An Energy-efficient Task Scheduler for Multi-core
Platforms with per-core DVFS Based on Task
Characteristics

Ching-Chi Lin, You-Cheng Syu, Chao-Jui Chang, Jan-Jan Vdmgkeng Liu, Po-Wen Cheng and Wei-Te Hsu

Abstract—Energy-efficient task scheduling is a fundamental must be completed as soon as possible; whilerzinteractive

issue in many application domains, such as energy consen@t  task may not have a strict deadline or response time constrai

for mobile devices and the operation of green computing data | the online mode. tasks can arrive at any time
centers. Mo_dern processors support dynar_nic_voltage and fre A | ftf’1 i dei line d.' t
quency scaling (DVFS) on a per-core basis, i.e., the CPU can AN €xample of theonlinemode IS an online judging system

adjust the voltage or frequency of each core. As a result, the where users submit their answers or codes to the server. Afte
core in a processor may have different computing power and performing some computations, the server returns the score
energy consumption. To conserve energy in multi-core platims, o indicates the correctness of the submitted programs. In
we propose task scheduling algorithms that leverage per-€@ s scenario, user requests anéeractivetasks that require
DVFS and achieve a balance between performance and energy ' .
consumption. We consider two task execution modes: theatch  Short response times. Note that the response time refeneto t
mode, which runs jobs in batches; and theonline mode in acknowledgement of receipt of the user’s data, not the time
which jobs with different time constraints, arrival times, and taken to return the scores. By contrast, the computatiosef u
computation workloads co-exist in the system. _ data innon-interactivetasks is not subject to time constraints.
For tasks executed in thebatch mode, we propose an algorithm T . lti- latf

that finds the optimal scheduling policy; and for theonline mode, o conserye energ_y In-mufli-core platforms, we propose
we present a heuristic algorithm that determines the execion task scheduling algorithms that leverage per-core DVFS and
order and processing speed of tasks in an online fashion. The achieve a balance between performance and energy consump-

heuristic ensures that the total cost is minimal for every tme tion. In our previous work [[8] , we have made the following
interval during a task’s execution. contributions. )

« We present a task scheduling strategy that solves three
important issues simultaneously: the assignment of tasks
to CPU cores, the execution order of tasks, and the CPU
processing rate for the execution of each task. To the best
of our knowledge, no previous work has tried to solve the
three issues simultaneously.

To formulate the task scheduling problems, we propose
a task model, a CPU processing rate model, an energy
consumption model, and a cost function. The results of
simulations and experiments performed on a multi-core

Keywords-Energy-efficient; Task scheduling; Task Character-
istics; Multi-core; DVFS

I. INTRODUCTION

Energy-efficient task scheduling is a fundamental issue
in many application domains, e.g., energy conservation for
mobile devices and the operation of green computing data,
centers. A number of studies have proposed energy-efficient
techniques[]1],[[2]. One well-known technique is called dy-
namic voltage and frequency scaling (DVFS), which achieves
energy savings by scaling down a core’s frequency and thereb g6 machine demonstrate the accuracy of the models.
reducing the core’s dynamic power. e For the execution of tasks in thEtchmode, we propose

Modern processors support DVFS on a per-core basis, i.e., an algorithm calledWorkload Based GreedfWBG),
the CPU can adjust the voltage or frequency_ of each core. As which finds the optimal scheduling policy for both
a result, the cores in a processor may have different comguti single-core and multi-core processors. Our experiment
power and energy consumption. However, for the same core, results show that, in terms of energy consumption, WBG
increased computing power means higher energy consumption achieves 46% and 27% improvement over two existing
The challenge is to find a good balance between performance algorithms respectively, with only a 4% slowdown and

and energy gonsumptlon. o L . 13% speedup in the execution time.
Many existing works focus on specific application domains, . To execute tasks in thenlinemode, we propose a heuris-

f.UCh _‘25 rea:}ll-tlmtej_lsycsjter_ns '_[317’ [f'-l’ tE_’]’ multimedia apzl;ca tic algorithm calledLeast Marginal Cos{LMC), which
ions [6], and mobile devices][7]. In this paper, we consiler assignsinteractive and non-interactivetasks to cores. It

broade.r cle}s§ OI tasks. ?pe.cfrlgltlthe c&lassmé t?hSk ar@cu also determines the processing speeds that minimize the
scenarios into two modes. ch moce an eoniine total cost of every time interval during a task’s execution

mode. T_he workload of the former comprises_ bat_ches of in an online fashion.

jobs; while that of the latter consists of jobs with diffeten ) ] )

arrival times and time constraints. We divide the jobs in 'N this paper, we have improved our work with the follow-
the online mode into two categoriesinteractive and non- N9 extensions.

interactivetasks. Aninteractivetask is initiated by a user and « For batch mode, we define the “dominating position set”,


Simon



Simon

replace "The key contributions of this work are as follows." 

Simon

replace "The key contributions of this work are as follows." 

Simon

This paragraph is new.

Simon

This paragraph is new.

Simon




which determines the frequency of each batch task &8- Processing Rate

cording to its position in the task queue. We also de- \jodern processors support dynamic voltage and frequency
rive an algorithm that computes the dominating positiogaling (DVFS) on a per-core basis; therefore, each core in
ranges efficiently. The algorithm runs (| P|), where 5 processor may have its own processing rate or frequency.
P is a non-empty set of discrete processing rates on g; p — {p1.,p2,p3....} be a non-empty set of discrete pro-
e cessing rates a core can utilize based on the hardware, with
. Foronll_n_e mode,_we propse a met_hod tq compute the_to@k p1<p2<ps<..<pp. We usep; from setP to
cost efficiently with dynamic task insertion and deletionyenote the processing rate of a task Different processors
The time complexity of cost computation &(1). With  56yide different processing rates. For example, the msing
this algorithm, we can reduce the overhead of our Leagheeds offered by the Intel i7-950 processor range from 1.6,
Marginal Cost. 1.73 to 3.06 GHz; while those of the ARM Exynos-4412 CPU
The remainder of this paper is organized as follows. In tlrange from 0.2, 0.3 to 1.7 GHz.
next section, we formally define the models for executing We also make some assumptions about the processing rate
tasks, determining the core processing rates, and reducdiagthe batchmode andonline mode. In thebatchmode, the
energy consumption. In Sectiénllll, we discuss the proposprbcessing rate of a CPU core does not change during a task’s
Workload Based Greedsigorithm, which derives the optimal execution. A core only switches to a new frequency when it
scheduling policy for thebatch mode. We also provide a starts a new task. By contrast, in tbeline mode, a core can
theoretical analysis to prove the optimality of the aldurit In  change its processing rate any time based on the scheduling
Sectior 1V, we discuss the proposed heuristic algoritheast decisions.
Marginal Cost for the online mode. The experiment results
are presented in Secti@d V; Section VI reviews related wor

i ) : Ké Energy Consumption
and Sectio VIl contains our concluding remarks. 9y P

For a taskji, let e, denote the energy consumption in
joules; t;, denote the execution time in seconds; angd be
Il. MODELS the processing rate used to execyte Recall thatL; the
number of cycles needed to complete tagk We define
E(p) and T(p) as the energy and the time required to
A task comprises a sequence of instructions to be execute@cute one cycle with processing rateon a CPU core ,
by a processor. We define a tagkin a task set/ as a tuple with the property thab < E(p;) < E(ps) < E(p3) < ... and
Jk = (Lg, Ax, Dy), where Ly is the number of CPU cycles0 < ... < T'(p3) < T'(p2) < T'(p:1). Because we assume that
required to completg,, Ay is the arrival time ofj,, andD;, is a core’s processing rate is fixed while running a task in the
the deadline ofi.. If ji has a specific deadlin®;, > A, > 0; batchmode, we can formulate the energy consumptipand
otherwise, we seb), to infinity, which indicates thaj,, is not execution timet;, of taskj, as shown in Equatiorid 1 afdl 2.
subject to a time constraint.
For the batch mode, we make two assumptions about the

