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Abstract—As a natural evolution of the current Location-
Based services on smartphones, Context-Based services are about
to emerge. But due to their limited capacities in terms of
computational power and energy, these mobile devices require
smart algorithms and strategies to get convincing results on
context identification.

This research proposal explores optimized enablers that were
developed to support context sensing on smartphones like
continuous location tracking or activity recognition through
three selected papers. Finally, different sampling optimization
approaches that I will investigate by leveraging collaboration
between devices are presented along with my previous work on
optimal mobile sensing.

Index Terms—mobile sensing, collaborative sensing, energy-
efficiency

I. INTRODUCTION

W ITH the mass adoption of smartphones and other
mobile devices, sensing capabilities became more af-

fordable and accessible to a huge part of the population.
Moreover, the connectivity of these devices has also expanded,
enabling long-range as well as short-range high speed data
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transfer. The range of features sensed goes from location to
acceleration, air pressure, temperature or to even more domain
specific sensors like CO2 or radioactivity, all conveying a
certain notion of context to mobile applications and through
internet connectivity to global services.

Having such a companion that follows the user everywhere
she goes and share most of her life, makes it ideal as a
non-intrusive activity and context recognition device. This
can enable the mobile device to go from the Location-
based services like Facebook Places1, Foursquare2 or Google
Latitude3 to Context-based services like the ones provided by
AegisMobility4 or Overlay Media ltd.5. By the end of last year
Gartner Inc. predicted a huge market of almost $100 billion
for these kind of services in the near future6. But before this
really takes off, a few challenges need to be addressed.

As for every embedded and mobile device the limitations
of the platform in terms of energy available and limited
computational power requires optimized sensor management
and software. Minimizing the power consumption, while op-
timizing the accuracy of the measurements by the sensors has
recently been a subject of intense research. Moreover ideas
such as collaboration between the devices and fusion between
the sensors have made their way up and can be seen as a way to
further optimize mobile sensing and enable the context-based
services era.

After introducing the background and some previous work
on energy-efficient context sensing and collaborative sensing
in the section II, the three selected papers are summarized in
section III.

1) The first paper [1] addresses the scaling issue when
generalizing activity inference models to large groups of
users with very different profiles, by merging training
data from multiple users through Community Similarity
Network (CSN).

2) The second paper [2] presents Kobe, an implementa-
tion of a feature classification system using the cloud
to compute the most effective classification parameters
according to predefined configurations (connectivity, CPU
idle, phone model). Several different classifiers were
tested on this framework, like transportation mode, ac-
celeration classification or face recognition. It also offers

1http://www.facebook.com/places/
2http://foursquare.com
3http://latitude.google.com
4http://www.aegismobility.com/home/context-based-services
5http://www.overlaymedia.com
6http://www.gartner.com/it/page.jsp?id=1827614
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the possibility to offload part of the computation to the
cloud, as long as it meet the constraints specified by the
user on energy budget and latency.

3) The third paper [3] demonstrates an energy-efficient
system, EnTrackedT , to track the trajectories of mobiles
phones by combining GPS sampling and dead reckoning.
The sensor management strategies have been evaluated in
a simulation and a real world data collection and detailed
energy consumption measurements have been made to
assess the impact of each sensor in different situations
like the transportation modes.

Finally the section IV describes my current research and
future directions for my thesis.

II. RELATED WORK

Research on sensing on smartphones aims at several goals.
On one hand researchers tried to extract as much information
about the context of the device as possible. For example tuning
machine learning algorithms or adding external sensors were
shown to improve the accuracy of activity recognition on
smartphones and wearable sensors [4]–[6]. Another important
part of context is the location and tracking the phone every-
where was made possible by using dead-reckoning or radio
fingerprinting for example [7]–[9]. Finally the social aspect
was also addressed, linking people around to their avatar in
social networks [10].

