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h i g h l i g h t s

• A methodology to improve performance in data-intensive applications has been designed.
• It adapts at run time the workload partition factor and the number of resources to be used.
• Adaptation of the partition factor enables load balancing and overall time reduction.
• Adaptation of the number of resources used enables execution without large idle times.
• Obtained results using real data-intensive applications are encouraging and positive.
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a b s t r a c t

The recent data deluge needing to be processed represents one of the major challenges in the compu-
tational field. This fact led to the growth of specially-designed applications known as data-intensive ap-
plications. In general, in order to ease the parallel execution of data-intensive applications input data is
divided into smaller data chunks that can be processed separately. However, in many cases, these appli-
cations show severe performance problems mainly due to the load imbalance, inefficient use of available
resources, and improper data partition policies. In addition, the impact of these performance problems
can depend on the dynamic behavior of the application.

This work proposes a methodology to dynamically improve the performance of data-intensive appli-
cations based on: (i) adapting the size and the number of data partitions to reduce the overall execution
time; and (ii) adapting the number of processing nodes to achieve an efficient execution. We propose to
monitor the application behavior for each exploration (query) and use gathered data to dynamically tune
the performance of the application. The methodology assumes that a single execution includes multiple
related queries on the same partitioned workload.

The adaptation of the workload partition factor is addressed through the definition of the initial size
for the data chunks; the modification of the scheduling policy to send first data chunks with large pro-
cessing times; dividing of the data chunks with the biggest associated computation times; and joining
of data chunks with small computation times. The criteria for dividing or gathering chunks are based on
the chunks’ associated execution time (average and standard deviation) and the number of processing
elements being used. Additionally, the resources utilization is addressed through the dynamic evaluation
of the application performance and the estimation and modification of the number of processing nodes
that can be efficiently used.

We have evaluated our strategy using as cases of study a real and a synthetic data-intensive applica-
tion. Analytical expressions have been analyzed through simulation. Applying our methodology, we have
obtained encouraging results reducing total execution times and efficient use of resources.
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1. Introduction

Nowadays, one of the biggest challenges in the computational
field is the continuous growth of data that needs to be processed.
The data flow coming from sensors, results of biological and phys-
ical experiments [1], and even from the information generated by
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users, are surpassing the capacities of the systems and algorithms
recently designed. This led to a new type of applications known as
data-intensive applications [2], or big-data computing [3].

In the era of data-intensive applications, computational sys-
tems are not only intended to compute but also to store and man-
age data. Given the current volume of data, those tasks increase the
challenge and complexity of developing a suitable solution. More-
over, the efficient data processing is not only a matter of having a
large number of processing units because it also depends on char-
acteristics of the workload of the application.

In order to improve performance, there are many studies that
have obtained good results, ranging from approaches that analyze
the effectiveness of I/O systems, to the design of appropriate strate-
gies to define and access data structures [4]. In many cases, it has
been necessary to divide the workload of data-intensive applica-
tions into smaller data chunks (according to Divisible Load Theory,
DLT [5]) to ensure that theworkload of the application can beman-
ageable. This has been done to reduce the size of the workload and
enable parallelism, but once the workload has been divided, other
issues rise like those related to disk access or load balancing.

The execution of data-intensive applications that involves a
large number of queries or iterations, may lead to variations in the
overall execution time between iterations. For this reason, perfor-
mance analysis and load balancing techniques must be adapted to
particular characteristics of the application. In most cases, given
the variability between (or within) iterations, performance analy-
sis must be carried out at run time. This is an extremely complex
process because it is carried out during the execution of the ap-
plication without incurring in excessive overheads. If not, the pro-
posed solution may be obsolete from one iteration to the other.

Most load balancing methods, such as factoring [6,7], are based
on the idea of distributing the workload of the application in
chunks of decreasing size. For the purpose of improving total com-
putation time of scientific applications, these methods try to de-
termine a good partition factor to obtain the chunks. When doing
this, parameters such as computation time, communication time,
and overall performance of the application are taken into consid-
eration.

This work proposes a methodology that dynamically identifies
and tunes load imbalances in parallel data-intensive applications.
This proposal is oriented to: applications that perform several re-
lated explorations or queries1 on a large workload; and the possi-
bility of arbitrarily dividing or concatenating the workload of the
application into data chunks of different size. These assumptions
are sound because large-scale data processing usually consists on
launching several related explorations on the data, and processing
can be performed on data chunks of arbitrary size.

To improve performance in parallel data-intensive applications
with arbitrarily divisible workloads, our methodology considers:
(i) the adaptation of the partition factor for the workload to reduce
the overall execution time and avoid load imbalances; and (ii) the
modification of the number of processing nodes that can be used
efficiently. This proposal works for homogeneous clusters and uses
an application performance model that allows for dynamically ad-
justing the tuning parameters according to the current application
behavior.

Themethodology is based onmonitoring the computation time
of generated data chunks to determine the order in which they
should be scheduled in future explorations. The proposal includes
the dynamic division and gathering of data chunks (when the par-
titioning cost is low); and the possibility of dynamically choosing
among previously generated partitions (when the partition cost is
too high). In both cases, the calculation of the partition factor will
take into consideration the communication cost, memory use, and

1 We consider terms: exploration, query and iteration as synonyms; and they
may be used interchangeably along this work.
the number of available computing nodes (besides the computa-
tion time).

Ourmethodology assumes that a single execution includesmul-
tiple related explorations on the same partitioned workload. Thus,
previously collected data for one exploration can be used to dy-
namically adapt the number of resources (processing nodes) for
subsequent explorations. As our method is based on the execu-
tion of applications in homogeneous clusters of workstations, the
computation capacity is constant and, in most cases, the disk and
network latency are stable. Moreover, in order to make easier the
initial design we used a shared nothing [8] processing approach.
Under this approach, each node (consisting of processor, local
memory, and disk resources) shares nothing with other nodes in
the cluster.

Summarizing, our strategy proposes:
(a) generating multiple representative workload partitions prior

to the execution of the application when the cost of partition-
ing data is too high;

(b) monitoring the computation time of every exploration or query
on every data chunk;

(c) ordering and allocation of data chunks along the execution
of the application according to their associated computation
times;

(d) tuning of the partition factor of the data chunks with the
highest (partitioning) and lowest (grouping) associated com-
putation times according to the observed efficiency (relation
between computation time and the number of computation
nodes);

(e) distributing newly generated data chunks in subsequent explo-
rations;

(f) estimating the number of processing nodes to be effectively
used by the application.

The evaluation of our proposal has been carried out in a real and
widely used data-intensive application: the computation/data-
intensive bioinformatics tool Basic Local Alignment Sequence Tool
(BLAST) [9], aswell as on a distributedmerge sort. Results obtained
from both applications are encouraging in terms of total execution
time reduction and the efficient use of resources.

Moreover, an analytical simulator has been used to evaluate the
analytical expressions of the methodology. These expressions are
used to estimate the modifications in the size of the data chunks
and in the number of processing nodes to be used. In order to
analyze the behavior of the methodology we used the simulation
for a wider range of scenarios.

