
COCA: Computation Offload to Clouds using AOP

Hsing-Yu Chen
Intel-NTU Connected Context Computing Center

National Taiwan University
Taipei, Taiwan

Email: henry74918@gmail.com

Yue-Hsun Lin
CyLab

Carnegie Mellon University
Pittsburgh, PA, USA

Email: tenma.lin@gmail.com

Chen-Mou Cheng
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

Email: ccheng@cc.ee.ntu.edu.tw

Abstract—
In this paper, we describe COCA—Computation Offload to

Clouds using AOP (aspect-oriented programming). COCA is a
programming framework that allows smartphones application
developers to offload part of the computation to servers in the
cloud easily. COCA works at the source level. By harnessing
the power of AOP, COCA inserts appropriate offloading code
into the source code of the target application based on the
result of static and dynamic profiling. As a proof of concept,
we integrate COCA into the Android development environment
and fully automate the new build process, making application
programming and software maintenance easier. With COCA,
mobile applications can now automatically offload part of the
computation to the cloud, achieving better performance and
longer battery life. Smartphones such as iPhone and Android
phones can now easily leverage the immense computing power
of the cloud to achieve tasks that were considered difficult
before, such as having a more complicated artificial-intelligence
engine.

Keywords-computation offload; aspect oriented program-
ming; Android operating system;

I. INTRODUCTION

Smartphones have become a necessity for our daily life
because they empower people with lavish applications and
utility. New smartphones like Apple iPhones and Google
Android phones [1] allow previously unimaginable appli-
cations to be designed and developed. These smartphones
are all capable of broadband communication via 3G or Wi-
Fi. They also integrate many basic and advanced sensors
such as cameras, GPS, inertia and motion sensors, just to
name a few. As a result, we now perform a wide variety
of daily activities on these smartphones, e.g., voice calls,
teleconferencing, emails, online gaming, social networking,
etc.

Despite Moore’s law and the constant improvement in
battery technology, today’s smartphones still suffer from
battery-life problems. For example, a Nexus One phone
would completely exhaust its battery energy in six hours if
the user keeps it busy on Wi-Fi [2]. Even if the phone is idle,
i.e., fully awake but not running any active applications, its
battery will not last for more than 15 hours. Most users will
probably admit that such a battery life is at most tolerable
but far from ideal.

A promising solution to this problem is computation
offload. If an application on a smartphone requires some
intensive computation, it might make sense to shift the
burden to some remote servers. However, setting up and
managing these servers is not trivial for average, non-
expert users. Furthermore, the diversity in telecom operators’
network architectures can make the problem even more
complicated. In such a scenario, cloud computing naturally
provides a clean solution. Cloud computing allows new
services to roll out with a minimal fixed investment and a
usage-proportional operational cost. Take Amazon EC2 as an
example: EC2 provides on-demand computational power and
scalable storage to its subscribers, often start-ups who want
to provide new services. They can then focus on building
high-quality services that are easy to use and configure for
average users.

In this paper, we propose and build a new programming
framework called COCA, which offloads computation from
smartphones to the cloud using AOP. Currently, COCA
works for Java applications running on Android, but in
principle, it can be extended to any other programming
systems where there is AOP support. COCA works at the
source level, while previous works in the literature work
at the binary level, mostly based on techniques that alter
or rewrite part of the application binary code. The binary-
level approaches have a very attractive feature: the offload
can be made transparent to the application programmers and
the users. Therefore, it can work with existing, unmodified
applications without needing their source code. The offload
framework simply does all the work under the rug.

Nevertheless, the benefits of such a binary-level approach
may become less and less important in the cloud-computing
era. To begin, cloud computing has changed and will con-
tinue to change many facets of computing and the software
industry. For example, software distribution and deployment
have been made much less expensive than before, and as
a result, updates and new versions of software come out
at an unprecedentedly increasing rate. This offsets most
of the benefits of binary-level offload approaches, now
that shipping new software is almost free, and instead of
modifying the existing copy of the software on their phones
where the users can now simply download updates from

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.98

466

the cloud any time. Furthermore, since binary modification
requires changes in the program loader, it introduces new
security vulnerabilities. Open platforms like Android already
have a lot of security issues, and people are working on
various solutions ranging from more traditional approaches
to the more radical ones such as those based on formal
verification. Altering binary code and hacking program
loaders probably will introduce a lot of headaches and hence
are less compatible with these new security measures.

