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Abstract

Data protection algorithms are becoming increasingly important to support modern business needs

for facilitating data sharing and data monetization. Anonymization is an important step before data

sharing. Several organizations leverage on third parties for storing and managing data. However,

third parties are often not trusted to store plaintext personal and sensitive data; data encryption is

widely adopted to protect against intentional and unintentional attempts to read personal/sensitive data.

Traditional encryption schemes do not support operations over the ciphertexts and thus anonymizing

encrypted datasets is not feasible with current approaches. This paper explores the feasibility and depth

of implementing a privacy-preserving data publishing workflow over encrypted datasets leveraging on

homomorphic encryption. We demonstrate how we can achieve uniqueness discovery, data masking,

differential privacy and k-anonymity over encrypted data requiring zero knowledge about the original

values. We prove that the security protocols followed by our approach provide strong guarantees

against inference attacks. Finally, we experimentally demonstrate the performance of our data publishing

workflow components.

I. INTRODUCTION

Nowadays, applications interact with a plethora of potentially sensitive information from

multiple sources. As an example, modern applications regularly combine data from different

domains such as healthcare and IoT. While such rich sources of data are extremely valuable for

analysts, researchers, marketers and other professionals, data privacy technologies and practices

face several key challenges to keep pace.
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There are two major obstacles when it comes to hosting and sharing sensitive data. The first

is that the public cloud solutions are not trusted with sensitive data (e.g. health, financial, or

critical infrastructure data) and thus organisations have to invest in private or hybrid clouds as the

hosting and processing environment. This adds complexity for the design and implementation and

often comes with additional cost due to security and customisation. Homomorphic encryption

provides an answer to these kinds of obstacles, by encrypting the data at their source while

allowing operations on them and thus lifting the trust barrier from the hosting solution.

The second is data privacy. Data privacy technologies are applied in two major use cases. The

first use case concerns data sharing, where data need to be sufficiently anonymized before being

shared with researchers and analysts. The second use case concerns security. By anonymizing

data at rest, the risk of breaches is minimised since sensitive information is protected.

Latest advances in regulation, like EU General Data Protection Regulation (GDPR), also

propose anonymization for safely processing data when consent is not an option or organisations

want to use them for purposes beyond those for which it was originally obtained for an indefinite

period of time.

In this paper, we present how to apply different data privacy approaches to homomorphically

encrypted data. Specifically, we present how we can achieve uniqueness discovery, data masking,

differential privacy and k-anonymity over encrypted data, requiring zero knowledge about the

original values. Uniqueness discovery allows the user to find which attributes or combinations

of attributes (quasi-identifiers) appear with a lower frequency than a predefined threshold. This

leads to the selection of attributes that need to be protected via a combination of data masking,

differential privacy and k-anonymity approaches. We explore how we can securely apply all these

techniques without leaking information about the original data, such as the domain cardinality

or diameter.

The rest of the paper is organised as follows. Section II describes the motivating scenarios

and use cases behind this work. Section III provides background information about the basic

principles of data privacy and homomorphic computations and further outlines the data publishing

workflow and describes the building blocks to achieving data privacy. In Section IV we present

the related work. In Section V we present the secure protocols while in Section VI and Section VII

we discuss their security guarantees and performance respectively. Finally, we conclude in

Section VIII.
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II. MOTIVATION

The first major question that arises is why data encryption alone is not enough. In general, to

protect the privacy of sensitive data, only encrypted data is outsourced to the third-party cloud

providers and there exist well-established systems which allow secure query processing directly

over encrypted data. On top of that, a more important question is, why someone should perform

masking and anonymization over encrypted data in the cloud environment. In a typical scenario,

the data is anonymized at the source and then uploaded to the cloud or shared with a third

party. However, there are many reasons to perform the anonymization part on the cloud after

data encryption.

The answer to these two questions relies on two major observations from the GDPR

compliance standard. First, data encryption does not meet the high compliance standards, since

all the data encryption schemes are reversible. Second, anonymized data is not considered

personal information and benefit from relaxed standards under GDPR1. Thus the need to apply

non-reversible masking and anonymization over encrypted data is required. Furthermore, the

GDPR mandates that the data controller needs to demonstrate that the state-of-the-art strategy is

applied when it comes to pseudonymization/anonymization approaches. By relying on the cloud

to deploy the state-of-the-art approaches, the operational and compliance model for the data

owners becomes significantly easier.

Apart from the compliance regulations, there are several other factors that motivate anonymiza-

tion over encrypted data. First, the objective of the data use may change over the course of time.

Initially, it may not be desirable to share the data but after some time it might be required. This

is common with enterprise data where confidentiality must be kept for several years before the

data can be exchanged. Second, the users might want to selectively share data and thus apply

anonymization to only the selected portion. In both cases, by pre-anonymizing the data we will

not be able to reach the desired outcome. Furthermore, in the distributed IoT scenario, individual

sensors may not have sufficient storage and processing capability and the ever-increasing volume

of data makes it hard to anonymize at the source. As an operating model, it is far easier to

homomorphically encrypt the data at source before outsourcing to the cloud and then anonymize

on-demand at the cloud when it comes to sharing and collaborating.