The rest of the paper is organized as follows. First, Section 2
provides an overview of related work. Next, Section 3 describes
the proposed methodology for balancing the load and improving
performance of data-intensive applications. Section 4 shows the
most relevance characteristics of the selected scenarios to eval-
uate our methodology: (i) a real data-intensive application, the
bioinformatics tool BLAST; (ii) a synthetic application based on a
distributed sorting algorithm; and (iii) an analytical simulator of
data-intensive applications. In addition, Section 4 explains the rea-
sons for using these applications to test the proposedmethodology.
Section 5 where the experimental evaluation is described and re-
sults are discussed. Finally, Section 6 shows the conclusions and
outlines future work.

2. Related work

A divisible workload is such that can be divided into several in-
dependent pieces or chunks of arbitrary size to be processed in par-
allel by a set of compute nodes. The Divisible Load Theory (DLT) [5]
was introduced in the late 1980s. Later on, DLT has branched in
many new directions covering scheduling problems and perfor-
mancemodeling for various types of computational environments,
such as Grid and Cloud systems [10], systems with memory limi-
tations [11] or with computation time restrictions [12].
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Some approaches, as the presented in [13], consider models of
adaptive divisible load based on Genetic Algorithms in order to im-
prove scheduling tasks on large scale data grids. In their work, they
have decided the size of the portion of workload to be allocated to
each processor to minimize the turnaround time of a job.

Others works, such as [14], have performed a wide study on
the complexity ofmulti-round divisible load scheduling. They have
considered a Master/Worker approach using heterogeneous plat-
forms and have answered how the load should be partitioned in
order to minimize the time to complete the last unit of work. In
addition, alternative methods to obtain data complexity reduction
in distributed environments via fragmentation [15] are used to im-
prove performance of distributed systems.

Many of these studies have used the linear programming mod-
els proposed in the first publications of DLT to represent the
scheduling problem as a system of linear equations. These equa-
tions are evaluated at run time to decide the appropriate amount
of load to deliver at each processing node. On the contrary, our
proposal uses analytical expressions to estimate both the size of
the load to be delivered and the appropriate number of resources
to be used. Previous works also consider factors, such as: variable
startup times of the processing nodes [12], different types of inter-
connection networks [16] or, in recent publications, Map Reduce
computations [17] that are outside the scope of this work.

Regarding the dynamic tuning of performance parameters, the
works proposed in [18,19] have introduced the use of a load bal-
ancing strategy named factoring [6,7] tomodify the size of the data
chunks distributed among the workers. In the first proposal, the
authors have detailed a performancemodel forMaster/Worker ap-
plications that comprises two stages: one stage for load balancing,
and the other to adapt the number of workers.

Later, they have defined a strategy for dynamically improving
the performance of pipeline applications [20]. This strategy im-
proves the throughput of applications by gathering the fastest pipe
stages and replicating the slowest ones. In thiswork,we further ex-
tend the basis proposed by [18–20] to parallel data-intensive ap-
plications with arbitrarily divisible loads.

Finally, there are some works that consider the processing
characteristics of data-intensive applications for developing dy-
namic load balancing strategies, such as [21,22]. The first is fo-
cused on multicast problems for data-intensive applications on
the Cloud, while the second developed the resource allocation and
scheduling strategy tominimize the total time spent on processing
data. Although these works have considered partitioning data, it is
mainly focused ondata locality. An additional andmodern research
context of the possible application scenarios where our proposal
would turn to be useful is provided by the authors of [23].

3. Methodology for improving performance in data-intensive
applications

The main contribution of this work is the introduction of a
methodology for improving the performance of data-intensive ap-
plications through dynamic load balancing and adaptation of the
number of used resources. Specifically, the methodology deter-
mines: (i) the number of data chunks in which the workload is
divided; (ii) the scheduling strategy for data chunks; and (iii) the
number of processing nodes to be used. Thismethodology has been
developed making the following assumptions:

1. the initial workload of the application can be arbitrary parti-
tioned into independent data chunks;

2. the application performs a set of related explorations or queries
on the workload, e.g. the application searches similarities for
several related proteins on a large database, or looks for related
strings on the web;
Fig. 1. General description of the load balancing methodology.

3. the performance of the application varies significantly (accord-
ing to the input data), justifying the use of a dynamic perfor-
mance analysis/tuning approach;

4. the characteristics of the input data are unknown at the begin-
ning.

The methodology has been designed for homogeneous clusters
because they provide steadiness in systems’ parameters, such as
processing capacity and disk and network latency, simplifying the
model definition.

The proposed methodology, represented on Fig. 1, includes a
partitioning phase and a dynamic analysis phase. In the partition-
ing phase, the initial workload is divided into smaller pieces, and
multiple alternative partitions are generated whether the cost of
generating new partitions during the application execution is too
high. The aimof our approach is to take advantage of the adaptation
made in [19] to the load balancing policy, named factoring [6,7].
The modification proposed in [19] is based on distributing the
workload in chunks of decreasing size to keep execution balanced.
Along these lines, if the cost of dynamically generating new par-
titions is acceptable, the policy will be applied at the execution
time. However, the workload’s partitioning cost can be high for
data-intensive applications. If this happens, we propose to gener-
ate multiple partitions before executing the application and then,
during the execution choose which of them is the most appropri-
ated one. In the dynamic analysis phase, performance metrics are
collected and the performance model is evaluated. Both tasks are
carried out dynamically in order to determine which tuning pa-
rameters must be adjusted for the next exploration. In this phase,
the performance of the application is improved at run time by tun-
ing three performance parameters: (i) the workload partition fac-
tor (number of data chunks); (ii) the scheduling policy; and (iii) the
number of resources (processing nodes) used. In order to perform a
dynamic tuning,measurements relative to the execution timehave
to be collected at run time. Then, the collected data is evaluated
using the performancemodel and, based on the results of the eval-
uation, the performance parameters are tuned. The notation used
in our methodology is described in Table 1.

Thedynamic analysis phase is summarized in the flowchart pre-
sented in Fig. 2. Here, the main tasks performed in the dynamic
analysis phase are highlighted: (i) measurement; (ii) model evalu-
ation; and (iii) tuning. The execution of the application startswith a
set of default values for both the partition factor and the number of
processing nodes. The selection of these values is based on the cri-
teria described in Section 3.1. These values can be modified at run
timebecause they affect the overall performance of the application.

Data chunks associated computation time is collected in the
measurement phase. In the first exploration, a First Come First
Serve scheduling policy is used because there is no information
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Table 1
Summary of notation.

Notation Description

Nf Number of data chunks.
Nq Number of explorations (queries).
Nw Maximum number of processing nodes available.
j Data chunk identifier (0 < j < Nf ).
i Exploration identifier (0 < i < Nq).
n Number of active processing nodes (0 < n ≤ Nw).
Size Data chunk size (inMByte).
λ Communication cost by MByte (BW−1).
Cij Computation cost (in secs) for the ith exploration and the jth data

chunk.
Ci Total computation time (in secs) for the ith exploration

Ci =
Nf

j=1 Cij


µi Average computation time (in secs) for the ith exploration

µi = (
Nf

j=1 Cij)/(Nf )


σi Standard deviation of computation time (in secs).
ρn Performance index for n number of workers.
Tsi Total sequential computation time for the ith exploration

∀i ∈ Nq : Tsi =
Nf

j=1 Cij


Tmaxi Maximum computation time for ith expl.
Tideal Ideal computation time for a parallel execution.
y Number of divisions for data chunks with Cij > Tideal .
Tgroupid Computation time for the grouped data chunks.
Nwmax Maximum number of workers


Nwmax =

Tsi
Tmaxij


SP Scheduling policy.