On the other hand the energy efficiency and optimization
for low performance devices were the main drivers and
many researchers revisited the continuous sensing problem.
Reduction of the energy consumption for continuous location
tracking was addressed by some strategies to down-sample
the GPS like sensors substitution, piggybacking or trajectory
estimation [3], [11]. Lin et al. [12] took another approach by
evaluating first the accuracy needed in a location based search
scenario and selecting then the most adapted sensor modality.
Activity recognition framework were also optimized to use
more sparsely the sensors with higher cost and adapt their
algorithm to the limitations of the mobile platform [2], [13]–
[15].

Only recently researchers have tried to leverage the collab-
oration between mobile devices to further improve the context
identification and energy efficiency. Sensor data sharing be-
tween the clients allows them to reduce their own sensing
needs by removing duplicates, like in Sheng et al. approach
[16] or to improve the robustness of the classifiers build on
multi-users training data, like in Lane et al. work[1]. In their
Darwin Phone Miluzzo et al. [17] shared the result of the
inference instead of the raw sensor data, thus reducing the
amount of data transfered while leveraging collaboration to
better sense the context.

III. SURVEY OF THE SELECTED PAPERS

These three papers were chosen to best cover the fields
mentioned in the previous section.

A. Collaboration

This section is based on Lane et al. - Enabling large-scale
human activity inference on smartphones using community
similarity networks (csn) [1]

1) Contribution: Lane et al. first show on two different
datasets that training one single inference model leads to
very poor classification accuracy when applied to certain users
with properties deviating from the average. The classification
accuracy shows a wide-spread distribution within a large
population. More generally these kind of issues arise when
deploying at large scale the inference models for context
identification on an heterogeneous population.

The solution they proposed, illustrated on Figure 1 is to
collect the training data over a well-diversified population and
build a similarity network based on some attributes of these
users. Then the inference models are trained individually for
each user including all the training data, weighted according
to the similarity measures. Unlike previous improvement to
activity classification, CSN doesn’t isolate the users but takes
advantage of collaborative data gathering.

2) Implementation: The system is implemented as an An-
droid application that collects accelerometer, microphone and
GPS information as training data, but also to feed into the
local inference model. The application implements also a
mechanism to obtain some feedback from the user: either
assessing the current inference or explicitly labeling training
data. The computation of the similarity networks and the mod-
els from these collected data are done on the Amazon’s cloud
infrastructure: Amazon Web Services. Finally the models are
pushed back to each user, allowing them to locally do the
classification in real-time.

3) Similarity network: From the point of view of one
user, the similarity network is a list of weighted connections
expressing a certain similarity measure with any other user.
This paper describes three examples of such a similarity
measure, namely physical similarity, lifestyle similarity and
sensor-data similarity.
• The physical similarity is computed as the Mahalanobis

distance between the vectors containing physical informa-
tion such as the age, weight, height and different well-
being scores.

• The lifestyle similarity is based on the mobility, diurnal
patterns and the distribution of the time performing an
activity. The mobility is expressed as an histogram of the
GPS locations on a low granularity grid and the diurnal
patterns is represented as an hourly histogram over one
week containing information about non-stationarity.

• The sensor-data similarity is measured by taking a Lo-
cality Sensitive Hashing function of the feature vectors.
These functions guarantee that similar input data have
a high probability of yielding the same output. In this
case a list of binary hashing function is used to build a
histogram and the histograms are compared by taking the
inner product.

4) Machine learning: The features chosen for classification
were based on previous work and as they are not the main
contribution of this work, the reader can refer to the original
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Fig. 1: Figure from [1] showing the architecture of the system using Community Similarity Networks.

paper for the complete list of features and references.
The classification is performed using a modified version of

Boosting, using naive Bayes classifiers as the weak classifiers,
for each user individually. To take into account the different
level of similarity with the other users providing the training
data, the weight in the first iteration of Boosting is equal
to the similarity between the current user and the one who
collected the sample. This approach was called Similarity-
sensitive Boosting.