A. Task Model

tasks to be executed. First, tasks are non-preemptive hwhic ee = LuB(pj) 1)
means that a running task cannot be interrupted by other te = LiT(pj,) (2)
tasks. In practice, this non-preemptive property redubes t

overheads of task switching and migration. Second, we assum [1l. TASK SCHEDULING IN THE BATCH MODE

that tasks are independent and can be scheduled in an @rbltraIn this section, we discuss our energy-efficient task schedu

order. As the tasks in a batch are not interdependent and ﬁ"i'é‘approach fobatchmode execution. We consider running

Ble exfecuted S|m|l(JIFan0eours]Iy ,’ WT, assume tﬂat ﬂ;]e arra/aé t'lrﬁ%ks with and without deadlines in both single core andimult
h ks oh every ta_sf IS '_T e t')mp 'Cﬁt'?]n IS tkat t t? SC i[bu %ore environments. As a result, we have four combinations of
as the timing information about all the tasks to be Pro@essg qy.5 and environments. Below, we formally define the energy

and it can run the tasks in any order based on the curreffjent task scheduling problem in each of the four scesari

scheduling pglicy. B ) . and present our theoretical findings for the defined prohlems
For the online mode, we divide tasks into two categories

according to their time constraintmteractivetasks are those _ )

with early and firm deadlines, so the response time is crf}- Tasks with Deadlines

cial for such tasksNon-interactivetasks are those with a We define the problem of scheduling tasks with deadlines
late deadline or no deadline. We also make the followingn a single core as follows. Given a set of tagks the
assumptions aboudnline mode tasks. (1) The number ofnumber of execution cycles needéd, the tasks’ deadlines
cycles needed to complete a task is known because it dap, the possible processing rates of the cétethe energy
be estimated by profiling. (2) The tasks are independent afnsumption and time consumption functioAsand 7', and
each other. (3) A task can preempt other tasks that haveha total energy budgeE™, the goal is to determine the
lower priority. In theonline mode, a task’s priority dependsexecution order of the tasks and their processing rate$ suc
on its categorylnteractivetasks have higher priority tharon- that every task can be completed before its deadline and the
interactivetasks. overall energy consumption is less thar.


Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon



Simon

add

Simon

add

Simon

add


We call the above probleeadline-SingleCoreand reduce hand, running every task at the highest processing rate & as
thePartition problem to show thaDeadline-SingleCores NP- minimize the total execution time would waste energy. Thus,
complete. Letd = {a4,...,a,} be a set of positive integers.the cost function must consider both the energy consumption
The partition problem involves determining if we can paostit and the execution time. Our cost function converts the two
A into two subsets so that the sums of the numbers in the twarameters into monetary values. We define the cost of a task
subsets are equal. Given a problem instafice {a1,...,a,}, Jr asthe sum of its energy cost and temporal cost. The energy
we construct a problem instance readline-SingleCorsuch costC}, . of taskjy, is the amount of money paid for the energy
that one problem can be solved if and only if the other onesed to execute the task. Recall t&(p,, ) is the amount of

has a solution. energy in joules required to execute one cycle with proogssi
Theorem 1: Deadline-SingleCore NP-complete. ratep;, on a core. Therefore, the total energy in joules needed
Proof: We construct a problem instance Deadline- to run a taskj, with processing rate,, is L, E(pj, ); and the
SingleCoreas follows. There are: tasksji,. .., j,; and the amount of money paid for the energyis L, E(p;, ) as shown

number of cycles needed for the firsttasks isL; = a;, as in Equation[B, whereR, is a positive constant, which means
in the given partition problem instance. We uSe= >""" , a;, the cost of a joule of energR. can be regarded as the amount
to denote the total number of cycles required to comptetepaid for one joule of energy in an electricity bill.

tasks. There are only two processing rates: low spgeihd

high speedpy,; the latter is twice as fast as the former. We Che = ReLr E(pj, ) (3)
also assume thdf'(p;) = 2, T(pr) = 1, E(pn) = 4 and

; . Similarly, we define theéemporal costC}, ; of task j, as
E(p:) =1, based on the assumption that the dynamic part f?‘fe amount of money paid to compensate a user for waiting

the energy consumption is proportional to the square of t%er his/her job to be completed. Recall tH&tp;, ) is the time

ILeqﬁteznci/. Th[:i a_?ﬁur?pnon foll'[ovysttir;essclasglisl models A seconds required to execute one cycle with processimg rat
e literature([9]. The time constrain and the energy pj, ONn a core, so the total time needed to run a taskith

colr\llstramt ';'2'5?5?? deadlége5gf every t?Sk TB‘;’: task processing rate;, is LT (p;, ). Without loss of generality,
ow we havel.oo Ime andz.o.> energy 1o run e 1asks. o a5sume that the execution order of taskgjis . ., jn;

Becausel'(p) andT'(p) equal 1 and 2 respectively, we nee herefore, the turnaround time for tagk is comprised of

to select the number of tasks whose sum is at |&4&t to . - . .

run at high speeg,, so that all the tasks can be Corialeted ithe time waiting forji.. .., jy—1 (0 be completed and the
gh sp h P Bxecution timeof jr itself. As a result, the turnaround time

1.5S time. In addition, becaus&(p;) and E(p;) are 4 and Lk L
) of 5. is> . . L;T(p; ). In addition, the temporal cost of task
lrespectively, we need to select the number of tasks whose/* 1S 2 (ps:) " P

k . .
sum is at leasf5/2 to run at low speegh; so that the energy Jk 1S Ry Zi:l. _LZT(in) as ShO\.Nn in Equatioll 4, Wher&t.

. is also a positive constant, which means the amount paid for
consumption of all the tasks does not exc@ews.

We conclude that the total number of cycles required fgervery second a user has to wait for the execution of his/her

tasks that run at high speed is the same as that for the task ask. i, can be regarded as apportunity costwhich is

that run at low speeg;. Hence, thePartition problem can be he amount of money we COU.Id eam if we could move the
solved if and only if a solution is found for oupeadline- resources elsewhere. Alternativel; can be thought of as

SingleCoreproblem. The theorem follows the amount a user is willing to pay for a computing service,
Theorem[]l states that the problem of deciding the prgl—JCh as Amazon EC2.

cessing rate for tasks with deadlines under time and energy k
constraints on a single core is NP-complete. The single- Ch.t :RtZLz‘T(Pji) 4)
core results can be extended to multi-cores as follows. We i=1

define theDeadline-MultiCoreproblem in a similar way to  To obtainC}, the cost of taskj,, we combine the energy
the Deadline-SingleCoreproblem, and prove that it is NP-costC}, . and the temporal cost;, ;. Using the weighted sum
complete. We only consider two cores, each of which has thethe energy and flow time as the cost objective function is
same speeg with T'(p). The deadline constraint is set amased on previous works [10], [11]. The total cost of all &ask
S/2; we do not consider the energy constraint. The problegienoted ag”, is calculated by Equatidn 8.

is exactly the same as partition problem; theref@eadline-
MultiCore is also NP-complete.