Fig. 2. Dynamic analysis phase of the load balancing methodology.

about data chunks’ computation time. Starting from the second
exploration, once the computation times have been collected, the
scheduling policy is updated to aHeaviest Fragments First approach
(sending data chunks according to their processing times in de-
creasing order). After this point, gathered data is evaluated in the
model evaluation phase; and the corresponding modifications in
the execution of the application are introduced in the tuning phase
(if necessary). Through this process, the workload partition factor
and the number of processing nodes can be adjusted. The tuning
of such performance parameters is carried out to minimize the to-
tal execution time while keeping an efficient use of resources. The
application’sworkloadmight have been partitioned prior to execu-
tion, but the tuning of these parameters will be done dynamically
and continuously at the run time.
3.1. Selection of the initial workload partition factor

In general, the workload of data-intensive applications can be
split into smaller data chunks. Nevertheless, to select how many
data chunks should be generated, i.e. theworkload partition factor,
is a non-trivial endeavor. The difficulty resides in how to choose a
trade-off between a well balanced executions and low execution
times. If applications are executed using a large number of data
chunks (i.e. a high partition factor) it may be easier to avoid load
imbalances. However, the replication of the serial fraction of each
chunk may introduce some overhead in the total execution time.

First, an initial common partition factor for all data chunks is
established. This factor is based on: (i) hardware parameters, such
as the available physical memory, the network bandwidth, and the
number of available resources (nodes); and (ii) application param-
eters, such as the total size of the workload, its partitioning cost
(time), and the number of explorations. Particularly, the partition-
ing cost determines whether all partitions or only the initial ones,
are going to be generated before the execution of the application. In
the first case, the proposed methodology will dynamically choose
the best partition factor among those available, while in the second
case it will generate the best partition dynamically.

Once data chunks have been generated using the defined size,
the application can be executed. After executing the application,
and given the characteristics of data-intensive applications, it can
be seen that even when all data chunks have the same size, the av-
erage computation time by data chunkmay vary. We use this vari-
ation to determine themodifications of the size of the data chunks.

Wepropose to start the computation using a relatively high par-
tition factor (determined by system and application characteris-
tics described above) because there is no initial information about
the cost of processing each data chunk. In this way, the method-
ology initially tries to meet the load balancing goal by distributing
smaller data chunks.

3.2. Selecting a scheduling policy

The application starts with predefined default values for the
tuneable parameters: a high number of workers, limited by the
number of nodes available in the cluster, and a high workload
partition factor (as shown in Fig. 3(a)). As we mentioned before,
ourmethodology assumes that the explorations are related to each
other and they are processed sequentially. Once an exploration has
been processed, the execution time for each data chunk is stored
and historical statistics updated.

In the first iteration (exploration), a First Come First Serve
scheduling policy is used because there is no information about
data chunks’ computation time (as shown in Fig. 3(b)). Then,
starting from the second exploration, data chunks are ordered
and scheduled according to their associated processing time. Data
chunks are ordered from the heaviest (those with highest process-
ing time) to the lightest ones (with the lowest processing time) as
shown in Fig. 3(c). When a worker requests a chunk, it receives the
heaviest non-processed chunk. This scheduling method is known
as HFF (Heaviest Fragments First) [24].

Additionally, when monitoring the behavior of the application
using the initialworkload partition factor, two kinds of data chunks
are identified: (i) thosewhose computation time Cij is above the av-
erage computation time of the exploration µi; and (ii) those data
chunks whose computation time Cij is below the average compu-
tation time of the exploration µi. Data chunk with the maximum
computation time is labeled as Tmaxi . In a parallel execution using
a fixed number of processing nodes, any node that finishes before
the worker processing the data chunk labeled as Tmaxi will be idle
until that worker finishes, resulting in an inefficient execution (as
shown in Fig. 3(d), where the total execution timewill not be lower
than the time of the data chunk number 5).
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(a) Initial workload. (b) First come first serve policy.

(c) Workload sorted in decreasing order. (d) Heaviest fragments first policy.

Fig. 3. Comparison between scheduling policies.
3.3. Adjusting the partition factor

Besides scheduling, the proposed methodology also adapts dy-
namically the partition factor with the aim of balancing the load
among workers (this strategy has been named HFF + factor).
The methodology considers: (i) repartitioning the data chunk(s)
with highest associated computation time; and (ii) gathering data
chunks with low associated computation times. The main criteria
to decide when to partition, or when to group, is given by estimat-
ing the best possible computation time. In this particular case, ideal
time (Tideal, shown in expression (1)), is given by the relation be-
tween the serial computation time of the entire workload, Tsi; and
the total number of available processing nodes Nw .

Consequently, monitoring the execution time of the data
chunks Cij allows to calculate the average computation timeµi and
standard deviation σi, which are used for deciding the chunks that
should be partitioned and the chunks that should be grouped.

Tideal =
Tsi
Nw

=
(µi ∗ Nf )

Nw

. (1)

3.3.1. Partitioning
When executing a data-intensive application in parallel, the to-

tal execution time Ci is given by the last worker that finishes pro-
cessing. Usually, this delay is given by processing data chunks with
large execution times. In order to reduce this time and balance the
execution, we propose to break this (or these) data chunk(s) into
smaller pieces, and reallocate themamong the available processing
nodes.

In this work, we chose a conservative approach to partition data
chunks in order to prevent unnecessary reallocation of data chunks
with short execution times. A threshold, defined by expression (2),
is used to determinewhether a data chunk should be partitioned or
not.We defined this restriction because, in some cases, after repar-
titioning a data chunk, its computation timedoes not scale linearly;
i.e. if the data chunk has a computation time T , and it is divided into
2 new pieces, the computation time associated to the pieces does
not necessarily is going to be T/2. This behavior has been observed
through experimentation, and this non-linearity characteristic
depends on both the algorithm and the data.

Cij > Tideal. (2)

With the objective of reducing the gap between data chunks with
large execution time, and the ideal time Tideal, there is a need to es-
timate the computation time for partitioned data chunks. In this
sense, a statistic of order Nw (shown in expression (3)) is used to
estimate the upper bound for computation time of the new data
chunks. This estimation is based on the average computation time,
the standard deviation of the data chunks computation times, and
the number of processing nodes used.

E = µi + σi ∗

Nw/2. (3)

For statistical purposes and with the objective of enabling the es-
timation of the number of new partitions, we have introduced ap-
propriate modifications to ensure consistency of (3), resulting on
the expression (4).

E =


Cij

y


+


σi

y


∗


Nw

2
. (4)

In this expression, the average computation time of data chunks
which meets the time restriction (2) will be given by the relation
between their associated computation time Cij and the number of
new data chunks generated y. Similarly, standard deviation of new
data chunks will be represented as the relation between the stan-
dard deviation of processing the whole workload and the number
of newly generated pieces. These assumptions are sound because
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(a) Previous execution. (b) Partitioning.