To merge the different classifiers generated with each simi-
larity networks a multi-training is performed. At each iteration
unlabeled data is given a label if a majority of the classifiers
agreed on it. Then the classifiers are retrained using Similarity-
sensitive Boosting. Multi-training helps propagating labels
across data from different users, reducing the need of labeled
data for training. The experiment shows that only 15 min of
labeled data per user is needed to reach an accuracy of 74%
instead of 36 min if the models were trained individually.

In addition the authors show in their evaluation that using
CSN the model generated is more accurate (82%), compared
to versions trained individually (65%) or without introducing
the similarity in the Boosting method (52%).

5) Discussion: With this work, Lane et al. have demon-
strated that collaboration between users helps achieving better
results in term of accuracy of an inference model. But as
a centralized approach, it may lead to scalability issues if
deployed for a large population of users. Indeed all users’
profiles will be stored and the similarity networks size will
grow quadratically. This specific issue is discussed in the end
of their paper and a clustering of similar users is proposed
to reduce the size of the CSN. Moreover the profiles used
for computing the similarity are often considered as private
information and one could think about a way of expressing
the similarity measures in a privacy preserving way.

Nevertheless, this system doesn’t aim at being energy-
efficient, which can be a huge obstacle in mass adoption of a
mobile application. The next section presents another approach
that links activity recognition to energy-efficiency.

B. Context/activity recognition
This section is based on Chu et al. - Balancing Energy ,

Latency and Accuracy for Mobile Sensor Data Classification
[2]

1) Contribution: As an introduction Chu et al. highlight the
shortcomings of Statistical Machine Learning when used on
mobile clients. The energy consumption is not always taken
into consideration while designing classification pipelines and
the solutions including such considerations do it at the cost
of latency or accuracy. Usually parameters are hand tuned,
but this is always specific to the case studied and some
external environment, such as the connectivity and the energy
remaining.

Some adaptivity has also been tried by down-sampling
or up-sampling the sensors according to the energy budget.
But these policies don’t take the whole pipeline into account
and sometimes more expensive sensing have only a small
marginal accuracy improvement. The option of offloading the
computation to the cloud should also be carefully studied
as balancing the cost of local computation with the cost of
communication is not trivial.

The solution proposed by the authors is a system,
namely Kobe, finding off-line a Pareto optimal accu-
racy/latency/energy trade-off, by searching the parameter
space for all the predefined configurations and then adapting
at runtime the local parameters on the mobile device.

2) Implementation: Kobe is implemented in C# on both
the servers and the mobile phones; the later uses the Mobile
.NET Compact Framework. The system interfaces with a SQL-
like API to the different applications requiring sensor data
classification. The modular design on the client side includes
a sensor sampling module, a feature extraction module and a
model computation module.

On the server side, several level of optimization are applied
to explore various processing pipelines, expressed as ordering
of the client modules and their respective parameters. The
Pareto-optimal combinations are identified and from these,
only the ones complying with the application constraints are
kept and sent to the client.

As part of the optimization (described in the next section),
the server needs to model the computing latency and the
energy consumption. For this purpose an hybrid cost model
is used. First an approximation is computed using regression
and then only on few selected cases a complete emulation is
run as this is much more time consuming. The accuracy is
obtained by doing a cross-validation on the training set.

At runtime, the client chooses the most adapted pipeline and
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parameters, and changes it in case the environment changes.
The common ping command tests the connectivity at each
network-cell change on the phone and CPU-load is also
periodically checked.

3) Optimization: The optimal configuration is computed
once, at the development time. Therefore this computation can
be in the order of several days if needed. The developers who
want to query the Kobe system have to provide the training
data. Searching the complete parameter space is done using
Grid Search, in parallel on a cluster of servers, as described
in the previous section.

The possible environments are a combination of the network
speed (fast, medium or slow), the CPU load (heavy, moderated
or light), and the execution mode of the module (on-device or
in the cloud). Adding to that the parameters of the classifier
and different execution profiles for each kind of mobile phone
makes the complete search space.