Theorem 2: Deadline-MultiCoris NP-complete. Ck = Cret Ch . )
B. Tasks without Deadlines on a Single Core Platform = ReLrE(pj.) + R z;LiT(pﬁ) 6
Next, we consider the problem of scheduling tasks without n .
deadlines. Given a set of tasks and the number of cycles Cc = ch )
needed to process them, the goal is to find the execution order k=1
and the processing rate for each task so that the overalf"“cos n k
is minimized. = > (RLyE(pj,) + R Y _LT(p;,))  (8)
If we only consider energy consumption, we could run every k=1 i=1

task at the lowest processing rate in order to minimize the en Equation[8 is difficult to analyze due to the interaction
ergy used, but it would degrade the performance. On the otlietween a task and all the tasks ahead of it in the execution


Simon



Simon

change "total execution time" to "turnaround time"

Simon

change "total execution time" to "turnaround time"

Simon

add


sequence. We consider this problem from another perspectiv Theorem 3:There exists an optimal solution with the min-
Instead of computing the waiting time caused by other taskaum cost, where the tasks are in non-decreasing order of the
(the second term in Equatidd 6), we compute the amoumimber of cycles.

of delay that a task causes for other tasks. Consider a task Proof: Recall that C(k) = miny,cp C(k,p). From

Jr- If ji runs at processing rage;, , the energy cost will be Lemmal[l, we know that when the task execution order is
R.L;E(pj;,) and the time cost will bén—k+1)R: Ly T(p;.)  71,---,jn, the minimum total cost is as follows:

for itself and the tasks after it. That is, the temporal cost

of ji will be R.L;T(p;. ), and that of taskj,: will be B "
RL;T(pj,.,), and so on. We can rewrite Equatidh 8 as C‘Zc(k)Lk (17)
follows: h=1

From LemmaR, we know that (k) is a decreasing function
of k; and from Lemmdl3, we know that the cost will not
(ReLrE(pj,) + (n — k+1)RLyT(pj,)) (9) increase if a task with a small number of cycles is switched
with a task in front of it that has more cycles. By repeating
this process on an optimal solution until there are no tasks t
(ReE(pj) + (n =k +1)ReT(pj)) i (10)  gpitch, the tasks will be in non-decreasing order of the nemb
of cycles required to complete them, and it is still an optima
C(kpju) L (11) solution. -
To eliminate n (the number of tasks) for generality, we
define LB, jB, CB(k,p), CP(k) as follow: (“B” means

NE

C:

~
Il
—

[
NE

>
Il
—

[
M=

>
Il
—

Note that we defin€'(k, p) as

backward)

C(k,p) = R.E —k+1)R,T 12

(. p) (b)) +(n—k+DRT(p)  (12) LE L a8)
Now we can rewrite Equatidn 8 as follows:

n JE = dn-ki (19)

C=)> C(k,pj)L 13
2, Cllpi) L O3 0B hp) = Cn— k +1.p) = ReE() + kRT()  (20)
Equation [IB shows that when we want to minimize CB (k) = min OB (k, p) (1)

C(k,pj,) in order to minimizeC, it is not necessary to peP ’

considerL;, the number of cycles needed to execute task
We only need to find the processing ratg that minimizes
C(k,p;,) for eachk. In other words, the minimum value
of C'(k,p;.) only involvesk, the position of the task in the
execution sequence, and it is independent of the task &sbign
to that position.

Lemma 1:The decision about the processing raie re-
quired to minimizeC'(k, p;, ) only depends oft, the position ( ) > fulk) (22)

<E(

Define fi(k) = CP(k,pi) = (R.E(pi)) + (R/T(pi))k-
By definition, p; is the best choice fori? if.f. f;(k) =

ming f5(k). By Inequation[2b, we know that for any two
different processing rates, and p, with p, < ps, pp IS NO

B ((0n)~E(pe))
worse tharp, i.£.f. k > Foami—rmsy

of the task in the execution sequence.

Lemmal[l implies that we can calculate the minimum — pa) + BiT(pa)k = ReE(py) + RiT (po(23)
C(k,pj,) for eachk beforehand ifP, E, T, R,., and R; < RiT(pa)k — BT (pp)k > ReE(py) — R E(p24)
are known. As a result, we can find the optimsg]| that — k> Re(E(py) — E(pa)) (25)
will minimize eachC(k,p;,), and then determine the best ~ Re(T(pa) — T(pv))

processing rate without any knowledge of the workload.
Lemma 2:Let C(k) = min,cp C(k, p), C(k) is a decreas-
ing function ofk, i.e. C(k + 1) < C(k).

Define D, the “dominating position set” gf, to be the set
of k£ such thatp is the best choice fo§Z (choose the higher

Proof: Let the optimal processing rate 6f(k) be p. If processing :cate n clase obf a tie). (f$%1,D,}2, N "%}\P\ IS
we usep as the processing rate far(k + 1), then we have a partition of natural num em) To find D, for eachp € P
! is equivalent to find the lower envelope ff, f2, f3, ..., fip|-

C(k+1,p)—C(k,p) = —R,/T(p) < 0. ThereforeC'(k+1) <
Ck+1,p) < C(k,p) = C(k). [ |
Lemma 3:For any four real numbeis b, =, y wherea > b
andx > y, thenax + by > ay + bzx.
Proof:

Due to f; are linear functions withy = b + ax form, it is

equivalent to find the lower (convex) hull in the dual space

(transform liney = b + ax to point (a, b)), and the elements

in each dominating position set will be consecutive. (So ame ¢

call “dominating position set” as “dominating postitiomge”

(a=0b)(x—y) >0 (14) instead.) In conclusion, we can find the dominating position

az — ay — bz + by > 0 (15) ranges efficiently via Algorithril1, wh|_ch runs _@(|P|_). _
The pseudo code of the task ordering algorithm is detailed

ar +by = ay+br (16) in Algorithm [2, which runs inO(|J|log|J]). (P = {plp €

| P/\Dp75@}:{]517]527...,]3‘?'};]51<ﬁ2<...<]3‘15|)

=
=


Simon

add this paragraph

Simon



Simon



Simon



Simon



Simon



Simon



Simon

New paragraph by You-Cheng

Simon

New paragraph by You-Cheng

Simon

New paragraph by You-Cheng

Simon

New paragraph by You-Cheng


Algorithm 1 Finding Dominating Position Ranges

Input: P, E,T,R., R, _

Out|
1:
2:

put: D, (p € P), P
function cross(to, t1,t2)

return (tl.fL‘ - to.l‘) (tg.y - to.y) — (tg.l‘ - to.x)(tl Y —
to-y)

andT'; hence, they have the saniéfunction, as defined in
Equation[IR. For ease of discussion, we use an iridex
n—k+1 onC’ function to describe Equatignl12. The index is
defined in Equatiori_26. The rationale is thastarts counting
from the beginning of the sequence, while starts from the
end of the sequencé;— 1 is the number of tasks in front of

3: end function the current task, and’ — 1 is the number of tasks behind it.