In contrast, COCA developers do not need to modify
the application binary code nor the original source code.
Instead, COCA allows the application programmer to choose
which target objects or functions to offload. Alternatively,
this choice can be made automatically based on the result of
static and dynamic profiling without human intervention. By
using AOP, COCA automatically generates and recompiles
the corresponding source code into the remote modules to be
offloaded to the server, in addition to the local modules to be
installed and run on the smartphone. After build succeeds,
the user registers the remote modules to his or her cloud
account, and then he or she can immediately leverage cloud
computing to enhance the software performance.

II. BACKGROUND

A. Aspect-Oriented Programming

Aspect-oriented programming (AOP) [3] suggests that
development and design of programs focus on “aspects.”
According to, e.g., the Oxford Dictionary, an “aspect” is a
particular part or feature of something being considered. In
AOP, an aspect of a program is a particular functionality,
e.g., accounting, environment checking, logging, security,
etc., that horizontally cross-cuts a plural number of threads
of logical flow in a program.

For example, say we have a complicated software pro-
gram that may sometimes need to check the user’s access
right through some authentication and authorization process
depending on the current security policy. Ideally, this piece
of security code is logically independent of the rest of the
program and hence should be considered a cross-cutting part
from the program’s perspective. Furthermore, to increase
modularity, we would like to separate this piece of code to
an independent module. Without AOP, it would require the
programmer to go through every line of code because such
aspects are scattered and tangled in the source code. This
is an example where AOP can be useful. The programmers
can write these aspects in stand-alone modules and specify
in a declarative way where these aspects cross-cut.

AOP is now a widely recognized software development
technology, and the further information about AOP can be
found in many sources and standard textbooks [4], [5].

B. AspectJ

AspectJ is an extension developed by PARC for the
Java language [6]. Currently, AspectJ offers stand-alone and

Figure 1. The System Diagram of COCA.

dependent plug-in for Eclipse IDE tool. AspectJ allows
programmers to define “aspects,” which provides pointcuts
and advices for specific functions. Once a function is defined
as a pointcut by AspectJ, the programmer can perform the
corresponding advices with this pointcut in three cases,
before, after, and around the target function call. This is
the main AOP used in COCA.

C. AspectJ for Android

There is no AOP support in the official Android build
process. Therefore, we have modified the Android build
process to support AspectJ. The major change is to alter the
compilation phase of Android Java compiler. In the build
process, a pre-compiled Android source file is ready to be
translated to bytecode (.class). By swapping the Java
compiler with AspectJ compiler, the modified compilation
phase can now compile aspects (.aj) without destroying
pre-processed resources, such as icons, layouts, and strings.
The compiled applications will still run perfect on normal
Android phones without any modification.

D. Dynamic Loading for Java Classes

The Java language suggests dynamic loading mechanism
for classes in the current JVM implementation. Compiled
bytecode can be loaded and run on a JVM dynamically in
runtime. We utilize this technology on the cloud side to allow
a running process to load the desired functions dynamically.

III. THE DESIGN OF COCA

COCA consists of three stages, namely, profile, build, and
register. A high-level overview of the entire system operation
is shown in Figure 1.

A. Profile Stage

The first stage is profiling. COCA first marks all pure
functions 1 in each Java class in the source code provided by
the user. For each function, COCA evaluates the processing
time of the function and the required memory footprint (heap

467

memory size) if it were to be offloaded to the cloud. The
result of profiling is summarized in a report presented to the
user, who can then decide which functions to offload based
on the report. The question now boils down to how we can
know which functions would perform better if we executed
them in the cloud. To help make a smart decision, COCA
allows evaluation of the candidate functions in an emulated
environment, given parameters such as the actual execution
time of the candidate functions on the smartphone, as well
as the bandwidth available for offloading. Alternatively,
with the information in the report, we can easily automate
the selection process by integrating COCA with existing
program partitioning schemes [7], [8], [9], [10].