1https://ibm.biz/Bd2yUK

https://ibm.biz/Bd2yUK
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TABLE I: Example dataset with one direct identifier (name) and age plus gender plus ZIP code

as quasi-identifiers

Record ID Name Age Gender ZIP

1 John 18 Male 13122

2 Peter 18 Male 13122

3 Mark 19 Male 13122

4 Steven 19 Male 13122

5 Jack 18 Male 13121

6 Paul 20 Male 13121

7 Andrew 20 Male 13121

Specific masking operations, k-anonymity and differential privacy fall into the non-reversible

anonymization category and thus are the focus of this paper.

Our approach guarantees two major properties: a) the data owner does not send the data as-is

and so the data trust cannot see the original data and b) facilitate the application of on-demand

non-reversible anonymization approaches to the data in order to meet compliance standards or

selective data sharing.

III. BACKGROUND

A. k-Anonymity

Based on the data privacy terminology, attributes in a dataset are classified as direct or quasi

identifiers. Direct identifiers are uniquely identifying and are always removed or masked before

the data release. Quasi-identifiers are sets of attributes that can uniquely identify one or very few

individuals. For example, for the dataset in Table I, if we observe the gender attribute in isolation,

it is not uniquely identifying (roughly 50% of a dataset would be either male or female); the

same applies for a ZIP code (several thousands of people might live in the same ZIP code).

However, if we look at attributes in combinations then we can isolate very few individuals. As

an example, the combination of ZIP code plus gender plus birth date can be uniquely identifying

(in case of the US this combination can uniquely identify 87% of the population). Based on the

k-anonymity approach [1], quasi-identifiers are generalized and clustered in such a degree that

an individual is indistinguishable from at least k − 1 other individuals.
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B. System Entities

A Database-as-a-Service (DBaaS) architecture consists of below entities:

1) Data Owner (DO): A company or an individual who is having a proprietary right to a

sensitive database, such as a Bank. The Data Owner wants to securely outsource its data

storage and future computations over data to a Cloud Service Provider.

2) Cloud Service Provider (CSP): A third party, that provides the storage and computation

capability as a service to its clients. For our scenario, the Cloud Service Provider is a system

where any present-day state of the art database engine is running. For example, Amazon

Redshift and Microsoft Azure SQL Database.

In particular, we work in the two-party federated cloud setting, with two non-colluding

public cloud servers. This model was introduced in Twin Clouds [2] and was subsequently

used in related problems [3], [4]. Federated clouds are an example of Interclouds [5],

a collection of global stand-alone clouds. Intercloud allows better load balancing and

allocation of resources. A detailed survey of the taxonomy of intercloud architectures is

presented in [5].

C. Trust Assumption

We assume that the CSP is honest-but-curious (or semi-honest) i.e. it is honest and executes

the protocol correctly, but is also interested in the plaintext of the encrypted data stored at

its site, either because it is curious or it has been compromised. In this paper, we will show

that the honest-but-curious adversary will not be able to learn anything about the plaintext of

the encrypted database, even though it can observe the computations and can take memory

dumps. Further, we also prevent the leakage of any data clustering information available in the

intermediate steps of secure k-anonymization, masking or differential privacy algorithms.

D. Homomorphic Computation

Homomorphic encryption schemes support direct computation of functions over encrypted

data without needing to decrypt it first. To this end the seminal work of Gentry [6] presents

a fully homomorphic encryption (FHE) scheme, which is capable of evaluating any arbitrary

dynamically chosen function over an encrypted database without needing the secret key. But

since computation over fully homomorphic encrypted data is still many orders of magnitude
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Fig. 1: The workflow for encrypted data de-identification process

slower than the plaintext execution, this limits the practical deployment of these scheme for real

workloads.

Another line of research built partial and somewhat homomorphic encryption schemes.

Specifically partial homomorphic encryption (PHE) schemes support evaluation of a chosen

atomic function over encrypted data (like Addition or Multiplication). For example, Paillier

cryptosystem [7] supports addition over encrypted data without needing a secret key and ensures

strong security guarantees. On the other hand, the somewhat homomorphic encryption (SHE)

scheme supports the computation of low degree polynomials over encrypted data. For example,

BGN cryptosystem [8] supports evaluation of any polynomial of degree two over encrypted data,

while in LFHE cryptosystem [9], degree d polynomials can be evaluated, but it bases security

on weaker assumptions of learning with error (LWE) or ring-LWE (RLWE) problems.

In general, a SHE encryption scheme consists of five basic algorithms: a) key generation

SHE.KeyGen(1λ) that takes as input the security parameter λ and output the secret key sk,

the public key pk and public parameters params b) encryption SHE.Enc(params, pk,m) that

takes the message m and evaluates the corresponding ciphertext c using params and the public

key pk c) decryption SHE.Dec(params, sk, c) that takes the ciphertext c and decrypts it using

params and the secret key sk and outputs the corresponding plaintext message m d) addition

SHE.Add(pk, c1, c2) which takes two ciphertexts c1 and c2 and adds them homomorphically

such that the output c3 ← FHE.Enc(params, pk,m1 + m2), where m1 and m2 are the

plaintext corresponding to the input ciphertexts c1 and c2 respectively and finally e) multiplication

SHE.Mult(pk, c1, c2) which multiplies homomorphically two ciphertexts c1 and c2 such that

the output c3 ← FHE.Enc(params, pk,m1 ∗m2).