4. for p e P do

5. D, <10 C'(K\pj,)=Cn—k+1,pj_...) (26)

6: end for First, we describe scheduling tasks ihn@mogeneousulti-
7P core system withR cores. From Lemm&l2 we know that
8: initialize a stacks; top « 0 C(k) is a decreasing function of; therefore,C’ (k') is a

o: for i 1 to |P| do non-decreasing function df’. As a result, we usé’ = 1

10: te(p=pir=RT(p)y=RE(p)) to schedule theR heaviest tasks, i.e., those that require the
11: while top > 2 andcross(s[top — 1], s[top], ¢) = 0 do highest numbers of cycles, on ttizcores first. Thdast task

12: top — top —1 on each of theR cores will be one of these tasks, which
13 end while implies they will be multiplied by the smallesgt’(1) so that

14: top —top+1 they contribute the least amount to the total cost. Then, we
15:  Sltop] 1t usek’ = 2 to schedule the nexR heaviest tasks on th&

16: end for cores in the same manner. We use this round-robin technique
17: Ib - 1 to assign tasks so that those with a larger number of cycles
18: for i — 1 Eﬁf{),y;[lﬂ,‘ﬂo are assigned smalléf, and therefore smallet’(k’). Using a

19: ?”‘”? - (WW similar argument to that in Theordmh 3 we derive the following
20: if Ib < nlb then theorem.

2L IA)SW'PA(_ [16, nib) Theorem 4:A round-robin scheduling technique that as-
22 P - PU{si].p} signs heavier tasks to smalléf yields the minimum cost in

23 end if a homogeneousulti-core system

24: b —mnlb Next, we consider eheterogeneousnulti-core system in

25: end for

26:
27:

Qs[top];p — [lba OO)
P — PU/{s[top].p}

Algorithm 2 Longest Task Last

Input: J,P,E,T,R., R,
Output: The execution orde® (a list of pairs of tasks and yse;* to denote the core index whe€¥ is minimized. From
corresponding processing rates that minimize the tof@le discussion in Theoreli 4, we know that the heaviest task

which all the cores may have different energy consumptieh an
time consumption function& and 7. We extendC’ (k') for

a single-core system t0’ (k') for a heterogeneousiulti-core
system, wherg is the index of a core antl < j < R. Tasks

are assigned to cores in a greedy fashion. First, we compute
C%(1) for 1 < j < R. That is, we compute the lowest’
value among all cores if we place a task on that core, and we

cost) should be placed on cogé. We then find the minimum among
1: Find dominating position ranges via Algorittm 1 Cl(1) for j # jx andC’.(2), and assign the second largest
2: Sort the tasks in/ to makeL;’ in non-increasing ok task to that core. This process is repeated until all thestask
3: initialize an empty listO have been assigned to cores. Note tHiatk’) is independent
4: for p € P in ascending ordedo of the task workload and can be computed in advance for
5. if D,N[L,[J|] =0 then break all cores. In practice, we can build a minimum heap to store
6: for ke D,N[L,[J] in ascending ordedo the C’/ (k') we are considering. In each round, we take the
£ O —{(if,p)} + O Il concatenate minimum from the heap and add the neXt(+’) to the heap
8 and for from the core that the task is assigned to. Using a similar
9: end for

argument to that in Theoreml 4, we can show that this greedy
method yields the minimum total cost. We have the following
theorem.

C. Scheduling Tasks without Deadlines on Multi-core Plat- Theorem 5:Using a greedy scheduling algorithm to assign
forms

heavier tasks to cores with smallét(%’) yields the minimum
cost in aheterogeneoumulti-core system.

_ If the cores in a multi-core system are the same type,The pseudo code of the greedy algorithm is detailed in
it is called ahomogeneousnulti-core system. In this sub- Algorithm [3.

section, we consider scheduling taskshmmogeneoumulti-
core systems anbleterogeneousulti-core systems. IV. TASK SCHEDULING IN THE ONLINE MODE

The cores in ahomogeneousnulti-core system have the In this section, we use an example to describe task schedul-
same energy consumption and time consumption functionsing in theonline mode. Then, we formally define the problem



Algorithm 3 Workload Based Greedy minimum cost. However, because the overhead incurred by

Input: tasksj, ..., j,; the number of cycled, ..., L,;the the time and energy used to migrate tasks could impact the
set of processing ratg; the energy consumption and timeperformance, we need a lightweight strategy without task
consumption functiong” and 7 for all R cores;R., the migration. To this end, we designed a heuristic algorithm,
cost of a joule of energy; and&;, the amount paid for called Least Marginal Costto schedule botlnteractiveand
every second a user has to wait. non-interactivetasks. The algorithm assigns each newly ar-

Output: An execution sequencs; for each of theR cores, rived task to a core, and determines the optimal processing
and the processing rates that minimizes the total costfaéquency for the task. When a new task arrives, the schedule

each task. finds an appropriate core for it. The most appropriate core is
1: Sort the tasks by.; in decreasing order. Let the new ordethe one that yields the lowest marginal cost if the newlyadi
of tasks beji, ..., j.. task is executed on that core. We apply different strategies
2: Initialize a heapH with C%(1), for j between 1 and?.  according to the type of task.
3: for each taskj, do If the newly arrived task isnteractive it must be completed
4. Delete the minimum elemerdt). (k') from heapH. as soon as possible. Thus, the scheduler chooses a core that
5:  Assignj; to thek’-th position in the execution sequencés executing a task with lower priority, preempts that task,
of core j*, and set its processing rate to the one thahd executes the new task instead. After finishing the new
minimizes and defines’. (k'). interactive task, the scheduler resumes the pre-empted task.
6: Add Cj. (k' +1)to H. The execution order of other tasks in the queue is unchanged.
7: end for The increasing cost cIfJM on corej is calculated as follows:

M _ o . T .
of energy efficient task scheduling in tlemline mode and Cj" = ReLiBj(pn) + R LiTj(pm) + R LiTj(p ) Nj (27)

present our heuristic algorithm. In Equation[2V,C denotes the marginal cost incurred
As mentioned in Sectiofl I, an online judging system i§ we run aninteractivetask on corej; R, and R. are the

a good example of scheduling in ttamline mode. In such amounts paid for every second and every joule of energy

systems, users submit their answers or codes to the seryggpectively:L; is the number of cycles needed to complete

and after some computations, the server returns the SCogSinteractivetask. E;(pm) andT;(p,,) are, respectively, the

or indicates the correctness of the submitted programs: U%ﬁergy consumption and the time taken for a cycle under the

requests arenteractivetasks that require short response timesggaximum frequencyp,, of core j; and N; is the number

Recall that the response time refers to the acknowledgnienigg (non-interactivg tasks waiting in the queue on core

receipt of the user's data, not the time taken to return th§,e | east Marginal Costalgorithm compares the marginal

scores. By contrast, the computations of u_sers’ datanare gsts and assigns thiateractive task to corej*, where
interactivetasks that do not have strict deadlines. Because egshv _ ,,);;, M Note that if the cores arBomogeneoysve
Fa

non-interactivetask may be submitted by a different user, th§i';nply choose the core with the least.