Last but not least, we want to make sure the overhead
introduced by COCA is reasonable. The majority of the
overhead comes from the times when advices are inserted
into the appropriate positions of the target function in
AspectJ’s code weaving. We will show via experiments that
this overhead is quite insignificant in Section IV.

B. Build Stage

In this stage, the build scripts will divide the original Java
source code into two parts, namely, those to and not to be
offloaded. Once the user selects the target function to offload,
COCA screens those classes dependent on the selected
functions. COCA then translates the original Java source
code into AspectJ code based on the result of selection. On
the other hand, the filtered Java classes will be copied and
compiled to JVM bytecode. In the end, the build scripts
output a jar file for the cloud server, as well as an apk
installation file for the Android smartphone.

C. Register Stage

The register stage is the final stage. First we assume the
user already has an account on an existing cloud service
provider such as Amazon EC2. The user can then use the
account to run COCA server as a daemon in the cloud,
waiting for requests from the mobile smartphones. As shown
in Figure 1, the server daemon maintains a built-in database
of functions that the smartphones may offload. After the
build stage, COCA uploads the compiled bytecode in jar
files to the cloud. The daemon then authenticates and loads
the classes from the jar files via the dynamic loading
technology for Java classes.

After these three stages, COCA is set up and ready
for offloading. When the user launches the corresponding
programs, COCA will make computation offload requests
to the server daemon in the cloud. Upon receiving these re-
quests, the daemon will retrieve the related classes from the
database and then load the target classes into the processes.
Next, it performs the computation by calling appropriate

1In a pure function, expect for input and output arguments, all objects
and variables inside the function body are only used within the function
itself. More information is given in Section V-B.

functions in the loaded classes. Finally, the result is sent
back to the smartphones, and the smartphones can continue
to accomplish the tasks.

IV. EXPERIMENTAL EVALUATION

A. Overhead of AspectJ on Android

We have performed two experiments to determine the
overhead of AspectJ on Android on an HTC Tattoo smart-
phone, which has a Qualcomm MSM7225 CPU running at
528 MHz. The first is a simple approach, in which we
compare the latency of function calls with and without
AspectJ. The test program merely iterates through an empty
for loop for ten million times. The experiment result shows
that the overhead of the before or after advice is about 195
nanoseconds per function call. For the around advice, the
overhead is about 290 nanoseconds per call.

The second experiment we have performed is on one
of Google’s open-source Android sample applications [11],
namely, the Amazed application, a simple but addictive
accelerometer-based marble-guidance game. After inserting
a piece of code that calculates the frame rate, we find that it
remains constant (around 26 frames per second on our test
smartphone), either we call it from an AspectJ snippet or
directly in Java. Therefore, we conclude that the overhead
brought by AspectJ during the function calls is negligible,
and using AspectJ in Android will not decrease the system
performance in any significant way.

B. A Real-world Android Chess Game

To demonstrate the benefits of COCA, we have performed
an experiment with an open-source chess game “Honzovy
achy” [12]. COCA marks partial pure functions inside the AI
module based on the profiling result. Then COCA separates
objects that run locally on the smartphone and those to be
offloaded. Host objects are compiled for installation on the
smartphone, while objects to be offloaded are registered and
uploaded to the cloud server. After running multiple rounds
of the chess game, we have observed several enhancements,
which we will describe in detail in the subsequent sections
along with the measured overhead.

C. AI Capability Enhancement

The first enhancement that we have observed is that the
artificial-intelligence (AI) level goes up under COCA. As we
know, AI requires a lot of computational power. In Honzovy
achy, the amount of time devoted to AI computation is
limited by a configurable bound (default 5 seconds) when
the program is trying to figure our the next moves in the
chess game. On our experiment platform, the HTC Tattoo
(Qualcomm MSM7225, 528 MHz CPU) can only reach the
depth of 3 steps. Similarly, the deepest level for Google
Nexus One (Qualcomm 8250 “Snapdragon,” 1 GHz CPU)
is 4. This result is within our expectation, as going one level
deeper in such AI computation often requires exponentially