Moreover, the classification pipeline is further optimized
by using lazy evaluation and classifier substitution. When
including a conjunction of classifiers the queries is evaluated
in such an order that the average total cost is minimized by
putting less likely used and expensive classification at the end.
Binary classifiers are used as substitution when only one class
has to be identified against the other classes or when watching
for a class change.

Finally Kobe includes the possibility for tuning the para-
meters again after a period of usage by re-optimizing using
current users’ data as training data.

4) Evaluation: The authors propose five scenarii to evaluate
their system, not only on the three optimized goals, but also
with respect to the time needed for developers to port their
algorithms to Kobe’s API: Transportation Mode Inference,
Image Recognition, Sound Classification, Accelerometer Clas-
sification and Face Recognition. In addition, they prototyped
two applications using these classifiers, namely Offict Fit
using accelerometer classification and sound classification for
recommending better practices at work like not slouching,
and Coktail Party that uses sound classification and face
recognition for triggering reminders during a discussion with
a colleague.

The comparison of Kobe against different baselines shows
that on the above scenarii the gain in latency can be more
than a factor 2, while returning more accurate results. Other
strategies, like only changing the sampling frequency often
suffer from underutilization as the classification pipeline is not
adapted to the new input. This penalty is also visible when the
configuration used was optimized for another kind of mobile
phone. Optimizing the order when using several classifiers
and the binary classifier substitution also yields substantial
improvements in the latency, i.e. up to 66% for Offict Fit and
31% for Coktail Party.

5) Discussion: The framework proposed here considers the
building of a context-based application as assembling pre-built
blocks. This makes the optimization feasible using Grid Search
and simplifies the work of developers. Moreover as most of the
optimization work is done offline, there is no major scalability
issue when introducing more classifiers or users. But this also
limits the creativity and the possibilities when it comes to

developing more specific applications.
For example certain tasks that need continuous sampling

from the sensors, could achieve a significant energy consump-
tion reduction with a more detailed sampling strategy, as we
will see in the next section.

C. Energy efficient system

This section is based on Kjærgaard et al. - Energy-efficient
trajectory tracking for mobile devices [3]

1) Contribution: Most of the down-sampling approaches
for energy-saving rely on the fact that as long as the current
model can predict the current value with a high confidence,
there is no need to make or communicate any measurement.
Depending on the goal of the application different models are
used. For example if one needs to track the position of the
user, the uncertainty or error is computed relatively to the last
known position, but if one needs to track the trajectory the
error is computed relatively to the expected path. EnTrackedT
which is an evolution of EnTracked, from the same authors,
was built to do both position and trajectory tracking, while
optimizing the energy consumption. The system can be used
by other applications on-device through an API or from a
server, requesting location updates.

2) Strategies: Three strategies are proposed to decide when
the next GPS sampling should be done to minimize the trajec-
tory or the position error. The system then continuously selects
the most adapted strategy to the current accuracy/energy needs.
• Heading-aware: Unlike some previous works on inertial

dead-reckoning, this strategy only considers the relative
heading changes. Listening to the compass, it computes
the accumulated orthogonal distance Dorth from the
initial heading θstart at time step tk using the following
formula:

Dorth(tk) =

k∑
i=1

(ti − ti−1)sgpssin(||θstart − θi||)(1 + σ),

where θi is the heading measured at time ti, σ the
average error of the compass and sgps the estimated
speed from the GPS. To also take into account the uncer-
tainty about the speed a maximum time is set between
two measurements: ∆t = (1 − u) · Etrajectory/sgps,
Etrajectory being the error constraint. The parameter u
was set experimentally to 0.01. If the user is changing the
orientation of the phone in her pocket or in her hands,
it will only increase the energy consumption, but not the
error.

• Distance-aware: This strategy uses previous work done
on EnTracked. The sensing schedule is formulated as a
optimization problem, minimizing the energy consump-
tion and it is described in a sum of recursive function,
each of these function computing the energy consumption
at a time step according to the previous states and the
current decision. This problem was solved using dynamic
programming.