In this paper, we use the LFHE encryption scheme to compute squared Euclidean distance
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over encrypted databases, which is a key building block of our secure anonymization protocol.

The details of LFHE cryptosystem can be found at [9].

E. Differential Privacy

Differential privacy is a more recent development in the field of privacy-preserving data

publishing and data mining. Achieved by adding randomness to the data, differential privacy

renders individuals’ data and data mining outputs statistically indistinguishable, thereby protect-

ing individuals’ privacy [10]. Differential privacy has been shown to provide strong guarantees

against auxiliary information attacks [11], [12], and in recent years has been adopted by large

corporations when collecting/publishing sensitive data [13], [14], [15].

A mechanism M is said to be ε-differentially private if adding or removing a single data item

in a database only affects the probability of any outcome within a small multiplicative factor.

Formally, a randomized mechanism M is ε-differentially private if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(M) then

Pr[M(D1) ∈ S] ≤ exp(ε) · Pr[M(D2) ∈ S]

There is a number of mechanisms available to achieve local differential privacy [16], covering

many different types of data. When working with continuous numerical data, differential privacy

is commonly achieved using the Laplace mechanism [17]. The authors showed that, by adding

noise from a suitably-scaled Laplace distribution, the resulting output will satisfy differential

privacy. The geometric mechanism is a discrete variant of the Laplace mechanism, used when

dealing with integer-valued data [18]. For binary-valued data, differential privacy can be achieved

by flipping values at random. The probability for flipping is equal to 1
eε+1

[19]. In some cases,

the addition of noise to the data does not make sense, e.g. categorical data. In this context, the

exponential mechanism provides a means to achieve differential privacy. Developed by McSherry

and Talwar [20], the exponential mechanism selects an output at random, weighted by a utility

function which is specified by the data controller.

F. Our Contributions

In this work we build a secure privacy-preserving data publishing workflow over encrypted

datasets. The workflow consists of five major components. Figure 1 illustrates the steps of the

workflow. The workflow expects as input the encrypted data as well as encrypted meta-data,
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such as the dictionaries to be used for masking or encrypted parameters for differential privacy.

In Section V we present the details of our secure protocols.

1) Secure Privacy Vulnerability Identification. This step detects direct identifiers and

combinations of attributes-values (quasi-identifiers) [1] that lead to high re-identification

risk. The detection is based on the attribute values. In Section V-A we illustrate how direct

and quasi-identifiers can be obtained from an encrypted database.

2) Secure Data Masking. This component protects the direct identifiers detected by the privacy

vulnerability identification component. The values of direct identifiers can be replaced with

fictionalized values or redacted; the action taken is based on a pre-defined configuration.

3) Secure k-anonymity and differential privacy. This component protects the quasi-

identifiers, by applying algorithms with strong security guarantees, such as differential

privacy and k-anonymity. Here data are generalized and/or suppressed and/or perturbed

so that the re-identification risk becomes smaller than a pre-specified threshold.

4) Risk assessment. This component assesses the risk associated with the dataset. It is an

additional step during exploratory phases in which expert assessors and policymakers are

still evaluating what additional privacy constraints to apply, in addition to what is required

by the current legislation.

5) Utility assessment. This component allows the estimation of the loss in utility caused by

the de-identification/anonymization process.

IV. RELATED WORK

L. Sweeney et al. [1] introduced the concept of k-anonymity and how it can protect against

re-identification attacks via creating indistinguishable records. Khaled El Emam et al. [21]

proposed a way to achieve globally optimal k-anonymity. LeFevre et al. [22] proposed Mondrian

as an approach to achieve good balance between generalization and information loss for

multidimensional datasets. These works, along with numerous others that present optimal solution

to achieve k-anonymity, try to prevent re-identification attacks through generalization. All these

approaches work on unmodified data and they do not include the notion of anonymity over

encrypted datasets.

Achieving k-anonymity using clustering is not a new concept. Bertino et al. [23] proposed

an efficient k-anonymization algorithm called k-member, which is useful in identifying required

generalization to apply k-anonymity to a given dataset. Loukides and Shao [24] propose novel
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clustering criteria that treat utility and privacy on equal terms and propose sampling-based

techniques to optimally set up its parameters. Aggarwal et al. [25] use a personalized clustering

algorithm in order to provide a level of anonymity to the individuals recorded in the dataset. All

of the proposed algorithms require direct access to the data and do not operate over encrypted

data.

Jiang and Clifton [26] propose a secure distributed framework for achieving k-anonymity.

Their paper describes a method to locally anonymize dataset so that the joined dataset will be

k-anonymous. A two-party secure distributed framework is developed which can be adopted to

design a secure protocol to compute k-anonymous data from two vertically partitioned sources.