(c) Measuring. (d) Sorting.

Fig. 4. Partitioning data chunks with the highest execution times.
the mean value of the sampling distribution of means is exactly
the same as the populationmean; and the variance of the sampling
distribution of variances equals the population variance divided by
the sample size.

Cij

y


+


σi

y


∗


Nw

2
≤ Tideal. (5)

Finally, to define the number of new data chunks to be generated,
ymust be calculated from expression (5), leading to expression (6).

y =

Nw ∗


Cij + σi ∗


Nw

2



µi ∗ Nf

 . (6)

For example, if an exploration is executed using the following val-
ues for the number of processing nodes and partition factor, Nw =

5 and Nf = 10, the resulting scheduling may look as the one in
Fig. 4(a). In this case, there are data chunks with different associ-
ated computation times, and the data chunk with the largest com-
putation time (about 40 time units) can be easily identified. In
this example the corresponding values for the average computa-
tion time, the standard deviation, and the expected ideal time are
µi = 8, σi = 11.49, and Tideal = 16.

After evaluating the restriction given by expression (2), and
solving y from expression (6), the resulting value for the number of
pieces in which data chunk j = 5 should be partitioned is y = 4 (as
shown in Fig. 4(b)). However, the computation times for the new
data chunks are unknown. Then, a subsequent exploration is used
for labeling new data chunks with their associated computation
times. In order to avoid possible load imbalances, new data chunks
are scheduled when their original data chunk was expected to be
sent (Fig. 4(c)). The new chunks can be labeled and rearranged in
decreasing order of computation time, for the next exploration (as
shown in Fig. 4(d)).
3.3.2. Grouping
Partitioning the workload in small data chunks may improve

load balancing but can also produce overheads on scheduling, com-
munication and computing. Consequently, we propose to evaluate
the application performance at run time and, whether is conve-
nient to group or distribute bigger data chunks to avoid these over-
heads.

For every data chunk that can be grouped, the grouping strategy
will stop when the sum of the associated computation time of the
data chunk exceeds Tideal. However, by doing this, too many data
chunks with a similar computation time may be generated. If this
happens, the number of data chunks with short computation time
will not be enough to fill the blanks left by imbalances along the
exploration. Due to this situation, we considered a more precise
approach to estimate the total time for the grouped data chunks.
This has been achieved by defining a time threshold for such data
chunks (as shown in expression (7)). Thus, the computation time
of new data chunks is kept way below ideal time enabling us to
dispose of data chunks small enough to fill gaps on the execution
time and facilitate a balanced execution.

Tgroup ≤ Tideal. (7)

For the sake of clarity in the example, data chunks are left in the
same order as in the previous execution (as shown in Fig. 5(a)).
Then, bigger data chunks are created by grouping ‘‘smaller’’ data
chunks (those data chunks with the lowest execution times) while
the restriction defined in expression (7) is not met. We evaluate
the possible resulting computation time when grouping, i.e. Tgroup,
by adding the computation time of the selected data chunks. For
this particular example, we group data chunks 51 and 6, 1 and 8, 52
and 7, and 3 and 53 (as shown in Fig. 5(b)) because the sum of their
computation times is below the defined threshold. Later, similarly
to partitioning strategy, new data chunks are executed when their
maximum of their original data chunks would have been executed
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(a) Previous execution. (b) Grouping.

(c) Measuring. (d) Sorting.

Fig. 5. Grouping data chunks with the shortest execution times.
(as represented in Fig. 5(c)) to label the data chunkswith their new
associated computation time. In this manner they can be sorted in
decreasing order for the following explorations (Fig. 5(d)).

3.4. Estimation of the number of resources being used

After tuning thepartition factor, andonce the load is as balanced
as possible, we can assess the number of resources (processing
nodes) that are going to be used. It is possible to determine the
maximum number of processing nodes n that can be used, accord-
ingly to the measured processing time for each data chunk, and
expressions (8) and (9).

n ≤
Tsi

Tmaxij
. (8)

Expression (8) is used to calculate the maximum number of work-
ers which may be processing efficiently. It is possible to infer from
(8) that the minimum execution time for an exploration is lim-
ited by the chunk with the maximum processing time. Expression
(9) is used to calculate the maximum number of processing nodes
(workers) that can be managed by the master. If a worker finishes
before the master has distributed chunks to every other worker
that worker must wait.

n ≤

Nf
j=1

Cij

λ ∗ size ∗ Nf
. (9)

In addition, the methodology must be able to estimate the appli-
cation execution time for an exploration using a certain number of
workers, in order to decide if this parameter should be changed.
This estimation is done through expression (10), which takes into
consideration the time needed for sending the first chunk to all
workers (λ∗size∗(n−1)) and the computation done by oneworker
((λ ∗ size) + µi) on every chunk it expects to receive (Nf /n).

tqi(n) = [λ ∗ size ∗ (n − 1)] + (Nf /n) ∗ [(λ ∗ size) + µi]. (10)
The criteria for deciding the appropriated number of workers have
been defined as an index relating the estimated execution time
(tqi(n)) and the efficient use of the resources. Efficiency is defined
by (11) as the relation between the mean computation time for
each chunk (µi), which is the time each node has been doing useful
work, and the total time the node has been available (tqi(n)).

Efn =
µi ∗ Nf

n ∗ tqi(n)
. (11)

Consequently, expression (12) was designed to find the number of
workers that minimizes both the exploration execution time and
the efficiency loss.

ρn =
tqi(n)
Ef (n)

=
n ∗ tq2i (n)
µi ∗ Nf

. (12)

Summarizing, the number of processing nodes (n, workers) used
by the application is delimited by the minimum values of (8), (9)
and (12).

In order to be able to dynamically tune these factors, the follow-
ing parameters must be monitored: network parameters, such as
bandwidth and setup overhead; communication parameters, such
asmessage size; and computation parameters, such as CPU utiliza-
tion. In thisway, the loop shown in Fig. 1 is closed, covering the pro-
cess of dynamic monitoring, analysis, and tuning a data-intensive
application with divisible workload.

4. Case studies of data-intensive applications

The proposedmethodology has been designed considering ded-
icated clusters working under a shared nothing [8] processing ap-
proach. This means that each node consisting of processor, local
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memory, and disk resources shares nothingwith other nodes in the
cluster. Additionally, analyzed data-intensive applications have
been developed under a Master/Worker paradigm, where each
worker is assigned to a different processing node and they do not
communicate between them.

Themethodology has been evaluated using: (i) a real andwidely
used data-intensive application, BLAST (Section 4.1); (ii) a syn-
thetic application based on the merge sort algorithm (Section 4.2);
and (iii) an analytical simulator (Section 4.3). Each scenario has
been selected to analyze different stages of themethodology. First,
BLASTwas used as themain case of study to check the performance
gain for real applications when applying our proposal. Then, we
used a synthetic application to facilitate the analysis of the work-
load partition factor adaption at run time (because, in comparison
with BLAST, the partitioning process is faster). Finally, the analyt-
ical simulator evaluates the methodology in a wide range of sce-
narios.