performance should be considered in terms of the completiong ihe new task ison-interactiveit is added to the execution
time of each task instead of the makespan of executing glleye instead of preempting the current task. The marginal
tasks. cost of adding aon-interactivetask to a core depends on the
We formally define the problem as follows. There argosition of the new task in queue. According to Theofém 3,
two types of tasks in th@nline mode: interactiveand non-  the optimal solution with the minimum cost is derived when
interactive Interactivetasks are submitted by users and havge tasks are in non-decreasing order of the number of cycles
strict deadlines, so they must be completed as soon as [®SSi§ecause the tasks in a queue are sorted in non-decreasing
By contrastnon-interactivedasks may not have strict deadline%rder, we can perform a binary search to find the position
or response time constraints. Tasks can arrive at any tifm@. o the new task. The tasks are still in non-decreasing order
goal of scheduling is to assign tasks to cores and determiyesr the new task is added.
the processing speeds that minimize the total cost for everyj qast Marginal Costchooses a core for the newon-
time interval during the execution of tasks. interactivetask in a greedy fashion. First, the scheduler finds
We make the following assumptions about the system. (L) for each corej, wherek; is the position that the task will
The system can be lomogeneousr a heterogeneousiulti- e jnserted. It then estimates the marginal €8t if the new
core system. (2) There is an execution queue for each coee. Thsk is inserted in positioit;. The corej* with the lowest
scheduler assigns a task to a core based on our policy. (3) Hgginal cost will be chosen. The new task is inserted in the
execution order of tasks in the same queue can be changed;(4), position on core*. The processing frequency of each
A task can only be preempted by a task with higher priorityssi on corej* is adjusted according t6'(k, pi), wherek is

(5) Interactivetasks have higher priority thamon-interactive ihe position of the task in the execution sequence.
tasks. The cost function in thanline mode considers both the

execution time and the energy consumption. ) ] _

Note that théNorkload Based Greedylgorithm can be used A+ Dynamic Task Insertion and Deletion
to redistribute all tasks to cores when a new task arrives.In Sectior IlI-B we show that how to schedule tasks without
According to Theoreni]5, rearranging the tasks vyields tlkeadlines on single-core platform with all tasks known ia th


Simon

New section by You-Cheng


very beginning_ In this section, we are going to show hoﬁlgorlthm 4 |nitialize for Single-Core DynamiC SChedU“ng
to schedule tasks and compute the total cost efficiently withput: ]5, E.T,R., R,

dynamic task insertion and deletion. Output: D, Z «,B3,a,b,z,d,C
First, we define three functions: 1: Find dominating position range® via Algorithm[1
b 2: Initialize an empty 1D range treg (sorted in descending
E(la b)) =D LY (28) order)
k=a 3:C«—0
b 4: for i — 1 to |P| do
A(la,b]) = Z(k —a+ 1)LkB (29) 5 @i NULL; 8; « NULL

6: a; « lowerboundD;,); b; «— a; — 1
7. x;<—0;d; <0
8: end for

k=a

b
y([a, b)) = > kLE = A(la, b)) + (a — 1)&([a,b])  (30)
k=a

Algorithm 5 Insert a task

Then, we can rewrite the total cost i i
Input: L: the number of cycles of the incoming task

n

C = S (R.IPE(p;s)+kR.LET(p, 31) L pir—insentt, L)
;( k (pg,?) tHk (Pjg)) (31) 2: kB — rank{tr)
3 i« arg; kP € Dy,
= D _(RE@EDy) + RTM)Y(Dy) B2 if 1B —'a then c — pir
peP 5: if kB > b; then 3; — ptr
6: b; «— b; +1

So if we can build a sorted data structure (sorted yin
descending order) with efficient insertion, deletion, gnh 7 =i < z; + L
queries, then we can do dynamic scheduling (dynamic taskg di < di+ (k" —a;+1)>xxptr+ rangesum(Z,[k” +1, b;])
insertion and deletion) efficiently.

For any two nearby rangf., M| and [M + 1, R] with ¢  9: while b; > upperboundD;,) do
and A known, we can compute thg([L, R]) and A([L, R]) 100 ptr < 3
as following. There is no need to know eadf in [L,R] 11 d; < di— (b —a; + 1) X *ptr

(associative property): 12: @ «— x; — *pir
13: bi —b; — 1
E([Lv R]) = 5([La M]) + E([M +1, R]) (33) 14: (3; «— predecessoff)
A(L,R) = A(L,M))+A(M +1,R))+ 15 i+l

(34) 16:  «; < pir

if a; > b; then 51 «— ptr
b —b;+1

(M +1—-L)¢&(M +1,R)

A single 1D range tree will be a suitable data structure her17
It supports insertion, deletion, and range queries forghin

. L . . Ti < x; + *pir
with associative property i®(log N), whereN is the number _ — d — d + o
of tasks it contains. (1D range tree is simplest case of rangg endz whiIeZz !
tree, it's basically a balanced binary search tree, witrheagzj O Zm R.E(D;,)z: + ReT(Dy,)(d; + (ai — 1))
node keeps (1) the number of nodes,{2(3) A, of its subtree "~ $=1 "Te AT T T R AR ! !
to meet our requirements.) With this data structure, we can
perform insertion and deletion i®(log N) and compute the
total cost inO(|P|log N) (via Equatior 3R). V. EVALUATION

This result is still improvable. We can keep (1) two pointers Our experimental platform is a quad-core x86 machine that
to the lower boundary node and the upper boundary nodeipports individual core frequency tuning. The CPU model is
(2) &, (3) A, for each dominating position ranges. Once amtel(R) Core(TM) i7 CPU 950 @ 3.07GHz. Each core has
insertion or deletion occur, we can maintain these inforomat 12 frequency choices. The power consumption is measured
in O(|P| +log N) due to the fact that the number of differenby a power meter, model DW-6091. The energy consumption
elements of the set of tasks before and after an insertédelistthe integral of the power reading over the execution pkrio
operation for each dominating position ranges is no moBecause other components in the system consume energy, we
than two. So the time complexity of insertion and deletiofirst measure the power consumption of an idle machine and
increase t(D(|]5| +log N) and the cost computation decreasdeduct the idle power reading from our experiment results.
to ©(1) due toC is maintained in insertion or deletion. Notice The frequencies of cores are computed according to our
that ©(1) predecessor and successor operation are requiedgorithm before each experiment. To prevent interference
to achieve this time complexity, we can do it by keep th'om the Linux OS frequency governor, we disable the
predecessor and the successor pointer in each node likeaitomatic core frequency scaling of Linux. The DVFS
doubly linked list. In addition, dynamid&\ range query is no mechanism can be disabled by setting the content in
longer required, While range query (simple range sum) is'/sys/devices/system/cpu/cpuX/cpufreq/scaloavernor”
still needed. to userspace where “X” is the CPU number. Since the



Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment


TABLE |

AIgorlthm 6 Delete a task AVERAGE EXECUTION TIMES OF THE WORKLOADS (SECONDY)