This framework does not apply to encrypted data shared in an hybrid cloud infrastructure. Jiang

and Atzori [27] propose a privacy-preserving strategy to mine k-anonymous frequent item sets

between two, or more, parties. The proposed algorithm operate on encrypted data to extract

insights. The original data are not modified and they are still not compliant with any privacy

model after the application of the proposed algorithm.

Differential privacy and homomorphic encryption has been considered previously. In [28],

differentially private encryption schemes were considered as a way to prevent leakage of

information. The authors proposed the Encrypt+DP concept, that imposes differential privacy

on the decryption process, rendering it a stochastic process that not always be correct. They

also propose DP-then-Encrypt, whereby noise satisfying differential privacy is first added to the

data before being encrypted. Both of these schemes are different from the one presented in this

paper, as we achieve differential privacy on encrypted data, without having to see the plaintext

and without having to decrypt the ciphertext.

The work that is closely related to our paper is the approach proposed by Liu et al. [29].

In this paper a method for performing k-means over homomorphic encrypted data is presented.

The paper uses a specific encryption scheme. The main difference is that their approach does

not extend to k-anonymity and that the execution scenario described in their approach assumes

that the clustering algorithm is performed in a single VM. Furthermore, our work extends to

vulnerability identification, masking and differential privacy.

PRIvacy Masking and Anonymization (PRIMA) [30] provides several features for the strategy

design and enforcement of data privacy in production grade systems. PRIMA aims to guide

decision makers through the data de-identification process while minimizing required input.

PRIMA operates on a different trust model, where the data are anonymized before reaching or
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Fig. 2: Categorical attribute assignment

in the cloud environment, and has no ability to work on encrypted data.

V. SECURE PROTOCOLS

As described in Section III-B, all the protocols proposed in the paper are considered in the

two-party Honest-but-Curious cloud setting. The Data Owner (DO) has a plaintext database table

T consisting of N data points {t1, t2, · · · , tN}. Each data point is a d dimensional value, i.e.

ti = {t1i , t2i , · · · , tdi }. Furthermore, let the domain of plaintext space be P and the domain of

ciphertext space be R. The DO calls the KeyGen function of the SHE algorithm to get the

public key and secret key pair (pk, sk). Next, the DO encrypts the plaintext database T using

pk to generate an encrypted database T ∗ such that t∗i = {Encpk(t1i ), Encpk(t2i ), · · · , Encpk(tdi )}.

Please note, before encryption all the decimal values are converted to nearest integer. Further,

the categorical values are first divided into different hierarchy levels from general to specific and

each separate path in the hierarchy is assigned values from far-apart ranges as shown in Figure

2. These assigned values are then considered as representatives for categorical data. The values

of the hierarchy are also encrypted on the DO side. This specific assignment technique will help

us to securely identify common ancestor as shown in Section V-D4.

Then, the DO shares pk, T ∗ and the identification threshold k with Party P1 and sk with

Party P2 .

A. Privacy Vulnerability Identification

The privacy vulnerability identification process explores the combinatorial space of data

attributes and aims to identify direct and quasi-identifiers – value sets that appear fewer times

than a pre-defined identification threshold k. The process starts by inspecting single attributes and

tries to find values that appear fewer than k times. All attributes detected to have values appearing

fewer than k times are reported as direct identifiers. In our example, each name value appears
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∅

{G}{B} {Z} {M}

{B,M}{B,Z}{B,G} {G,Z} {G,M}{Z,M}

{B,G,M}{B,G,Z} {B,Z,M} {G,Z,M}

{B,G,Z,M}

Fig. 3: A lattice representing all possible combination of attributes and a possible order of subsets

generation

only once, thus the name attribute is a direct identifier. The process then starts to inspect pairs

of attributes that are not direct identifiers, then the algorithm proceeds to inspect combinations

of three identifiers and so on.

Naı̈ve exploration of the entire combinatorial space is infeasible for a large number of attributes

since for d attributes 2d combinations need to be checked (see Figure 3). Pruning techniques

are employed to avoid the exploration of the full space. Pruning can be applied in the following

two scenarios. First, if an attribute, or a set of attributes, T is a quasi-identifier then all the

combinations of attributes including this attribute, or set of attributes, are also quasi-identifiers.

Second, if T is not a quasi-identifier then all subset combinations of T are not quasi-identifiers.

This leads to a dramatic reduction of the number of combinations of attributes that need to be

checked, thus resulting in a significant improvement in execution time of the protocol. As an

example, consider the scenario shown in Figure 4. Here the impact of pruning is depicted in

terms of the reduction of the search space. Refer to [31] for further discussion of the impact of

pruning in the identification of privacy vulnerabilities.