4.1. Basic local alignment search tool

As a real application, we choose BLAST (Basic Local Alignment
Sequence Tool) [9] for assessing our proposal because: (a) it is one
of themost widely used bioinformatics tools, and (b) it satisfies the
assumptions presented in Section 3.

BLAST searches for regions of similarity in biological queries
(nucleotides or proteins). It calculates the statistical significance
of matches comparing the entrance query with large databases
of sequences, such as GenBank or Swiss-Prot. Based on heuris-
tics, BLAST algorithm improves up to 10 times the exact match
Smith–Waterman Algorithm [25].

BLAST is both a CPU and a data-intensive application. This ap-
plication presents long and irregular processing times due to data
characteristics, and it processes biological databases up to 50 GB
size — and growing — that can be arbitrarily divided into non-
dependent data chunks (in BLAST literature these chunks are called
fragments).

Most parallel BLAST versions, such as mpiBLAST [26] and
ScalaBLAST [4], have been developed using the Master/Worker
paradigm and they take advantage of the parallelism of the sys-
tems using database partitioning. In general, the data is partitioned
and the generated database fragments are distributed between all
available workers. Next, each worker searches for similarities be-
tween the input sequence and the database fragment. Finally, it
returns the obtained results to the master, which collects all the
results and concatenates them into one output file.

In the case of BLAST, the application may present load imbal-
ances given by variations in the computation time. In this applica-
tion, these variations are caused by the content of the data chunks
because the more similarities BLAST encounters in a data chunk,
the more time is required for processing a fragment. In conse-
quence, BLAST represents a good candidate to benefit for our pro-
posal. Overall performance improvements obtained from applying
our methodology to this real scenario are shown in Section 5.1.

4.2. Distributed sorting algorithm

The main characteristic of any sorting algorithms is the differ-
ence in computation time when processing unsorted and sorted
files. Additionally, many algorithms as merge sort include modifi-
cations to enable sorting large input files in a short period of time.
These two characteristics, together with the possibility of arbitrar-
ily dividing the file to be sorted into smaller pieces, have led us to
develop a distributed version of the algorithm.

This application is used to analyze the effect of dynamically
modifying: (i) the scheduling policy; (ii) the size of the data
chunks;2 and (iii) the number of processing nodes used. This appli-
cation has been developed as a Master/Worker and its input data
files (of unsorted items) are generated using the gensort program
[27]. These files contain items represented as lines of 100 ASCII
characters. The size of generated files is of up to 32 GB.

In order to introduce variability in the computation time asso-
ciated to some of the data chunks in the workload, unsorted and
sorted data chunks has been randomly combined in the workload.
The distribution was performed following the scheduling policies
described in Section 3.2. Moreover, to keep integrity in the results,
after each worker performed a distributed merge sort in the re-
ceived data chunks, and once all its data chunks have been sorted,
the workers merge their processed data chunks into a bigger file.

This application facilitates the analysis of the results of applying
the proposed methodology, because it enables the modification
of the size of the data chunks at run time without introducing
additional processing overhead.

4.3. Analytical simulator

The aim of the proposed methodology is to achieve balanced
executions for data-intensive applications by tuning performance
parameters such as, the workload partition factor and the number
of processing nodes used. In order to do this, some analytical ex-
pressions were defined to choose the appropriate values for these
parameters. Nevertheless, the evaluation of the appropriate func-
tioning of the methodology is a big challenge. In many cases, the
evaluation of a performance improvement proposal requires a lot
of work to implement, debug and execute the analysis environ-
ment.

In this sense, an analytical simulator has been implemented to
evaluate the load balancing methodology (described in Section 3)
in a wide range of scenarios. The developed tool allows us to ob-
serve and analyze the influence of the performance parameters in
the execution of the application. For example, we were able to see
how certain variations in data chunks processing time, and how
changes in the partition factor affect the performance of the appli-
cation. Thus, the simulator is able to reproduce such situations.

As a first step, the simulator has been fed with different sce-
narios of input data. These initial data included the following pa-
rameters: the execution time of every data chunk (in seconds); the
size of the data chunks (in megabytes); the communication time
permegabyte and the number of processing nodes. The result from
the simulation process is the total execution time of the application
(expressed in seconds) for each scenario.

The simulator has been designed to reproduce aMaster/Worker
paradigm. Additionally, we defined a synchronous communication
pattern between the master and workers; i.e., a data chunk cannot
be sent until the sending of the previous data chunk has finished.
The communication time was modeled as the product of the size
of the data chunk by the communication time per MB. Thus, it is
possible to estimate the time for sending every data chunk.

The expression (10) has been used to model the total execution
time of the application in the simulator. Since the response time
in most of the scenarios is almost negligible, this time (the time of
sending the results once theworker has finishedprocessing its data
chunks) was not considered in the total execution time. Moreover,
the model assumes that the total execution time is determined by
the last worker to finish its computation.

Summarizing, the simulator has been developed to: (i) quickly
assess the proposed methodology in a great number of scenarios;
(ii) reproduce the general behavior of data-intensive applications
with divisible load; and (iii) to observe and evaluate the perfor-
mance improvement capability of the methodology in such appli-
cations. These aspects will be fully evaluated in the Section 5.3.

2 By repartitioning or grouping those meeting the restrictions defined in
Section 3.3.
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(a) Processing time for blastn, Slow query, Nw = 16,Nf = 128 and FCFS. (b) Processing time for blastn, Slow query, Nw = 16,Nf = 128 and FCFS
& HFF.

Fig. 6. Performance of BLAST using Heaviest Fragment First (HFF) scheduling policy.
5. Case studies evaluation

In order to evaluate the two phases of the methodology de-
scribed in Section 3 a set of experiments using representative
scenarios of data-intensive applications were designed. First, the
proposed methodology was evaluated using real bioinformatic
(BLAST) andmerge sort applications, and the corresponding results
are presented and discussed in Sections 5.1 and 5.2. Then, in Sec-
tion 5.3 we present the main simulation results.

5.1. Applying the methodology to BLAST

The aim of these experiments is to evaluate the performance
of real executions of BLAST when: (i) changing the scheduling
policy to Heaviest Fragments First (Section 5.1.1); (ii) tuning the
size of data chunks according to the performance of the application
(Section 5.1.2); and (iii) varying the number of processing nodes to
determine the best number of nodes (Section 5.1.3).
Experimental environment: the experiments were carried out in a
cluster of workstations with 32 processing nodes, with 12 GB of
memory per node. Each node consists of two dual core Intel Xeon
5160 at 3 GHz, 667MHz FSB, with 4 MB of L2 Cache. The version of
BLAST used is the ncbi-blast-2.2.23 [28].
Scenarios: BLAST has been executed using three different work-
loads: a heavy workload (tagged Slow), using queries with many
similarities with the database; a medium workload (tagged Com-
mon), decreasing the number of similarities; and a light workload
(tagged Fast), reducing even more the number of similarities. All
queries contain biological sequences of the same size (1MB each):

• Slow: a 1036,416 chars long sequence, literally chopped from
the last part of the nt database. This piece was selected due to
its long associated execution time (a couple of hours in our com-
puting platform).