468

511.8

6090

59405

93.8

823.6

8131.2

97.8

170.2

483.8

3 4 5
AI Levels

100

1000

10000

E
xe

cu
tio

n
T

im
e

(m
s)

HTC Tattoo
Nexus One
COCA (Tattoo)

Figure 2. AI Computing Time for Different Levels and Devices

larger computational power. However, once we offload this
AI computation to the cloud server, both Tattoo and Nexus
One smartphones can easily search within a level of 5 steps
in the same time bound. We have also asked Honzovy achy
to compute at different levels of AI depths and measured the
computing time each of the three schemes takes. If AI level
is high, e.g., 5, Tattoo should spend around one minute to
perform one move during the chess game. Even for Nexus
One, it needs at least 8.13 seconds. The result is shown in
Figure 2, in which we can clearly see that COCA helps
enhance the AI capability of Honzovy achy significantly.

D. Communication Cost

Smartphones pay a communication price when leveraging
the computation power of cloud servers via COCA, namely,
they need to tell the servers which functions to perform
on what data. We have performed several experiments to
estimate this price for the most common communication
interfaces including Wi-Fi and 3G data networks. For the
3G network we use, the typical uplink and downlink speed
we get are 120 kbps and 509 kbps, respectively. Figure 3
shows the transmission time required when Google Nexus
One smartphone utilizes COCA services to offload the AI
computation in Honzovy achy.

Through a conventional Wi-Fi network, it takes about 77
milliseconds to transmit around 30 kilobytes of data from
Nexus One to the cloud. For 3G network, the transmission
time takes about 1622 milliseconds, as the speed is much
lower than that of Wi-Fi network.

The Wi-Fi network also performs better in terms of
latency. On the experiment Wi-Fi network, the latency is
smaller than 100 milliseconds. The 3G network has a much
worse latency, possibly due to a high level of congestion in
the experiment urban area. Take Taipei city as an example,
the average latency for 3G networks provided by Chunghwa
Telecom is around 200 to 600 milliseconds based on our

80 77

2020

1622

Delay Transmit
0

500

1000

1500

2000

2500

T
im

e
(U

ni
t:m

s)

Wi-Fi
3G

Figure 3. Transmission Cost for COCA Running on Google Nexus One

experience. To conclude, we believe that COCA should work
very well on current Wi-Fi networks. For 3G networks,
users should be able to get acceptable performance from
COCA unless the network latency is extremely bad due to
congestion.

E. Energy Savings

COCA can also provide energy saving on the smart-
phones, a very important feature for battery-powered devices
in general. We use a Monsoon power monitor [13] to mea-
sure Nexus One’s energy consumption. Figure 4(a) shows
the power trace when the Honzovy achy AI computation is
performed locally on a Nexus One smartphone. The power it
consumes peaks around 1150 milliwatts, which is quite high
for a smartphone, showing that AI computation is indeed
a computationally intensive task. We then use COCA to
offload this computation to the cloud side. As shown in
Figure 4(b), the power consumption is clearly reduced after
the first second. The burst in the first second is due to the fact
that the smartphone needs to send some data to the cloud
server through its Wi-Fi interface. In total, the smartphone
consumes 443.88 μAh of energy without the help from
COCA. After using COCA, the energy consumption is
reduced to 247.91 μAh, which represents a 56% energy
reduction on the smartphone, not to mention the resulting
AI performance enhancement.

To obtain a breakdown of component-wise energy con-
sumption inside the smartphone, we have also performed an
experiment using the PowerTutor Android application [14],
[15]. PowerTutor obtains component-wise energy consump-
tion information based on modeling and estimation, so
it is less accurate than Monsoon monitor. Based on our
observation, PowerTutor tends to overestimate the actual
energy consumption in many cases.