• Movement-aware: The variance of the accelerometer val-
ues, combined with the speed measured by the GPS are
used to determine if the user is still or moving by setting
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fixed thresholds. Unfortunately this strategy is not usable
while biking or driving as the accelerometer may not
detect when the car (resp. the bike) starts to move. Like
in the heading aware strategy, a maximum is set between
two measurements, using the same formula with u = 1
and sgps as the maximum speed of the target.

3) Trajectory simplification: To save storage space and
communication bandwidth, the trajectories recorded by
EnTrackedT are simplified to a subset of GPS locations. A
trajectory is defined as a spatio-temporal linear interpolation
between those selected measurements. The error of a simpli-
fied trajectory compared to the complete one is defined as the
maximum Euclidean distance between a GPS measured point
on the complete trace and the interpolated one that has the
same timestamp.

Two algorithms are considered for the simplification pro-
cess:
• Douglas-Peucker: the algorithm considers the complete

trajectory and starts with only the first and last points.
Then it recursively adds the point with the maximum error
on the segment, stopping when the whole trajectory is
below the error threshold.

• Section-Heuristic from Lange et al.: This algorithm takes
the point in the order they were captured and ignores the
next point at time t as long as the current considered
segment ending at t+ 1 is below the error threshold. If a
point is added, the considered segment starts at this point.

4) Evaluation: EnTrackedT was implemented in Python
for S60 on Nokia N97 and a simulation was also performed
on data collected in different conditions, like biking, driving,
walking, etc. The power profiles used in the system were taken
from a previous work from the same authors, detailing the
power consumption and operational delay of each sensor.

The evaluation compared the described EnTrackedT system
to the previous EnTracked and to a simple periodic scheduling
algorithm. In addition versions without the heading-aware
strategy and testing each of the trajectory simplification al-
gorithms were considered.

The results showed a significant improvement in using the
heading-aware strategy, decreasing the power consumption
from 270 mW to 90 mW while walking and 290 mW to
170 mW while driving. Globally, for a given error threshold,
EnTrackedT consistently reports lower power consumption
overhead, almost half of the others.

The Section Heuristic algorithm was consuming slightly
more power than Douglas-Peucker’s strategy when dealing
with large amount of data, but yielding also a better accuracy.

5) Discussion: Most researches aiming at such real world
deployment often underestimate the special cases where the
system actually doesn’t work optimally. Even if experiments
have been conducted with real users, unforeseen scenarii can
always happen. This usually means that before having the
chance to be included in a commercial product, the developed
system needs to be resilient to any kind of failure and degrade
its performances gracefully in the worst case. Here for exam-
ple, if the user enters a region without GPS signal coverage,
like entering a building, no backup solution is proposed unlike
some other similar work [11].

To provide a better resiliency and add other opportunities
for optimization, we propose in the next chapter to investigate
sensors fusion and devices collaboration.

IV. RESEARCH PROPOSAL

The philosophy behind energy-efficiency in mobile sensing
is pretty simple: sensing less to sense more [18]. Indeed,
selecting the most useful measurements and turning off the
sensors when no measurement is needed, allows the devices
which have a limited sensing budget to collect information on
longer periods and thus improving the overall utility of the
measurements.

For our work, we are interested in sensing the context of
the device and representing it in a model. The model should
encapsulate the dependencies between the different modalities
sensed and provide a way of judging the utility of a certain
input measurement. From that, a sensing policy can be learned
and optimized.

The two next sections present the work that has already
been done and some future directions and concrete problem I
will address in my research.

A. Previous work

In my previous work on finding an optimal mobile sensing
strategy, namely OptiMoS [19], we explored a two-tier frame-
work. The goal was to reduce the sampling needed as input
from the sensors, while keeping the error of the model low.
On the first tier, raw data from the sensors is segmented and
the second tier takes care of the down-sampling. Both these
operations are achieved near optimally using some heuristics.
The models used were a support vectors regression and a
simple linear regression, but the principles can be applied to
almost any other interpolation model.