• Common: a 1076,380 chars long sequence, created from ran-
domly selected lines from the nt database. This sequence has
an associated execution time in the order of minutes.

• Fast: a sequence of 1015,156 chars, taken from the yeast DNA
database. This sequence has fast associated execution times of
only a few seconds.

5.1.1. Selection of the scheduling policy
According to ourmethodology, the time spent on each fragment

should be recorded because we need to use this information for
scheduling data chunks for the following sequences of the query.
Here, the partition factor was set to Nf = 128, because: (i) it gives
enough information about data chunks processing times; (ii) it al-
lows a higher load balancing; and (ii) it is not difficult to graphically
see the time associated to each fragment.

Results obtained for 16 workers, Nw = 16 using the selected
partition factor and applying the FCFS scheduling are shown in
Fig. 6(a). Load imbalance can be clearly observed, and it is caused by
a data chunkwith large computation time that has been scheduled
at the end of the execution. At the right side of the graphic
(Fig. 6(b)) are presented the results of a similar execution of BLAST
applying the Heaviest Fragments First, (HFF) scheduling policy. The
advantage of using the HFF instead of FCFS is clear because HFF
would enable reductions of up to 40% in total execution time.

5.1.2. Adjusting the partition factor
The objective of these experiments is to evaluate the perfor-

mance of a real scientific application when tuning the workload
partition factor. For the initial exploration, Nf = 128 and Nw = 32
were chosen, obtaining a total execution time of Ci = 5263.51 s, an
average execution time of µi = 599.08 s, a standard deviation of
σi = 670.86, and an expected ideal time equal to 2396.33 s. These
results and the computation time of BLAST computations over each
data chunk are shown in Fig. 7(a). Fig. 7(b) presents results of a new
partitionedworkload after gathering and dividing the data chunks.
In this case, Nf is reduced from 128 to 64 and the total execution
time is equal to 2910.03 s (a reduction in the total execution time
of up to 55%).

The behavior of the HFF scheduling policy was evaluated with
and without adapting the size of the data chunks distributed to
the BLAST execution (workload partition factor modification). The
evaluation was performed ranging the number of workers, Nw ,
from 4 to 32. Obtained total execution times were compared with
the expected ideal time for each case; results are showed in Fig. 8.
The difference between tuning or not the size of the data chunks
is clearly shown in this figure. When applying partitioning and
grouping strategies, BLAST’s total execution is greatly reduced.

Once the load balancing has been achieved using the HFF
scheduling policy and the workload partition factor modification,
the focus can be shifted to assess the resource utilization.

5.1.3. Estimating the number of resources
To show the advantages of tuning the number of workers used

by the application, BLAST was executed using five different parti-
tion factors Nf = {128, 256, 512, 1024, 2048}; and five different
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(a) Initial processing time by data chunk. (b) Processing time by tuned data chunks.

Fig. 7. Variation of processing time by data chunk.
Fig. 8. Performance improvement in total processing time when using HFF
scheduling policy + workload partition factor adaptation (HFF + factor).

Table 2
Data chunks and chunks sizes.

Nf 128 256 512 1024 2048

Size [MB] 55.8 28.2 13.9 7.0 3.5

numbers of workers Nw = {2, 4, 8, 16, 32}. The value of λ was
measured experimentally as the inverse of the network bandwidth
(≈112.5 MB/s, which is the expected best-case data bandwidth
measured between two nodes for a Gigabit Ethernet network). The
average sizes of the data chunks for the selected partition factors
are shown in Table 2.

Fig. 9(a) shows the evaluation of expression tqi (10) for each
value of Nw using the Slow scenario, Fig. 9(b) shows the real execu-
tion time of BLAST, and Fig. 9(c) shows the real execution time after
tuning the partition factor. It can be observed thatwhen the restric-
tions defined by expressions (8) and (9) aremet, differences in total
execution time are lower than a 5% (for most of the cases). There-
fore, as expected, expression (10) can be used to estimate the exe-
cution time of the application. Results shown in the figures present
the improvement that can be obtained from tuning the number of
workers up to 87.5% when varying from 2 to 16 workers in all the
cases. These results are soundbecause they are similar to those that
will be shown in Section 5.3.3where the use ofmore than 16work-
ers will not reduce the total execution time.

The cases where the estimated execution time greatly differs
from the real execution time can be explained through the con-
straints indicated by expressions (8) and (9). For example, in the
Table 3
Maximum number of workers (Nwmax) for Slow queries.

Nf µCi [s] Tsi [s] Tmaxi [s] Nwmax

128 598.42 76,598.19 5245.61 15
256 350.57 89,747.16 3842.51 23
512 209.64 107,317.37 2648.39 41

1024 125.06 128,061.95 1417.55 90
2048 71.79 147,018.66 860.31 171

case of 128 data chunks, the chunk with the highest processing
time has an associated computation time of 5,245.61 s (Tmaxij, in
Table 3). Then, when the number of workers is changed from 16 to
32 there is no improvement in the total execution time because of
the data chunk with the highest execution time. Consequently, in-
creasing the number or processing nodes will not reduce the total
execution time.

For a partition factor Nf = 128, the result from evaluating the
expression (8) is: (76, 598.19/5, 245.61) = 15. This value (the
maximum number of workers that should be active) indicates that
beyond 15 workers the total execution time will remain the same.
For the case of 256 data chunks, the maximum number of work-
ers that can be used is 23 as shown in Table 3. Fig. 10 illustrates
this discussion by showing for Nf = 128 and Nf = 256 the best
possible execution time and the real (measured) execution time.

In addition, the Slow scenario and a partition factor Nf = 128
were used to illustrate the use of expression (12) for tuning the
number of workers. Fig. 11 shows the performance index ρn for 2,
4, 8, 16 and 32workers. It can be seen that there is no efficiency loss
(the curve does not start to climb) for the selected scenarios, and
therefore more workers could be added. However, if the number
of workers is increased, there will be no gain in the total execution
time (because of the data chunk with the highest computation
time) andmoreworkerswill remain idle for a longer period of time.
This idleness is translated as an efficiency loss.

Once the workload partition factor is adjusted the time limi-
tations imposed by data chunks with large computation time are
softened. In consequence, more processing nodes can be used to
execute BLAST without losing efficiency. For 32 workers and a par-
tition factor Nf = 128, obtained results have reported up to 50%
of reduction in the overall execution time when applying the pro-
posed methodology (as shown in Fig. 12). However, for a partition
factorNf = 256 it can be seen a slight increment in the total execu-
tion timewhen adapting the size of the data chunks. This overhead
appears from the serial fraction of the original data chunks. An im-
plicit serial fraction, coming from BLAST’s algorithm, is replicated
when the computation times of the data chunks are summarized.
As more data chunks are, the more overhead is introduced.
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(a) Expected (via analytical expressions) processing time for Slow type
query, Nf variation and FCFS & HFF scheduling policies.

(b) Real processing time for Slow type query, Nf variation and FCFS &
HFF scheduling policies.

(c) Real processing time with Slow type query, Nf variation and FCFS &
HFF + factor scheduling policies.