Input: ptr
1: kB «— rank(ptr) Benchmark] train input | ref. input
2: let i be the maximum integer s4; < b; perlbench | 43.516 | 749.624
3 while a; > k do bzip 98.683 1297.587
’ ? gce 1.63 552.611
4 Iptr — mcf 17.568 | 397.782
5: d; — d; — x; gobmk 189.218 993.54
. . L hmmer 109.44 1106.88
O mem *tptr Sieng 274,398 | 1074.126
7 bl —bi—1 libquantum 5.146 1092.185
8 if a; < b; then h264ref 218.285 | 1549.734
9 o — SUCCGSSOC@‘) omnetpp 108.661 439.393
10: else astar 191.073 880.951
’ xalancbmk | 142.344 453.463
11: a; «— NULL
12: Bi <+ NULL TABLE Il
13: end if PARAMETERS IN BATCH MODE
14: ter—1 o 6 [ 20 ] 24 ] 28 | 30
150 fB; < tptr E(ps) | 3375 | 422 | 50 | 60 | 71
160 b, — b +1 T(p,) | 0.625| 05 | 0.42 | 0.36 | 0.33

17:  x; < x; + *tptr

18 d; — d; + (b — a; + 1) X xiptr

19: end while 1) Experiment Settings:In the batch mode, we use

20: d; «— d;— (kP —a;+1) xxptr+ rangesum(Z,[k®+1,b;]) SPEC2006intwhich contains 12 benchmarks, each wtithin
andrefinputs. As a result, we have 24 different workloads. The
computation cycles needed by each workload are computed
as follows. First, we measure the execution time by running
each workload ten times on a core with the lowest frequency
(1.6 GHz) and compute the average execution time. Then,
we estimate the cycles needed by multiplying the average

21: x; «— x; — *ptr
22: b; — b; — 1

23: if a; > b; then
24:  «a; — NULL
25.  [3; «— NULL

26: else if a; = ptr then

27:
28:
29:

Q; «— successory;)
else if 8; = ptr then
B; «— predecessoff)

execution time by the core frequency, which is the number
of cycles per second. Tabl€él | shows the average execution
times of the workloads.

Table[dl shows the parameters used in tha&tch mode.

30: end if Recall thatE(py,) is the amount of energy in joules required to
31: deleteptr) execute one cycle on a core with processing patendT(py)

32: C «— Z‘:'l R.E(Dp,)x; + RyT(Dp, ) (d;i + (a; — 1)x;) is time in seconds needed to execute one cycle with progessin
ratep;. To obtain the values aF/(p; ), we measure the power
consumption of a core with 100% loading using differgpt

. . . and divide the result by,. Note thatT'(p,) is equal tol /p.
DVFS mechanism is invalid, we can set the frequency We setR. and R, accordingly.R, is (the amount paid/for a

?f an individual COe 5 I t.he contfznt ir]oule of energy, andz; is the amount paid to a user for every
B P T NN Ee RS second he/she has to wait for a task’s execution.

Howeverz U2 IrenlEncy Chslee e Iimjted_ to those N> Model Verification: To evaluate the accuracy of the
“/sys/dewces/system/cpu/cpuX/cpufreq/sca_ImgallabIe_frequegﬁl @y model and cost model, we conduct simulations and

:‘Af"[,er S, = . frequency o Coreexperiments. We use two frequencies, 1.6 GHz and 3.0 GHz;
“X ! we can ] = change = g R, is set at 0.1 cent per joule anRB; is set at 0.4 cents
fsysfdevices/system/cpufcpuX/cpufreq/scaling_freq”. per second. We take the 24 workloads in Table | as input

The power consumption of a core is related to its fr&zqy s Each workload is executed once. Therkload Based
quency and voltage. In our experlments, D t, edyalgorithm is used to generate an optimal scheduling
each frequency has a corresponding voltage. By adjustipg, inciuding execution order and frequencies, for theitn
the frequency, a core will automatically change its opatati o 110ads.
voltage, thus results in different power consumptions. The simulator takes the average execution time of the
tasks and the parameters in Table Il as inputs, simulates the
execution of the tasks based on the scheduling plan, and
generates the energy cost, time cost, and total cost.

In this sub-section, we first verify the accuracy of the eyerg In the experiment, we execute the 24 workloads on the quad-
and cost models. Then, we evaluate the effectiveness of tlmge x86 machine according to the scheduling plan generated
Workload Based Greedgigorithm by comparing it with two by theWorkload Based Greedy algorithmnd collect the time
existing algorithms. and energy data with a power meter. Then, we convert the

A. Experiment Results for the Batch Mode


Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment

Simon

add according to reviewer's comment


Normalized Cost (%)

collected data into the cost and compare it with the simutati Compared withPower SavingWorkload Based Greedgon-
result. sumes 27% less energy and improves the execution time by
Figure[1 shows the comparison results between simulatid®%. The main reason is that our Workload Based Greedy
and experiment. The actual cost of executing the workloads schedules the shortest tasks first with a high processiteg ra
the x86 machine is about 8% higher than the simulation resuhius reduce the waiting time of other tasks as little as piessi
There are two possible reasons. The first one is that evenmAiso we apply slower processing rate to larger tasks, hence
workloads are running simultaneously on different coresyt reduce the energy consumption.
can still affect each other, e.g., by competing for lastlev
cache or memory. Such resource contention may cause longer

Time Energy Total Cost
execution times, and result in higher energy consumptiore —19r SEN e .
and overall cost. The second reason is that running differemn «iig : 133 [ Energy ]
tasks require different resources such as cache or mgmory} {15t 1131 1
operations. Doubling the processing speed of a taskédoes» ig ;é
not guarantee exactly half of the execution time. Howgves,s | 111t 188t ]
we deem the 8% discrepancy acceptable because consffdem'mg los| 3§:§ 5 1
all the system-level overheads would make the scheduling | 1031 193¢ ]
problem too complicated to analyze. 05 L ol S 196 L R
6 %o S S o S S Xo S

Ls Time s Energy iy Total Cost Fig. 2. Cost Comparison of Different Scheduling Methods

1.3+ Time —3 B
12 r 112 | 11.2 - Energy i
11 f {11t 11 ]

s 11r 1991 1 B. Experiment Results for the Online Mode
sz L gz I §§ r ] We conduct a trace-based simulation to verify the accuracy
07 Jo7 L 1941 1  of the Least Marginal Costalgorithm. The experimental en-
06 [ {os | 1921 1 vironment is the same as that in Section W-A. The workload
0.5 0.5 0 i i i ich i i
% S, 5, S, S S, is a piece of the trace from Judgegirl [13], which is an online

judging system in National Taiwan University. Studentsraiib
Fig. 1. Comparison of The Simulation And Experimental Resul their codes to the system in order to solve different proslem
The length of the trace is half hours during the final exam,

3) Comparison with Other Scheduling Methodéfe con- which includes five problems. We treat the score querying
ducted experiments to compare the cost of our schedulirgfuests from students ageractivetasks, and the codes they
scheme with that oDpportunistic Load Balancin@OLB) [12] submit asnon-interactivetasks. There are 768n-interactive
and Power Saving OLB schedules a task on the core withasks and 5052teractivetasks in the trace.
the earliest ready-to-execute time. The main objectiveld8O  In our trace-based simulation, the number of CPU cycles
is to ensure the cores are fully utilized and finish the taskequired of each task can be retrieved from the trace. In
in the shortest possible tim&ower Savingwhich restricts practice, we can estimate the resource requirement byipgpfil
the frequency of a core to conserve energy, is widely used historical data. Thénteractivetasks in an online judging
in the power-saving mode of mobile devices. For dynamiystem are mostly problem choosing and score querying.
frequency scaling, we set the Linux frequency governor ¥e can profile the CPU cycles required to complete these
“On-demand” for both OLB andPower SavingIf a core’s kinds of tasks while building the system. On the other hand,
loading is higher than 85%, the frequency governor increadbe resource requirement of @on-interactivetask strongly
the core’s frequency to the largest available selectionti@n depends on the code submitted by users. However, we can
other hand, if the loading is lower than the threshold, thsgill predict the resource requirement of a newly arriwah-
frequency governor reduces the processing frequency by dnteractivetask by taking average of the previous completed
level. The loading of a core is measured every second.  submissions.