Although PowerTutor doe not give very accurate results
as hardware power monitors do, the result is still reasonable

469

(a) Local Execution

(b) Cloud Execution

Figure 4. Power Traces of Local vs. Cloud Execution on Nexus One

Table I
COMPONENT-WISE ENERGY CONSUMPTION (UNIT: μAH)

Case CPU OLED Network Total

Local 180.18 240.24 0 420.42
(42.8%) (57.2%)

COCA +Wi-Fi 2.25 255.25 32.96 292.46
(0.8%) (87.1%) (12.1%)

COCA +3G 2.18 345.35 431.43 778.96
(0.3%) (44.2%) (55.4%)

and does provide some values because it gives the detailed
energy consumption information for each hardware compo-
nent, such as the processor, Wi-Fi, and 3G interfaces. As
shown in Table I, the processor itself consumes about 42.8%
of the energy in a Honzovy achy game that runs locally.
After COCA offloads the AI computation to the cloud, the
processor uses a very small amount (less than 1%) of energy
because it is in idle mode most of the time. On the other
hand, we need to pay a price in network interface energy
consumption. When Wi-Fi is used, COCA clearly gives a
very good result, a 68% energy reduction compared to the
local case. However, when 3G is used, the total energy
consumption increases to about 1.85 times of the local case
because 3G links consume a lot more energy than Wi-Fi
links per bit transmitted. This shows that COCA can have a

negative impact on energy consumption if communication is
more “expensive” than computation, which is the case when
3G networks are used in our experiments.

V. DISCUSSIONS

A. Additional Arguments for Working at Source Level

In our design, COCA only works at the source level. It
is arguable that other solutions like modified Dalvik VM
is totally transparent to applications and hence might be
superior and more user-friendly. The additional overhead for
developers is zero, and the users only need to install the
patched VM by themselves. As we have argued, patching
the Dalvik VM on smartphones is not safe and convincing
for most users. They may not accept unofficial patches for
their smartphones, as this might bring additional security
vulnerabilities.

Our motivation is to design a feasible offload mechanism
for developers, not users. Developers (or programmers)
could leverage COCA to reduce their burden on configur-
ing their application for remote execution. COCA allows
developers to simply set up the remote cloud servers by
running a daemon to handle the offloaded computation.
For users’ Android smartphones, COCA guarantees the
compiled application installation file works well on their
devices.

One additional reason is to provide a better approach to
modularize the source code. Basically, developers will prefer
to offload those functions into the cloud that are complex or
time-consuming. Hence, developers can simply isolate the
design from mobile side and cloud side. If a new version of
application has been released, developers can easily modify
the program through remote objects (cloud side). The only
overhead is recompiling the remote objects and registering
them again. This model makes maintenance much easier for
developers. We believe that COCA indeed saves developers
time and shortens the software develop cycle on Android
platform.

B. Pure vs. Non-pure Functions

As we have mentioned in Section III, COCA only allows
developers to select pure functions that are independent
of program states. The reason we select pure functions as
first candidates is that offloading parameters are short and
simple. Non-pure functions tend to access global variables,
including primitive variables (int, double, float, char, etc.),
active objects, and static object function calls. If we want to
synchronize the function with the remote object, serialization
is one of the feasible technologies to utilize. However,
serializing a whole object only for few functions is a severe
cost when the smartphone is on a network with limited
bandwidth, e.g., GPRS or 3G data networks. Therefore,
we select pure functions as our target in COCA. The
cost is minimized because transmission simply includes the
input and output of the function. Also, memory footprint

470

is optimized since we do not need to upload (register) the
whole object class, only a trimmed version consisting of the
selected pure functions.

C. Potential Applications

More and more applications are expected to perform
on smartphones, but the resource requirement is never
satisfied by current hardware capabilities. For example,
3D image rendering on smartphones are motivated by the
cloud architecture. NVIDIA RealityServer [16] and OTOY’s
streaming platform [17] provides similar systems to enhance
presentation’s quality and performance through transmitting
processed images. For Amazon EC2, there is also a solution
called EnFuzion [18], which offers Image Rendering opti-
mization to help lightweight devices. Therefore, 3D games
seem a good fit for COCA. COCA can definitely improve
the performance of these potential applications.

VI. RELATED WORKS

Remote execution of computationally intensive appli-
cations for resource-limited hardware is a subject under
extensive study in mobile and pervasive computing [19],
[20]. Among previous studies, we classify them into two
categories, namely, program partitioning and process and
virtual machine migration.