Fig. 9. Comparison between expected and real execution times.
Fig. 10. Execution for Slow query, using Nw = 15 for Nf = 128, and Nw = 23 for
Nf = 256.

5.2. Evaluation of the methodology for a distributed merge sort

To evaluate the influence of the workload partition factor in
the performance of the application we implemented a distributed
sorting algorithm using merge sort. The implementation follows
the assumptions made in Section 3 about data-intensive applica-
tions. This application can sort medium size input files (e.g. several
tens of GB); the files can be split into smaller data chunks; and the
chunks are processed by worker nodes under a round-robin ap-
proach.
Fig. 11. Performance index for Slow query and Nf = 128.

The experimentation evaluates the behavior of the application
when: (i) changing the initial distribution strategy (Section 5.2.1);
(ii) modifying the size of the data chunks (Section 5.2.2); and (iii)
adding more processing nodes (Section 5.2.3). An input file of up
to 32 GB was generated using the gensort program [27] and was
divided into 128 data chunks. This number of pieces was selected
because of the experimental environment described in Section 5.1,
which is large enough to guarantee that all workers will have
data chunks to process. Additionally, a 25% of data chunks were
already sorted when introduced in the workload. The combination
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Fig. 12. Execution with Slow query, for Nw = 32 using HFF and HFF + factor.

of sorted and unsorted data chunks generates variability among
their associated computation times.

5.2.1. Selection of the scheduling policy
As a first step, the behavior of the application was analyzed

when changing the scheduling policy. Data chunks were dis-
tributed using the First Come First Serve (FCFS) and the Heaviest
Fragments First (HFF) approaches. For a number ofworkerNw = 32
resulting total execution times are shown in Fig. 13(a) and (b). In
Fig. 13(a) data chunks were distributed without any pre-defined
order;while in Fig. 13(b), data chunkswith highest execution times
were delivered first.

From the reported results, it can be concluded that changing
only the distribution policy will not solve the load imbalance prob-
lem for this application. This situation persists because there is
a final merge time that is not considered when distributing data
chunks. A final merge is performed by each worker with the re-
ceived data chunks and it is influenced by the total number of
pieces thisworker has received. If aworker has processed toomany
data chunks with low computation times, this performance im-
provement may disappear when merging the final file.

5.2.2. Adjusting the partition factor
The purpose of this experiment is to evaluate the performance

of the application when adapting the size of the data chunks. This
functionality was introduced with the aim of: (i) reduce the exe-
cution time of data chunks with high processing times; or (ii) re-
duce the number of data chunks with low computation times by
Fig. 14. Execution for distributedmerge sort, for Nf = 128 and Nw = 32 using HFF
+ factor.

sending less pieces of greater size. The experiment has been per-
formed using the scenario described in the previous section. This
has been done to allow comparisons between the results presented
in Figs. 13 and 14.

Results presented in Fig. 14 show amore balanced execution in
comparison with non-adapting the workload partition factor. This
improvement is obtained after the grouping and allocation of data
chunks of almost the same size for each worker. By doing this, the
variability introduced by the finalmerge becomes constant and the
workers are processing almost the same amount of time.

5.2.3. Estimating the number of resources
The intent of this experiment is to analyze the behavior of the

distributed sorting algorithmwhen addingmore processing nodes.
This experiment was carried out using the initial workload de-
scribed before and total execution timewhen changing the number
of workers was collected. The value of Nw shown ranges from 16
to 58 workers to facilitate interpretation and the results are pre-
sented in Fig. 15.

Obtained results show a reduction in the total execution time
when adding more processing nodes. Additionally, it can ascertain
a constant reduction in total execution times when applying all
the stages of the proposed methodology: (i) changing distribution
policy, (ii) adapting the size of the data chunks, and (iii) adding
more processing resources. Consequently, a fast and efficient
execution is achieved.
(a) Execution with distributed merge sort, for Nf = 128 and
Nw = 32 using FCFS.

(b) Execution with distributed merge sort, for Nf = 128 and
Nw = 32 using HFF.

Fig. 13. Load imbalances with FCFS and HFF scheduling policies.
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Fig. 15. Comparisonbetween FCFS,HFF andHFF + factor, whenvarying thenumber
of processing nodes for Nf = 128.

5.3. Evaluation through analytical simulation

The analytical simulator has been implementedusing themodel
described in Section 4.3. In Section 5.3.1 is evaluated the effective-
ness of the proposedmethodology for the distribution policywhen
introducing different degrees of error in the predictions of the data
chunks processing times. Then, the effect of tuning the workload
partition factor in the overall performance of the applications is
described in Section 5.3.2. Finally, in Section 5.3.3 is shown how
the methodology leads to a more efficient use of resources.

5.3.1. Introducing error in data chunks processing time predictions
The proposed load balancing methodology is based on sending

first those data chunks with higher processing times. To accom-
plish this, the history of the execution timemeasured for each data
chunk is gathered and then this information is used to decide the
scheduling order. However, predictions are likely to fail in some
degree, and expected results might differ because the execution
time of the same data chunk may vary from iteration to iteration.

The purpose of these experiments is to evaluate how the total
execution time is being affected when a certain degree of error is
introduced to the prediction of the processing time associated to
each data chunk. In order to do this, the simulation environment
was set to consider a partition factor equal to 128 and a number of
workers equal to 64.

The input data of the simulator has been generated following
a normal distribution from an initial dataset obtained from real
measurements. Then a certain degree of variation is introduced in
the computation times of each data chunk. The greater this degree
of variation, the greater the variability in the time associated to the
data chunk.

The newdataset has been evaluated for two different scenarios:
(i) FCFS: the data chunks are not sorted; and (ii) HFF: the data
chunks are sorted by processing time in decreasing order. The
simulation process was repeated 500 times and the results are the
average values of execution time for both cases.

Introducing variability in the processing times of each data
chunk tends to degrade the performance of the HFF strategy. The
variability causes the chunk disorder and hence loads imbalances
for the next exploration (query or iteration).

We have estimated the average and its corresponding 90% con-
fidence intervals (where the probability to be inside is 90%). Confi-
dence intervals cannot been obtained with traditional parametric
methods (like the t-Student based one [29]) because results usu-
ally do not have a normal distribution. We have verified it with
the normality test of Anderson–Darling [29] and we have used the
nonparametric statistics to obtain the confidence intervals. To this
Fig. 16. Total execution time differences between the FCFS and the HFF data
scheduling policies when introducing errors.

Fig. 17. Performance improvement when changing data chunks sizes.

aimwe have chosen the Efron variant based on percentile from the
Bootstrap methods [30].

Fig. 16 shows the average of the differences between the execu-
tions times for both strategies. It can be seen that as the variability
increases the performance of the HFF strategy collapses.

5.3.2. Evaluating performance when adjusting the partition factor
In order to show the performance improvementwhen changing

the size of the data chunks, the simulator was used to evaluate the
analytical expressions presented in Section 3.3. Simulations were
performed under the following conditions:

• an initial partition factor Nf = 128;
• Nw values ranging from 10 to 80;
• two different scenarios: Heaviest Fragments First with and

without workload partition factor modification (HFF + factor
and HFF, respectively);

• execution time of data chunks were generated following a
normal distribution based onmeasurements obtained from real
executions of BLAST.