We use Algorithm 1 to identify direct identifiers. Since our encryption function is non-

deterministic, a direct comparison of encrypted attribute values will not be helpful. So for each

encrypted value in the attribute, P1 computes its difference from the remaining N − 1 values,

where N is the number of tuples in the dataset (the difference will be zero if there is a value

match within the attribute). Then P1 multiples these differences with random values in the

matrix R∗ and send the computed matrix M∗ to party P2 . This is shown in Steps 1 − 7 of

Algorithm 1. Next, for each attribute, P2 counts the number of zeros for every encrypted value,

if there is an encrypted value for which the count of zeros is less than k, then this attribute is a
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∅

{G}{B} {Z} {M}

{B,Z}{B,G} {G,Z}

{B,G,Z}

(a) Pruning {M}

∅

{G}{B} {Z} {M}

{B,Z}{B,G} {G,Z}

(b) Pruning {B,Z}

∅

{G}{B} {Z} {M}

{B,Z}{B,G} {G,Z}

(c) Pruning {G,Z}

Fig. 4: Impact of pruning to the search space of Figure 3. Each pruning step is executed after

the other.

direct identifier. P2 tracks the direct identifiers by setting to 1 the corresponding index in vector

V . This is shown in Steps 8− 18 in Algorithm 1. Then, P2 returns the vector V to Party P1 .

Similarly, we utilize the matrix M∗ computed in Algorithm 1 along with the pruning

mechanism described earlier to find quasi-identifiers.

B. Data Masking

Data masking is applied when there is need to replace the original values with fictionalized

ones. If we operate on non-encrypted data, then multiple options are available: format-

preserving and semantic-preserving masking, compound masking as well as some generic

masking providers, like nullification, hashing, randomization, truncation and numeric value

shifting. Format-preserving masking dictates that the masked value will have the same format

as the original one. Semantic-preserving masking ensures that parts of the original value that

contain auxiliary information need to be maintained.

Since we operate on encrypted data, not all options are available. Semantic-preserving and

format-preserving masking cannot be applied since they require access to the original value unless

the data owner encrypts only the unique parts of the value. This requires additional metadata so

the cloud environment knows how to handle each value (e.g. offsets and lengths of encrypted

portions of the value). However, in this paper, we apply following masking operations:

• Masking of dictionary-based entities. Entities like names, organization, cities, countries

and many more rely on dictionaries to perform format-preserving masking. For example,
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Algorithm 1 Direct Identifier (DI)
Require: P1 has T ∗ and pk; P2 has sk

Ensure: P1 learns which attributes of T ∗ are direct identifiers

1: P1 :

1) for i = 1 to d do

2) Compute D∗uv = ti∗u − ti∗v ∀u, v ∈ N
3) Sample a matrix R of size N ×N ;Ruv ∈R P
4) Compute R∗ 3 R∗uv ← Encpk(Ruv)

5) Evaluate Hadamard product M∗i ← D∗ ◦ R∗

6) end for

7) Send M∗ to P2

2: P2 :

8) Create a vector V of length d

9) Set Vi = 0 ∀i ∈ d
10) for i = 1 to d do

11) for j = 1 to N do

12) count = 0

13) count += I(Decsk(M∗ijl) == 0) ∀l ∈ N
14) if count < k then

15) Vi = 1; break;

16) end if

17) end for

18) end for

19) Return V to P1

if we want to replace a name with another one, then we pick a random name from its

dictionary. We can apply the same operation over encrypted data. The user uploads a fully

encrypted dictionary for the attribute. Then we select a random value from the encrypted

dictionary and replace the value. However, the encrypted version of the dictionary needs to

be immune to inference attacks. For specific attributes, an attacker can infer the attribute

type and values based on cardinality attacks. As an example, a dictionary of two entries

could potentially be a gender dictionary. To alleviate this problem, we can append copies

of its values to the dictionary. Since the encryption is non-deterministic, we can increase

the cardinality of the values infinitely.

• Numerical masking operations: We can mask numerical values by using the following
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mechanisms:

– Add a constant shift amount, for example adding value 10 to all values

– Noise addition. Given percentage x, 0 < x < 1, we can mask the value v and replace it

with a random value in the range v − v ∗ x to v + v ∗ x

– Randomization. Replace a value with a randomly generated number.

• Redaction / fixed replacement: This is a special case where we create dictionaries with

encryption of empty string or fixed values.

C. Differential Privacy

In this section we demonstrate achieving differential privacy on encrypted data with select

mechanisms. To implement the differential privacy mechanisms on numerical data given in

Section III-E, some information on the data is required, such as the diameter diam for the

Laplace mechanism, and the binary values for the binary mechanism. This information must

somehow be provided to the CSP for the mechanisms to be implemented. As we will show later,

it is sufficient for this information to be available in encrypted form. Making such information

about the data publicly available may reveal unwanted information and lead to inference attacks

(e.g. attribute type, extreme values, etc.), and is therefore not desirable.

Before the data is encrypted, the DO selects lower and upper bounds l ≤ u ∈ R that are

independent of the data. This may be performed by examination of the attribute in question

(e.g. a person’s age), or by other means, but must not be a function of the data (i.e. the range

of the data). In the case of binary-valued data, l and u will simply be the two binary values.

Non-informative bounding, as discussed in [32], ensures no additional privacy leakage, allowing

the entire privacy budget ε to be spent on the differential privacy mechanism itself. These bounds

must then be encrypted and stored securely alongside the dataset in question. For the remainder

of this subsection, we will refer to the encrypted values l∗ = Encpk(l) and u∗ = Encpk(u).