A. Program Partitioning

The first category for offloading to remote execution
depends on programmers to partition the program and han-
dle state synchronization among the threads of execution
in different places. Spectra is a self-tuning tool that lets
applications on lightweight devices utilize computational
resources on large devices [21], [22]. In Spectra, the pro-
grammer needs to provide the strategy on how to partition
an application through giving “fidelities.” A fidelity is a
metric of quality, e.g., vocabulary size in the context of
speech recognition. Based on Spectra, Chroma introduced
a declarative language to specify how a program utilizes the
infrastructure resources.

Later, researchers began to investigate how to partition
target programs automatically. Such tools separate the orig-
inal program into two components, client and server, that
are authorized to execute on the two sides. For example,
Coign offers a coarse-grained splitting tool of DCOM appli-
cations [23]. For image processing applications, Kremer et
al. proposed a compiler tool to select part of the workload for
remote execution [24]. Following a similar spirit, Neubauer
and Thiemann divided a C-like program into a set of nesC
programs that are ready to carry out on sensors [25].

Another strategy of program partitioning is to build
replicas from the mobile applications and synchronize the
replicas over the network. Mobile applications first create
their duplications on the remote side and then invoke them
to perform particular tasks. For instance, cyber foraging uses

surrogates opportunistically to improve the performance of
mobile devices [26]. Similarly, both data staging [27] and
Slingshot [28] use surrogate-based approaches. To enhance
the performance, Slingshot creates a secondary replica of a
home server at nearby surrogates.

There have been quite a few works on partitioning and
offloading for binary Java programs [7], [8], [9]. Often in
these methods, the application binary code is dynamically
partitioned, and part of the functionalities are moved to
a powerful nearby surrogate device for execution. Among
them, a general approach for partitioning Java classes into
groups is to transform the partitioning problem into the
MINCUT problem [29]. In a typical problem of this sort,
a cut that minimizes the component interactions between
partitions needs to be found on some graph. Also, people
have tried optimizing for a different metric, e.g., for energy
saving instead of performance enhancing in MAUI [10].
In addition, MAUI also emphasized that the additional
programming effort should be minimized using their tool.

B. Process and Virtual Machine Migration

A second type of approaches is to migrate the target
processes to a duplicated operating system running on the
remote side. There are several implementations such as
Zap [30] that offer process migration on Linux through
building checkpoints and restart. Similar to process migra-
tion, Clark et al. proposed live migration of virtual machines
between distinct physical hosts [31]. They successfully
achieved an impressive performance on resuming the mi-
grated operating system to run in as little as 60 milliseconds.
Alternatively, ISR provides an ability to suspend a virtual
machine on one host and resume it on another by storing
the VM images in a distributed storage system [32]. Later,
Cloudlets [33] and CloneCloud [34] built on top of the work
of Clark et al. to assist offloading in a mobile computing
environment. Their approaches effectively reduce the efforts
required by the application programmers through the use
of replicas of the running operating systems on the users’
mobile devices. As a result, the programmers do not need
to modify their code at the source level or binary level.

C. Comparisons with COCA

Lastly, we compare COCA and existing works found in
the literature from several aspects. Even though the experi-
ments are performed in a wide variety of environments, we
still try our best to compare COCA with these approaches
in a fair and appropriate way. The features under compari-
son include the fundamental methodologies, the applicable
devices, the applicable applications, energy savings, and
performance improvements. The results are summarized in
Table II.

Among these approaches, we find two major directions.
The first is to leverage replica architectures [20], [27], [28],
[22]. The earliest one by Rudenko et al. allows several

471

Table II
COMPETITIVE STUDY OF OFFLOAD SCHEMES

Approach Methodology Client/Server Applications Energy Savings (%) Speed-up

Kermer et al. [24] Compilation Skiff sensor/ Image processing 87.5% 13.9x
PC (P3 450 MHz)

Rudenko et al. [20] Replica Dell Latitude XP Gaussian elimination 43% N/A
(matrix size: 500× 500)

Flinn et al. [27] Replica Compaq iPAQ 3850/ Image browsing 5%–26% (cold) 1.79x (cold)
(cache) PC (P4 2 GHz) 10% (warm) 2.17x (warm)