With the mass-adoption of smartphones and their increasing
capabilities to sense their context, the opportunities for collab-
oration between the devices are now in a sufficient number to
be worth taking into account for a real world application in
our optimization problem.

By collaborating, mobile devices may reduce their own
expenses. Indeed, as the information is shared between the
different sensors (i.e. sensors fusion) or different devices,
each device will need to make fewer measurements. This
collaboration can be seen at different levels:
• centralized: Using its own global model, the centralized

coordinator can select what each agent should sense to
centrally optimize the model’s accuracy. Similar methods
as the one studied in OptiMoS can be used to obtain
optimal or near optimal results. The main drawback of
this approach is the cost of long-range communication
and the need to track continuously the mobile devices.

• distributed: Using short-range communication, each de-
vice may get the measurements from its neighbors instead
of sensing. The physical proximity between the devices
can support our assumption that their measurements
would have been similar, considering sensing a band-
limited field. The optimization is done considering that
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short-range communication is much less expensive than
sensing.

In my last, not yet published, project I studied opportunistic
strategies for collaborating mobile sensing nodes. Each node
was optimizing locally the accuracy of its own model with
a limited sensing budget. The proposed approach was to
broadcast the measurements and some other information like
the remaining budget to allow the neighboring nodes to share
effectively and avoid duplicate sensing. Then the policy was
defining the sensing behavior according to the neighboring
nodes, their needs and the own need of the node. For this
work I was using a very simple model, giving the same utility
to all measurement. A real-world dataset containing GPS and
Bluetooth measurement was used as input for simulating and
evaluating the strategies.

It turned out that the problem was almost a next encounter
prediction problem. Therefore very much linked to the mobil-
ity of the nodes. The choice of a particular mobility model or
dataset could then change completely the optimal strategy.

B. Future work

For the next steps I am proposing here, I will continue inves-
tigating solutions for an optimal sensing strategy for mobile
devices, thus minimizing the sampling while guaranteeing a
low modeling error.

Formally this optimization can be expressed as follow:

argminπ

 ∑
n∈{n0,nN}

error (Mn(Mπ))


u. c.

( ∑
m∈Mπ

c(m) ≤ Bn

)
∀n ∈ {n1, nN},

where we optimize over the sensing policy π by minimizing
the error (e.g. residual sum of square) of the model Mn at
the node n knowing the set of measurements Mπ taken with
the policy π. In the constraints c(m) represents the cost of the
measurement m and Bn the budget of the node n, for all the
N nodes.

First, I will exploit further the collaborative approach,
formalizing the next encounter prediction problem and trying
to prove the optimality of the strategies developed in the
project presented above. I will use as reference for comparison
the offline optimal strategy and perform a competitive analysis.
Indeed, as an online algorithm, it may be possible to build an
input while the algorithm is running and generate a sequence
on which it is not optimal. In such cases, randomization could
help guaranteeing a bounded competitiveness in average.

This first approach will suppose that the encounters are
only depending on the few last time steps (Markov decision
process of order n), but it is clear that in the real life they
may follow some more regular patterns, but on the other hand
restricting the evaluation of the strategy to a single dataset
may prevent us to generalize the results. Therefore, a more
synthetic way of representing the behavior of the node will be
used. For this purpose, I will look into mobility models like

Random Way-point, random walk on a grid or the more recent
Heterogeneous Random Walk from Piorkowski et al. [20].

Finally, my last approach will be to apply reinforcement
learning to learn the policy dynamically while the devices are
used in their everyday environment. I will revise the simple
base policy by including a more complete notion of utility
that can be computed from the model itself. A good example
of such a model that I will look into is presented in J. Kho
et al. [21], where the variance in the prediction of a Gaussian
Process regression is used as input to compute the mean Fisher
information, expressing the ”utility” of a measurement. This
can be used to compute the reward function and make a system
that will adapt itself to the behavior of its user.
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