Below, we detail how we can use FHE.Add and FHE.Mult (Section III-D) to render the

encrypted values differentially private, without having to decrypt the original values. This process

is then applied independently to each value of interest.

• Laplace mechanism: To achieve differential privacy, the required scale factor is b = diam
ε

.

In determining the noise to add to the data, we sample L ∼ Lap(0, b), and add this to the

encrypted value. In generating L, we draw a value r at random from a uniform distribution
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on
[
−1

2
, 1
2

]
, r ∼ Unif

(
−1

2
, 1
2

)
, and use the inverse of the cumulative probability distribution

of Lap(0, b) to find

L = −b sgn(r) log(1− 2|r|),

where sgn(·) is the signum function, defined by

sgn(r) =


1, r > 0,

0, r = 0,

−1, r < 0.

We cannot calculate the plaintext L, since diam can only be calculated in encrypted form.

We can, however, calculate its ciphertext L∗ = Encpk(L) as :

L∗ = Multpk

(
diam∗, Encpk

(
−1

ε
sgn(r) log(1− 2|r|)

))
,

where diam∗ = Encpk(diam) is given by:

diam∗ = Addpk(u
∗,Multpk(Encpk(−1), l∗)).

The resultant value that is stored is therefore

Addpk(d
∗
i , L

∗).

• Binary mechanism: If the original data d is binary, the binary mechanism can be used.

This time we draw r at random from the unit interval [0, 1]. If r ≤ eε

1+eε
, then the value d∗i

remains unchanged. However, if r > eε

1+eε
, then we flip d∗i by setting d′i = u+ l−d∗i . Again,

this can be done without knowing the value of d∗i , and by only knowing the ciphertexts l∗

and u∗. We can implement this using FHE.Mult to get −d∗i , and then using FHE.Add

as before.

In the case of the value being flipped, the value that is stored is

Addpk(Multpk(d
∗
i , Encpk(−1)), Addpk(l∗, u∗)).

D. k-Anonymization

In this paper, we implement anonymization algorithms that support the k-anonymity privacy

guarantee as formally defined in [1]. Given the identification threshold k, achieving k-anonymity

over encrypted data is a three-step process. First, we securely partition the data into clusters.

In this paper, we specifically apply k-means clustering algorithm over encrypted data and
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use Squared Euclidean Distance (SED) metric to calculate the proximity of values in their

respective feature space. Second, to ensure that each cluster has at least k members we apply data

suppression and re-assignment techniques as presented in Sections V-D2 and V-D3, respectively.

And finally, we securely anonymize the original data values to a representative one. For the

numerical attributes, we replace them with the cluster centroid. For each categorical attribute,

we replace them with the common ancestor of the attribute value based on the respective

generalization hierarchy.

Algorithm 2 Secure k-Anonymization
Require: P1 has T ∗, k, rounds and th

Ensure: P1 computes the k-anonymized dataset T ∗
′

1: k′ ← N/k

2: C∗ ← {c∗1, · · · , c∗k′}, c∗i ∈R T ∗

3: loop ← 0

4: while loop < rounds do

5: for i = 1 to N do

6: for j = 1 to k′ do

7: D∗ij ←
∑d

l=1(T ∗il − C∗jl)2

8: end for

9: end for

10: for i = 1 to N do

11: I∗i ← ComputeMinIndex(D∗i )

12: end for

13: C∗ ← RecomputeClusterCentres(I∗)

14: loop = loop +1

15: end while

16: J ← Non-kClusters (I∗)

17: I∗,J ← SupressClusters(I∗, J , th)

18: I∗ ← ReAssignClusters(I∗, J )

19: T ∗
′ ← AnonymizeClusters(T ∗, I∗)

Algorithm 2 outlines the procedure to compute k-anonymized data for a database table T

having d attributes. The algorithm takes as input the encrypted table T ∗ = Encpk(T ), the

identification threshold k, the number of iterations of clustering algorithm rounds and the

suppression threshold th at P1 . Further P2 has the secret key sk. In the end, the algorithm
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outputs the corresponding k-anonymized database table T ∗′ .

In the following sections, we will describe different steps of Algorithm 2.

1) Data Clustering: To produce a k-anonymized database, P1 can at most find k′ = N/k

clusters, each having at-least k members, where N is the total number of tuples in the table

T ∗. In Step 2 we randomly select k′ tuples as the initial cluster centres2 and in Steps 4 – 9,

squared Euclidean distance is computed for all the tuples from all the cluster centres using the

homomorphic properties of the SHE encryption scheme and the results are stored in matrix D∗.