Slingshot [28] Replica Compaq iPAQ 3970/ VNC N/A 2.6x
(full-VM) PC (P4 3.06 GHz) Speech recognition

Spectra [22] Replica Compaq Itsy / Speech recognition 91.7% 12.7x
(RPC) PC (P3 700 MHz) Document preparing (small files) 2% 1.73x

Document preparing (large files) 68.4% 3x
MAUI [10] Compilation HTC Fuze/ Speech recognition 89% (Wi-Fi) 6.55x (Wi-Fi)

PC (3 GHz 2-core, 4G RAM) Speech recognition 76% (3G) 4.75x (3G)
Video game 20% (Wi-Fi) 3.1x (Wi-Fi)
Video game -10% (3G) 2.81x (3G)

30-move chess game 18% (Wi-Fi) 1.14x (Wi-Fi)
30-move chess game -27% (3G) 1.03x (3G)

COCA Compilation Google Nexus One Chess AI calculation 30% (Wi-Fi) 18.6x (Wi-Fi)
PC (AMD 3 GHz, 4G RAM) -85.2% (3G) 1.59x (3G)

laptops to share their resources through remotely executing
processes [20]. Later, Flinn et al. [27], Slingshot, and Spectra
all create replicas to benefit clients via caching, remote
process execution, or remote procedure call capabilities.
The second is to adopt some kind of compilation mecha-
nisms [24], [10]. COCA also belongs to this kind. Kermer et
al. builds a toolchain to separate the whole program into PC
part and sensor part [24]. MAUI partitions the program into
client and server parts and facilitates smartphones by passing
several unsupported or heavy tasks to a remote server [10].
Similar to the above two works, COCA accelerates part of
the computation on smartphones through offloading some
components onto the cloud server.

We observe that in MAUI and COCA, better performance
improvements and energy savings can be achieved when
Wi-Fi networks are used compared with 3G networks.
Furthermore, MAUI was only able to achieve positive energy
savings for the speech recognition application, possibly
because only this application has high enough compute-to-
communication ratio, or that it can benefit from the larger
database on the server side. We also note that for the same
type of application, Spectra achieves the best performance
on both computation speed-up and energy saving, making
replica-based approach looking more attractive in applica-
tions of the same or similar nature.

Overall, we find that COCA can achieve comparable
speed-ups and energy savings with existing approaches when
Wi-Fi networks are used. This shows that AOP can provide a
not only elegant but also efficient solution to the computation
offload problem for smartphones.

VII. CONCLUDING REMARKS

COCA’s objective is to offload partial computation from
resource-limited devices such as smartphones to cloud

servers. COCA provides a source language level mech-
anism to generate remote objects and local smartphone
program automatically, allowing various trade-offs between
communication overhead and computation enhancement. To
demonstrate COCA’s effectiveness, a chess game has been
adopted to see how fast it could be, how much energy
it could save, and how much delay it could incur. The
experiment results show that COCA can indeed provide
computation enhancements and energy savings by offloading
part of the computation to cloud servers.

ACKNOWLEDGMENT

This research was supported by the M.O.E.A under
Domestic Information, Communications Infrastructure Con-
struction Project (No. 100-EC-17-A-05-01-0626), as well as
the National Science Council under the Grant NSC 100-
2911-I-002-001 and 10R70501.

REFERENCES

[1] http://www.android.com/.

[2] A. Carroll and G. Heiser, “An analysis of power consumption
in a smartphone,” in Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference. USENIX
Association, 2010, pp. 21–21.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,”
in Proceedings of the 11th European Conference on Object
Oriented Programming, 1997, pp. 220–242.

[4] http://en.wikipedia.org/wiki/Aspect-oriented programming.

[5] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-
oriented software development. Addison-Wesley Profes-
sional, 2004.

472

[6] http://www.eclipse.org/aspectj/.

[7] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Miloji-
cic, “Adaptive offloading inference for delivering applications
in pervasive computing environments,” in Proceedings of the
First IEEE International Conference on Pervasive Computing
and Communications. IEEE, 2003, pp. 107–114.