First, we generate the scheduling plans witforkload We build an event-driven simulator. The simulator takes
Based GreedyOpportunistic Load Balancingand Power the workload trace as input. An event can be eithdask
Saving Then, we execute the plans on the experimentairival or a task completionFor task arrival the simulator
platform and measure their costs. In this experiment, wé lindecides the core and frequency for the new task according
the available frequencies iPower Savingo the lower half of to the scheduling algorithm. On the other hand, the simulato
the CPU frequency range, i.e., 1.6, 2.0, and 2.4 GHz. As @alculates the cost of time and energy of the task foask
the previous section, we s&. at 0.1 cent per joule an@&®; completiorevent. The total cost is the cost summation of every
at 0.4 cents per second. tasks in the trace.

Figure[2 shows the cost of the three scheduling plans.We compare the cost of the following scheduling strate-
Workload Based Greedgonsumes 46% less energy thamgies: Opportunistic Load BalancingOn-demangd and Least
Opportunistic Load Balancingvith only a 4% slowdown in Marginal Cost Opportunistic Load Balancin@LB) [12]
the execution time. The total cost reduction is about 27%chedules a task on the core with the earliest ready-todéxec


Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon

add

Simon



Simon



Simon



Simon



Simon



Simon

new paragraph

Simon

new paragraph


Normalized Cost (%)

10

time. The objective of OLB is to ensure the cores are fullgroposed a dynamic scheduling method that incorporates a
utilized and finish the tasks in the shortest possible timeB O DVFS scheme for a hard real-time heterogeneous multi-core
keeps the processing frequency of each core at the highestironment. The objective is to complete as many tasks as
level. On-demand14] is a strategy in Linux that decides thepossible while using the energy efficiently. Yang et al.| [16]
processing frequency according to the current core loadirtgsigned a 2.371 approximation algorithm that reduces the
Once a core’s loading reaches a predefined threst@id, amount of energy used to process a set of real-time tasks that
demandscales to the highest processing frequency of that cormve common arrival times and deadlines on a chip multi-
On the other hand, if the loading is lower than thresh@ld; processor. Lee[[17] introduced an energy-efficient hdarist
demandreduces the processing frequency by one level. Sindet schedules real-time tasks on a lightly loaded multi-
On-demanddoes not schedule tasks to core, we assign there platform. The above works focus on real-time systems
arriving tasks to core in a round-robin fashion. In OLB anth which tasks behave in a periodic or aperiodic manner.
On-demandinteractive tasks have higher priority thanon- By contrast, the tasks considered in this paper are general
interactivetasks. Tasks on a core with the same priority wikomputation tasks with or without deadlines.
be executed in a FIFO fashioheast Marginal Costis the In addition to real-time systems, some studies have inves-
strategies we proposdé?. and R, are set to 0.4 cents pertigated using DVFS for other purposes. To minimize energy
joule and 0.1 cent per second, respectively. consumption, Bansal et al._[18] performed a comprehensive
Figure[3 shows the cost comparison among schedulingalysis and proposed an online algorithm to determine the
methods.Least Marginal Costmethod consumes 11% lessprocessing speed of tasks with deadlines on a processor that
energy and spends 31% less time th@apportunistic Load has arbitrary speeds. Pruhs et al.][19] investigated a @nobl
Balancing and has 17% less total cost. Similarlyeast setting where a fixed energy volume is given and the
Marginal Cost method consumes 11% less energy, spengeal is to minimize the total flow time of the tasks. They
46% less time than th@®n-demandmethod, and has 24% considered the offline scenario where all the tasks are kiown
less total cost. The results indicate thaast Marginal Cost advance and showed that optimal schedules can be computed
heuristic saves energy and reduces task waiting time thianpolynomial time. Albers et al [10] developed an approach

existing algorithms. that uses a weighted combination of the energy and flow
time costs as the objective function and exploits dynamic
Time Energy Total Cost programming to minimize it in an offline fashion. This is

o — %2 1 Tme— 1 similar to our approach, except that Albers et al. consiaér u
e qiiy 1 i% [ Brergy == 1 gize tasks, whereas our tasks can be any arbitrary size. tam e
s 117 1t 1 al. [11] also studied scheduling to minimize the flow time and
13 1091 193¢ 1  energy usage in a dynam_ic speed scaling model. They devised
ir 1087 186t 1 new speed scaling functions that depend on the number of
5ol 197 T §§ 1 active jobs, and proposed an online scheduling algorithm fo
ST 10671 1921 1 batched jobs based on the new functions. The above works
0.5 0.5 0 i i i

% % % % % % % % % focus on single processors with discrete speeds. Howewer, w

consider both single and multi-core architectures in acoee-
Fig. 3. Cost Comparison of Different Scheduling Mthods DVFS fashion.
Other energy-efficient algorithms have been proposed for
multi-core platforms. Bundeé [20] investigated flow time iin
VI. RELATED WORK mization in multi-processor environments with a fixed antoun
Dynamic Voltage and Frequency Scaling (DVFS) is a keyf energy. Aupy et al. [[21] performed a comprehensive
technique that reduces a CPU's power consumption. Thernealysis of executing a task graph on a set of processors. The
have been several studies of using DVFS, especially fgoal is to minimize the energy consumption while enforcing
applications in real-time system domains. The objective is prescribed bound on the execution time. They considered
to ensure that such applications can be executed in real-tidifferent task graphs and energy models. In contrast to our
systems without violating their deadline requirementsilevh approach, their method assumes that the mapping of tasks to
minimizing the energy consumption. Yao et al. [4] proposed aores is given, which is different to our approach.
offline optimal algorithm as well as an online algorithm wéth
competitive ratio for aperiodic real-time applicationdla? et
al. [15] presented a class of novel real-time DVS (RT-DVS)
algorithms, including Cycle-conserving RT-DVS and Look- In this paper, we propose effective energy-efficient schedu
Ahead RT-DVS. Aydin et al[[5] developed an efficient solatioing algorithms for multi-core systems with DVFS featurege W
for periodic real-time tasks with (potentially) differepower consider two task execution modes: tteéchmode for batches
consumption characteristics. However, the above workyg ordf jobs; and theonline mode for a more general execution
consider single-core real-time systems, so they do not deaknario wherénteractivetasks with different time constraints
with the assignment of tasks to cores. or deadlines anchon-interactivetasks may co-exist in the
A number of recent studies of DVFS scheduling in reabystem. For each execution model, we propose scheduling
time systems focused on multi-core processors. Kim el hl. [@8lgorithms and prove that they are effective both analif§ica

VIl. CONCLUSION



11

and empirically. The algorithms solve three problems siaiul [10] S. Albers and H. Fuijiwara, “Energy-efficient algoritanfor flow time
neously: the assignment of tasks to CPU cores, the executjpn Minimization,” ACM Trans. Algorithmsvol. 3, no. 4, Nov. 2007.

order of tasks, and the CPU core frequency for executing ea[%

task.