The results presented in Fig. 17 show the behavior of the simula-
tor for the selected scenarios. It can be seen the difference between
themaximum execution time Tmaxij obtainedwith andwithout ap-
plying the tuning strategy for the workload partition factor. These
results show that the execution time limitation imposed by data
chunks with large computation times can be softened or dimin-
ished through the division of those data chunks. It isworth noticing
that once this barrier has been removed, the total execution time
of the application can be reduced by adding more workers.

Since in all the experiments the history of the computation time
measured for each data chunk is used for adapting the partition
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factor, when measurements vary from one exploration to another
predictions are likely to fail in some degree.

As previously done, the variation in total execution time is an-
alyzed. This variation is caused when a certain degree of error is
introduced (changing the size of data chunks). The simulation en-
vironment was set to use Nf = 128 and Nw = 64, and a certain
degree of variation in the time of each element of the set was in-
troduced. The greater this percentage of variation introduced in the
computation time of each data chunk, the greater the variability
obtained for each new data chunk. The generated dataset is evalu-
ated for the scheduling policy HFF with and without adapting the
workload partition factor. The simulation process was repeated
500 times and the results are the average values of computation
time for both cases.

Introducing variability in the computation time of data chunks
tends to degrade the performance of the HFF strategy. In Fig. 18 we
can observe that time degradation is significantly reduced when
adapting the size of the data chunks. In general, when data chunks
with large computation times are divided into smaller data chunks,
their associated computation time is greatly reduced.

5.3.3. Estimating the number of resources
In the previous subsections, three scheduling policies were

analyzed when the variability of the execution time increases:
(i) FCFS; (ii) HFF; and (iii) HFF + factor. In this section is analyzed
the behavior of all strategies when varying the number of workers.
Simulations were performed under the same conditions described
in the previous section, and the results are shown in Fig. 19.

In Fig. 19(a) it can be seen the reduction in total execution time
when applying the scheduling policies. From the comparison of all
the strategies it can be observed that FCFS reports the worst per-
formance results and HFF + factor reports the best results. Since
data chunks with large computation times are not a major restric-
tion for the HFF+ factor strategy, it shows amore flexible behavior
and scales well when addingmore processing resources (as shown
in Fig. 19(b)). On the contrary, the performance of FCFS and HFF
scheduling strategies is quickly degraded by the time restriction
imposed for data chunks with large computation time.

Finally, if we compare the simulation results and experimen-
tal results, it can be seen a consistent improvement in the per-
formance of data-intensive applications given by: (i) changing the
scheduling policy to HFF; (ii) adapting the size of the data chunks;
and (iii) tuning the number of processing nodes that can be used.
Also, the simulator enables the analysis of themethodology behav-
ior for a larger range of situations. In the sameway, when adjusting
the number of workers, it is possible to identify the limit in which
the addition of resources has to be stopped in order to keep an ef-
ficient execution.

6. Conclusions and future work

The continuous growth of data coming from sensors, biologi-
cal and physical experiments, and information generated by users,
needing to be processed, has led to the design of new methods to
satisfy its processing requirements. Concepts as data-intensive or
big-data computing have risen in the last few years, and alongwith
these terms, approaches like dividing the workload of the applica-
tions into smaller pieces (data chunks), have become more com-
mon. With all this in mind, the number of performance problems
related to load balancing also has increased.

We have addressed the problem of load balancing through a
methodology for balancing the load of a subset of data-intensive
applications. In particular, we considered applications that per-
form multiple related explorations (queries) on the same work-
load. The methodology includes the dynamic adaptation of the
partition factor or, for the case of high partitioning costs, the gen-
eration of multiple workload’s divisions using different partition
factors before executing the application, and then the dynamic
selection of the most adequate one according to the current condi-
Fig. 18. Performance improvement when introducing variability.

tions. This phase of the methodology proposes to change, at run
time, the size of the data chunks by dividing or gathering spe-
cific pieces according to application performance. This has been
achieved by monitoring each exploration, and by using collected
data to determine the correspondingmodifications in the partition
factor.

The tuning parameters included in the methodology are the
workload partition factor, the distribution of generated data
chunks among the application processes, and the number of re-
sources (nodes) to be used by the application. Thiswork introduces
a detailed discussion about all the parameters.

The methodology has been tested using a real and a synthetic
data-intensive application: the widely known bioinformatics tool
BLAST and a distributed version of merge sort. BLAST handles a
broader number of queries over large-scale biological databases
and the Merge sort can order large text files. In addition, the
main aspects of the proposal were implemented and evaluated
through an analytical simulator. Also using simulation, it was pos-
sible to analyze the behavior of the methodology on a wide range
of scenarios. The results obtained have shown the capability of the
methodology to improve the performance of data-intensive appli-
cations with divisible load; such as BLAST.

The improvements achieved were determined by three main
reasons. First, by changing from a First Come First Serve (FCFS)
scheduling policy, to aHeaviest Fragments First approach (HFF). Sec-
ond, by adapting the partition factor of the workload at run time
to reduce the time constraint imposed by data chunks with high-
est computation times. Third, by adapting the number of workers
being used, to avoid inefficient executions in which there are idle
workers for a long time.

Obtained results are promising in terms of reducing total ex-
ecution time and efficient use of processing resources for differ-
ent scenarios of data-intensive applications. Furthermore, these
results show that the proposed methodology can be widely used
to improve the performance in real data-intensive applications.

Thiswork, as anywork covering several aspectswithin a certain
field of science gives rise to a wide range of affordable discussion
lines and futurework. One of themost interesting lines is the appli-
cability and extension of themethodology to be used in virtualized
environments, specifically those as Cloud. In MapReduce [31], jobs
can be chained or may operate on multiple data sets, presenting a
similar approach to the iterations in the studied applications. Con-
sequently, these scenarios match our proposal.

Hadoop, the open source implementation of MapReduce, has
several ways of coordinating multiple jobs together, including
sequential chaining and executing them according to predefined
dependencies [32], which might be enriched by using dynamic
tuning techniques such as the one we are proposing.

Additionally, implementing cost functions to ease the estima-
tion of the number and characteristics of the processing nodes to be
contracted. Since virtualized environments offer highly heteroge-
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(a) Total execution time when varying the number of workers for the
FCFS, HFF and HFF + factor scheduling policies.

(b) Performance index when varying the number of workers for the
FCFS, HFF and HFF + factor scheduling policies.

Fig. 19. Performance evaluation of the FCFS, HFF and HFF + factor data scheduling policies when varying the number of workers.
neous systems, and certain economic restrictions, we should take
into consideration these factors before launching data-intensive
applications. In general, platforms such as Hadoop and Amazon
Elastic MapReduce3 have shown an efficient and powerful system
to create highly scalable applications with many aspects of paral-
lel computing automatically provided. In this sense, our proposal
could take advantage of the mechanisms for managing node fail-
ures, data and jobs allocation provided by current Cloud platforms
to avoid load imbalances, and to use the available resources effi-
ciently; thus, extending the usability of our model.
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