[8] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen,
T. Giuli, and X. Gu, “Towards a distributed platform for
resource-constrained devices,” in Proceedings of the 22nd
International Conference on Distributed Computing Systems.
IEEE Computer Society, 2002.

[9] S. Ou, K. Yang, and J. Zhang, “An effective offloading mid-
dleware for pervasive services on mobile devices,” Pervasive
and Mobile Computing, vol. 3, no. 4, pp. 362–385, 2007.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “MAUI: making smart-
phones last longer with code offload,” in Proceedings of the
8th International Conference on Mobile Systems, Applica-
tions, and Services. ACM, 2010, pp. 49–62.

[11] http://code.google.com/p/apps-for-android/.

[12] http://honzovysachy.sourceforge.net/.

[13] http://www.msoon.com/.

[14] http://ziyang.eecs.umich.edu/projects/powertutor/.

[15] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,
and L. Yang, “Accurate online power estimation and auto-
matic battery behavior based power model generation for
smartphones,” in Proceedings of the Eighth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign
and System Synthesis. ACM, 2010, pp. 105–114.

[16] http://www.realityserver.com/products/realityserver.html.

[17] http://www.otoy.com/#/tech/.

[18] http://www.axceleon.com/.

[19] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation
for mobile applications,” in ACM SIGOPS Operating Systems
Review, vol. 33, no. 5. ACM, 1999, pp. 48–63.

[20] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving
portable computer battery power through remote process
execution,” ACM SIGMOBILE Mobile Computing and Com-
munications Review, vol. 2, no. 1, pp. 19–26, 1998.

[21] J. Flinn, D. Narayanan, and M. Satyanarayanan, “Self-tuned
remote execution for pervasive computing,” in Proceedings
of the Eighth Workshop on Hot Topics in Operating Systems.
IEEE, 2001, pp. 61–66.

[22] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing perfor-
mance, energy, and quality in pervasive computing,” in Pro-
ceedings of the 22nd International Conference on Distributed
Computing Systems. IEEE, 2002, pp. 217–226.

[23] G. Hunt and M. Scott, “The Coign automatic distributed
partitioning system,” Operating Systems Review, vol. 33, pp.
187–200, 1998.

[24] U. Kremer, J. Hicks, and J. Rehg, “Compiler-directed remote
task execution for power management,” in Workshop on
Compilers and Operating Systems for Low Power, 2000.

[25] M. Neubauer and P. Thiemann, “From sequential programs to
multi-tier applications by program transformation,” in ACM
SIGPLAN Notices, vol. 40, no. 1. ACM, 2005, pp. 221–232.

[26] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen,
and H. Yang, “The case for cyber foraging,” in Proceedings
of the 10th workshop on ACM SIGOPS European workshop.
ACM, 2002, pp. 87–92.

[27] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan,
“Data staging on untrusted surrogates,” in Proceedings of the
2nd USENIX Conference on File and Storage Technologies.
USENIX Association, 2003, pp. 15–28.

[28] Y. Su and J. Flinn, “Slingshot: Deploying stateful services
in wireless hotspots,” in Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services.
ACM, 2005, pp. 79–92.

[29] M. Stoer and F. Wagner, “A simple min-cut algorithm,”
Journal of the ACM (JACM), vol. 44, no. 4, pp. 585–591,
1997.

[30] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and
implementation of Zap: A system for migrating computing
environments,” ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, pp. 361–376, 2002.

[31] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,”
in Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation—Volume 2.
USENIX Association, 2005, pp. 273–286.

[32] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia,
D. O’Hallaron, A. Surie, A. Wolbach, J. Harkes, A. Perrig,
D. Farber et al., “Pervasive personal computing in an internet
suspend/resume system,” IEEE Internet Computing, pp. 16–
25, 2007.

[33] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The
case for VM-based Cloudlets in mobile computing,” IEEE
Pervasive Computing, 2009.

[34] B. Chun and P. Maniatis, “Augmented smartphone appli-
cations through clone cloud execution,” in Proceedings of
the 12th Conference on Hot Topics in Operating Systems.
USENIX Association, 2009, p. 8.

473