Next, in Step 11 new cluster assignment for all the tuples are identified by calling the function

ComputeMinIndex described in Algorithm 3. This algorithm takes as input a vector D∗i of size k′

and returns an encrypted vector of size k′ having the encryption of value 1 at the index of nearest

cluster centre and encryption of 0 at all other positions. In Steps 1 – 2, P1 selects a monotonic

increasing polynomial poly(x), such that poly(x1) ≥ poly(x2) iff x1 ≥ x2 and homomorphically

evaluate the polynomial poly(x) over all the values in vector D∗i and computes D∗′i . Next, in

Step 3 P1 selects a pseudo-random permutation (PRP) π and permutes the vector D∗′i . Finally,

it sends the vector D∗′′i to P2 . Then, in Step 5, P2 decrypts the vector D∗′′i and in Steps 6 – 12

identifies the index of the minimum value element in vector D′′
i . In Steps 13 – 14, P2 initializes

a vector I ′
i of size k′ with 0 and then sets the value at the index identified above to 1. Then,

in Step 15 P2 encrypts the vector I∗′i and sends it to P1 . Note that the vector I∗′i contains

the encryption of 1 at exactly one position corresponding to the nearest cluster center, but since

the vector D∗′′i was initially permuted by P1 , hence P2 does not learns the correct cluster

assignment. Next, P1 applies the inverse permutation π−1 to I∗′i in Step 17. Note, P1 has

received the cluster assignment for tuple T ∗i but it does not learn the cluster to which this tuple

is assigned, since all the entries in the vector I∗i are encrypted using non-deterministic encryption.

Similarly, P1 receives the encrypted cluster assignment for every tuple in the encrypted table

T ∗

Next, in Step 13 of Algorithm 2 P1 calls the function RecomputeClusterCentres to recompute

the cluster center representatives. Algorithm 4 provides the details of this function. It takes as

input the encrypted cluster assignment I∗ and returns new cluster centres C∗. In Steps 3 – 6,

Algorithm 4 first computes the encrypted cluster count and sum for every cluster. Note in Step 5,

tuple i is added to sum∗j if and only if it belongs to a cluster j, since I∗ij = Encpk(1) if tuple

2Other initial cluster center selection methods can be used
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Algorithm 3 ComputeMinIndex
Require: P1 has D∗i
Ensure: P1 gets an encrypted vector I∗i , having value 1 at the index of nearest cluster center and 0 otherwise

1: P1 :

1) Choose a polynomial poly(x)← a0 + a1 · x+ · · ·+ aq · xq , q, al ∈R N ∀l ∈ {0, q}
2) D∗′ij ← poly(D∗ij) ∀j ∈ {1, k′}
3) D∗′′i ← πs(D∗

′

i ), π : {0, 1}k′ × {0, 1}s → {0, 1}k′

4) Send D∗′′i to P2
2: P2 :

5) D′′

ij ← Decsk(D∗
′′

ij ) ∀j ∈ {1, k′}
6) min ind← 1, min val← D′′

i1

7) for j = 2 to k′ do

8) if D′′

ij < min val then

9) min val← D′′

ij

10) min ind← j

11) end if

12) end for

13) I ′

i ← ~0k′

14) I ′

i [min ind]← 1

15) Ij∗
′

i ← Encpk(Ij
′

i ) ∀j ∈ {1, k′}
16) Return I∗′i to P1

3: P1 :

17) I∗i ← π−1s (I∗′i )

i belongs to a cluster j, else I∗ij = Encpk(0). Next, in Step 7, P1 selects a random value

uj and multiplies it with the cluster count for cluster j. This step produces a one time pad

blinding of the cluster count. Similarly in Step 8 the corresponding cluster sum is blinded with

a random value vj . All the above operations are performed using the homomorphic properties

of the SHE encryption scheme. Now, P1 sends the blinded cluster count and sum to P2 . In

Steps 13 – 15 P2 decrypts and divides the corresponding cluster sum and count and re-encrypts

the results. P2 then sends the encrypted divisions to P1 . In Steps 19, P1 multiplies the cluster

divisions with division of the random values selected in Steps 7 and 8. This step removes the

randomness and P1 gets the updated cluster centres encrypted under the public key pk. The

clustering process is repeated for rounds number of iterations in order to converge the cluster

centres.
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Algorithm 4 RecomputeClusterCentres
Require: Cluster assignment I∗

Ensure: Returns new cluster centres C∗

1: P1 :

1) for j = 1 to k′ do

2) count∗j ← Encpk(0); sum∗j ← Encpk(0)

3) for i = 1 to N do

4) count∗j += I∗ij
5) sum∗j += I∗ij ∗ T ∗i
6) end for

7) count∗
′

j ← count∗j * Encpk(uj); uj ∈R N

8) sum∗
′

j ← sum∗j * Encpk(vj); vj ∈R N

9) end for

10) Choose a PRP πs : {0, 1}k
′ × {0, 1}s → {0, 1}k′

11) sum∗
′′ ← πs(sum

∗′); count∗
′′ ← πs(count

∗′)

12) Send sum∗
′′

and count∗
′′

to P2
2: P2 :

13) for j = 1 to k′ do

14) div∗
′′

j ← Encpk(Decsk(sum
∗′′
j )/Decsk(count

∗′′
j ))

15) end for

16) Return div∗
′′

to P1
3: P1 :

17) div∗
′
← π−1s (div∗

′′
)