For the batch mode, we prove that (1) the decision about

the processing rate, used to minimize the cost'(k, px)
only depends ork, the position of the task in the execution

sequence for a CPU core; and (2) the decision is independent
of the execution workload of the task. We also show that there
exists a polynomial-time optimal solution with the minimumz13]
cost in which the tasks are assigned in a greedy fashion[3fl
non-decreasing order of the number of cycles to the cores.
Based on our theoretical findings, we propose a scheduling

algorithm calledNVorkload Based Greedfor theonlinemode,

we

assignsinteractiveand non-interactivetasks to cores. It also [16]

propose a heuristic calledeast Marginal Cost which

determines the processing speeds that will minimize tha tot
cost of every time interval during a task’s execution.

Our experiment results show that, for thatch mode, the [17]
Workload Based Greedglgorithm consumes 46% less energy

than theOpportunistic Load Balancinglgorithm, with only a

4% slowdown in the execution time. It also achieves a 27% im]
provement in energy consumption and a 13% improvement in
the execution time over the widely usBdwer Savingnethod.
For theonlinemode, the_east Marginal Cosalgorithm yields [20]
a 17% and 24% improvement in the total cost compared with

two existing algorithms in a trace-based simulation.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[21]

REFERENCES

P. Grosse, Y. Durand, and P. Feautrier, “Methods for pavptimization

in soc-based data flow system#CM Trans. Des. Autom. Electron.
Syst, vol. 14, no. 3, pp. 38:1-38:20, Jun. 2009.

S. Lee and T. Sakurai, “Run-time voltage hopping for Ipawer real-
time systems,” inProceedings of the 37th Annual Design Automation
Conference ser. DAC '00. New York, NY, USA: ACM, 2000, pp.
806-809.

S. I. Kim, H. T. Kim, G. S. Kang, and J.-K. Kim, “Using dvfad task
scheduling algorithms for a hard real-time heterogeneoustiaore
processor environment,” irProceedings of the 2013 Workshop on
Energy Efficient High Performance Parallel and Distribut€dmputing
ser. EEHPDC '13. New York, NY, USA: ACM, 2013, pp. 23-30.

F. Yao, A. Demers, and S. Shenker, “A scheduling modelrémiuced
cpu energy,” in Proceedings of the 36th Annual Symposium on
Foundations of Computer Sciencger. FOCS '95. Washington, DC,
USA: IEEE Computer Society, 1995, pp. 374—.

H. Aydin, R. Melhem, D. Mosség, and P. Mejia-Alvarez, ¢f@rmining
optimal processor speeds for periodic real-time tasks wlifferent
power characteristics,” iRroceedings of the 13th Euromicro Conference
on Real-Time Systemser. ECRTS '01. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 225-.

K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram, “Framedshs
dynamic voltage and frequency scaling for a mpeg decoder,” i
Proceedings of the 2002 IEEE/ACM International Confererme
Computer-aided Designser. ICCAD '02. New York, NY, USA:
ACM, 2002, pp. 732—737.

Y.-M. Chang, P.-C. Hsiu, Y.-H. Chang, and C.-W. Chang, résource-
driven dvfs scheme for smart handheld devicesCM Trans. Embed.
Comput. Systvol. 13, no. 3, pp. 53:1-53:22, Dec. 2013.

C.-C. Lin, C.-J. Chang, Y.-C. Syu, J.-J. Wu, P. Liu, P.-@heng, and
W.-T. Hsu, “An engergy-efficient task scheduler for multieglatforms
with per-core dvfs based on task characteristics,Pinceedings of the
2014 IEEE International Conference on Parallel Processisgr. ICPP
'14, 2014.

J.-J. Chen, “Multiprocessor energy-efficient schealylifor real-time
tasks with different power characteristics,” iRroceedings of the
2005 International Conference on Parallel Processiisgr. ICPP '05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 13-20

T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong, “Speed sngl
functions for flow time scheduling based on active job cduit,
Proceedings of the 16th Annual European Symposium on Atigasi
ser. ESA '08. Berlin, Heidelberg: Springer-Verlag, 2008, $47—-659.
T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maearan,
A. |. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgemnl
R. F. Freund, “A comparison of eleven static heuristics fapping a
class of independent tasks onto heterogeneous distribzdgetbuting
systems,”J. Parallel Distrib. Comput. vol. 61, no. 6, pp. 810-837,
Jun. 2001.

“Judgegirl,” https://github.com/ntuparallellabdgegirl.

V. Pallipadi and A. Starikovskiy, “The ondemand govarnpast, present
and future,” inProceedings of Linux Symposium, vol. 2, pp. 223;238
2006.

P. Pillai and K. G. Shin, “Real-time dynamic voltage l#mg for
low-power embedded operating systems,” Rroceedings of the
eighteenth ACM symposium on Operating systems pringipes SOSP
'01. New York, NY, USA: ACM, 2001, pp. 89-102.

C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximatialgorithm
for energy-efficient scheduling on a chip multiprocessan,’Design,
Automation and Test in Europe, 2005. Proceedjr305, pp. 468-473
Vol. 1.

W. Y. Lee, “Energy-saving dvfs scheduling of multiplerpdic real-
time tasks on multi-core processors,” Distributed Simulation and
Real Time Applications, 2009. DS-RT '09. 13th IEEE/ACMrhmé&onal
Symposium gr2009, pp. 216-223.

N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling tonage energy
and temperature,J. ACM vol. 54, no. 1, pp. 3:1-3:39, Mar. 2007.

19] S.Irani and K. R. Pruhs, “Algorithmic problems in poweanagement,”

SIGACT Newsvol. 36, no. 2, pp. 63—-76, Jun. 2005.

D. P. Bunde, “Power-aware scheduling for makespan aod,’flin
Proceedings of the Eighteenth Annual ACM Symposium on [Bbsah
in Algorithms and Architectureser. SPAA '06. New York, NY, USA:
ACM, 2006, pp. 190-196.

G. Aupy, A. Benoit, F. Dufossé, and Y. Robert, “Reclaig the energy
of a schedule: models and algorithm&bncurrency and Computation:
Practice and Experiencevol. 25, no. 11, pp. 1505-1523, 2013.



	Introduction
	Models
	Task Model
	Processing Rate
	Energy Consumption

	Task Scheduling in The Batch Mode
	Tasks with Deadlines
	Tasks without Deadlines on a Single Core Platform
	Scheduling Tasks without Deadlines on Multi-core Platforms

	Task Scheduling in the Online Mode
	Dynamic Task Insertion and Deletion

	Evaluation
	Experiment Results for the Batch Mode
	Experiment Settings
	Model Verification
	Comparison with Other Scheduling Methods

	Experiment Results for the Online Mode

	Related Work
	Conclusion
	References

