiple of the number of CM-
tasks. In all other cases, load imbalances between the processor
groups lead to a degradation of the performance. For example,
the program version with 256 CM-tasks has almost the same
performance on 512 as on 640 processor cores.

The zones in the BT-MZ benchmark have different sizes and,
thus, the assignment of an equal amount of workload to each
processor by the load balancing from Algorithm 1 is important. For
example, the program versionwith 256 CM-tasks suffers from load
imbalances on 256 cores. These imbalances cannot be eliminated
because one core has to be used for each CM-task. On 512 cores,
the performance of the program version is approximately 3.7
times higher than on 256 cores. This result indicates that the load
imbalances have been reduced considerably.

Next, we compare different super-task scheduling decisions
for the SP-MZ and BT-MZ benchmarks. For this purpose, we as-
sign each zone to a separate CM-task and model only a subset
of the border exchanges with C-relations. The border exchanges
not captured by C-relations are performed by an additional global
communication step at the end of each time step. The resulting
overhead is small compared to the computation time for a single
zone. Depending on thenumber ofC-relations used, different num-
bers of super-tasks result which are independent of each other.
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Fig. 13. Performance of the SP-MZ (left) and the BT-MZ (right) benchmarks for different scheduling algorithms.
We consider program versions with 1 CM-task per super-task,
i.e., no C-relations at all, 16 CM-tasks per super-task, and 256 CM-
tasks per super-task, i.e., the program version with 256 CM-tasks
used for the benchmarks in Fig. 12.

Fig. 13 shows the resulting performance for the different
scheduling algorithms. Using 256 CM-tasks per super-task leads
to a single super-task and, thus, all algorithms compute the same
schedule. The results show that the algorithms CM-Layer and CM-
CPR are successful in computing an efficient execution scheme. The
schedules produced by CM-CPA are competitive in some situations,
e.g., for the SP-MZ benchmark executed on 1024 processor cores.
But in other cases CM-CPA may also deliver schedules that lead to
a much lower overall performance, e.g., for the BT-MZ benchmark
executed on 1024 processor cores. The reason for this behavior is
the decoupling of the allocation step from the scheduling step in
CM-CPA. As a result, the allocation step may assign a number of
processors to the super-tasks that prevents the scheduling step to
use all available processors for the execution of independent super-
tasks leading to a substantial amount of unused processor time.

7. Related work

There exists a variety of programming models and software
tools with the support of mixed task and data parallel applications,
see [1,4,8,34] for an overview. The approaches can roughly
be classified into language extensions, parallel libraries, and
coordination-based approaches. Language extensions are based on
an existing programming language with additional annotations
or language constructs to describe mixed parallel executions. The
basis is usually either a data parallel language that is extended
by task parallel constructs, or a task parallel language that is
extendedwith support for data parallelism. Examples for language
extensions are Fortran M [11], Opus [5], and Fx [35]. In these
approaches, the programmer is responsible for the coordination of
the individual data parallel program parts, i.e., the parallel tasks.
The dependences between the individual parallel tasks are defined
implicitly in the respective source program. In contrast, the CM-
task framework includes an explicit specification language that can
be transformed to an explicit coordination structure represented
in the form of CM-task graphs. The explicit coordination enables a
global scheduling, i.e., the adaption to a specific parallel platform
can be supported by software tools.

Parallel libraries can support mixed parallel executions by pro-
viding suitable library functions, e.g., to coordinate or synchronize
data parallel tasks, to manage processor groups and support the
execution of data parallel tasks on these groups, or to re-distribute
parallel data structures between groups of processors. Examples
for such libraries are the HPF/MPI library [12] that allows the
coupling of multiple data parallel HPF programs, and the TLib li-
brary [33] that provides support for the concurrent execution of
parallel tasks on disjoint groups of processors. The TLib approach
is especially suited for hierarchical divide-and-conquer algorithms.
Similar to the language extensions, the coordination structure is
implicit and there is no scheduling support for the entire applica-
tion.

Coordination-based approaches have an explicit coordination
structure that provides a global view on the entire application.
Paradigm [30] is a parallelizing compiler, which extracts the
parallel task graph from annotations in the program source
code. Network of tasks [26] is a programming model in which
a parallel application is specified in form of a directed acyclic
graph where each graph node represents a parallel program.
Both approaches include a scheduler for the mapping of the task
graph to different parallel platforms. The interactions between the
tasks are restricted to input–output relations. The CM-task model
considered in this article is an extension of these approacheswhich
captures additional communication patterns that are modeled by
communication relations.

The determination of an optimal schedule for an application
consisting of parallel tasks with precedence constraints is an NP-
hard problem that is usually solved by scheduling heuristics or
approximation algorithms [22]. In this article, we have proposed
a layer-based scheduling algorithm that first decomposes a given
task graph into layers of independent tasks and then schedules the
resulting layers one after another using a list scheduling approach.
Many other scheduling algorithms for parallel task use a two-
step approach consisting of an allocation step that determines
the number of processors for each parallel task and a scheduling
step that assigns the parallel tasks to specific sets of processors.
The scheduling step is usually based on a modified list scheduling
algorithm. The allocation step often uses an iterative approach that
starts with an initial allocation (usually one processor per parallel
tasks) and repeatedly assigns additional processorswith the goal to
shorten the critical path of the task graph until a specific stopping
criterion is reached. Examples for such algorithms are CPR [28],
CPA [29], MCPA [2], Loc-MPS [39] and RATS [18]. These algorithms
can easily be extended to the CM-task scheduling problem as
described in Section 5.4.2. TSAS [30] defines a convex optimization
problem that has to be solved in the allocation step. An alternative
to this two step approach is to use evolutionary algorithms for the
entire scheduling decision [10,17]. A work stealing approach for
the online scheduling of parallel tasks in a shared address space has
been investigated in [40]. All of the above mentioned algorithms
have been designed for the standard parallel task model and, thus,
have to be adapted to additionally consider the C-relations of the
CM-task model.
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8. Conclusions

In this article, we have presented a parallel programming
model with mixed task and data parallelism for coding modular
applications. This model is based on parallel tasks where each
parallel task can be executed on an arbitrary set of processors
and may be hierarchically decomposed into further parallel
tasks. Existing programming models for parallel tasks usually
consider task graphs with input–output dependences (precedence
constraints). We have extended these models by additionally
supporting communication between concurrently running parallel
tasks. The extended model captures two types of dependences,
input–output dependences and communication dependences,
thus providing a more flexible way to structure complex modular
applications.

The development of applications in the extended model is sup-
ported by a compiler framework that transforms a user-provided
specification of the task interactions into an executable parallel
program. The framework includes a static scheduler that computes
a suitable execution scheme based on the characteristics of the
target platform. This approach relieves the programmer from the
need to specify an explicit task mapping and leads to a portabil-
ity of the application performance. For the scheduling decision,
scheduling algorithms for parallel tasks have to be modified to fit
the needs of the extendedmodel. Thesemodifications have been il-
lustrated for layer-based as well as critical-path based scheduling
approaches. The overhead of applying the transformation tool is
small compared to the performance improvement achievable, thus
combining performance efficiency and programmability.
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