18) for j = 1 to k′ do

19) C∗j ← Encpk(uj/vj) ∗ div∗
′

j

20) end for

(a) Cluster to Cluster (b) Point to Cluster (c) Point to Point

Fig. 5: Cluster Re-assignment Strategies
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2) Cluster Suppression: The above clustering process does not provide guarantee on the

number of members in each cluster. In order to achieve k-anonymity, we make sure that each

cluster has at-least k members. To achieve this, we apply a post-processing phase on the output

clusters. In Step 16, Algorithm 2 calls function Non-kClusters to identify the clusters having

fewer than k members. The details of this function is described in Algorithm 5. It takes as

input the encrypted cluster assignment (I∗) and encrypted cluster count (count∗) and returns a

vector J of size k′ indicating the clusters which need further processing. In Step 1 P1 selects

a monotonically increasing polynomial poly(x) and homomorphically evaluate the polynomial

over the encrypted cluster counts and computes count∗′ . Next, in Step 3 a PRP πs is selected

and used to permute the order of count∗′ . Then in Step 4, the identification factor k is encrypted

and masked with the polynomial poly(x). Next both count∗′ and mark∗
′

are sent to P2 . Party

P2 initializes a vector J ′ of size k′ with value 0. Then in Steps 7 – 13, it sets the entry of

vector J ′ to 1 if the count is less than k and finally returns J ′ . Party P1 then applies the inverse

permutation π−1s and retrieves the vector J .

Algorithm 5 Non-kClusters
Require: Cluster assignment I∗, Cluster counts count∗

Ensure: P1 learns Non-k Clusters J
1: P1 :

1) Choose a polynomial poly(x)← a0 + a1 · x+ · · ·+ aq · xq , q, al ∈R N ∀l ∈ {0, q}
2) count∗

′

j ← poly(count∗j ), ∀j ∈ [1, k′]

3) count∗
′′ ← πs(count

∗′) {πs is a PRP}
4) mark∗ ← Encpk(k); mark∗

′
← poly(mark∗)

5) Send mark∗
′

and count∗
′′

to P2
2: P2 :

6) Initialize vector J ′ ← ~0k′

7) mark
′
← Decsk(mark

∗′)

8) for j = 1 to k′ do

9) count
′′

j ← Decsk(count
∗′′
j )

10) if count
′′

j < mark
′

then

11) J ′

j ← 1

12) end if

13) end for

14) Return J ′
to P1

3: P1 :

15) J ← π−1s (J ′
)
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Now, if the number of members is more than k (i.e. if J == 0), then the cluster is left

unmodified. If, however, the cluster contains fewer than k members we follow two strategies.

First, we check if we can suppress the cluster and remove its points from the final anonymized

output. For suppression, a threshold is required to specify the maximum percentage of the total

points we are allowed to remove. As an example, if the suppression threshold is 10% and the

input dataset contains 200 tuples, we are only allowed to remove up to 20 tuples. If suppression

is not allowed or we have reached the suppression threshold, then we apply cluster re-assignment

techniques, in which nearest clusters are identified to merge with the non-k clusters. The cluster

re-assignment strategies are described in Section V-D3.

3) Cluster Re-assignment: Once the suppression threshold is reached, the remaining non-k

clusters are re-assigned to nearest clusters. The merging of two clusters is easily done using the

encrypted cluster assignment vector. For example, say we want to merge cluster j in cluster i,

we can achieve this by adding the jth component of every encrypted cluster assignment vector

I∗ to its ith component. Further, merging the cluster with its nearest one does not guarantee

k-anonymity. For example, let’s assume we want to achieve 3-anonymity and a cluster has one

member. Its nearest cluster also has a single member so merging them will not result in a cluster

with a minimum of 3 elements. Thus, we need to apply the process iteratively until all created

clusters have more than or equal to k data points. The nearest cluster could be identified using

one of the following strategies:

1) Cluster to Cluster – The nearest cluster is computed based on the squared Euclidean

distance of the target non-k cluster centroid from the centroid of the rest of the clusters, as

shown in Figure 5a.

2) Point to Cluster – The nearest cluster is computed based on the squared Euclidean distance

of the data points in the target non-k cluster from the centroid of the rest of the clusters,

as shown in Figure 5b.

3) Point to Point – The nearest cluster is computed based on the squared Euclidean distance

of the data points in the target non-k cluster from the data points in the rest of the clusters,

as shown in Figure 5c.

After cluster re-assignment step all the identified clusters have a minimum of k data points.

4) Data Anonymization: For numerical attributes, we replace them with the cluster centroid.

For the categorical attributes, we replace them with the common ancestor of the attribute value

based on the respective generalization hierarchy. In order to avoid inference attacks based on
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the hierarchy structure and cardinality of number of nodes per level, we can employ similar

approaches like with data masking dictionaries; we can randomly insert dummy nodes at each

level. One approach to calculate the common ancestor for all values is the following. We first

calculate the common ancestor between the first value and the second one, let’s call it A1,2.

Then we calculate the common ancestor between A1,2 and the third value, A1,2,3 and so forth.

If at some point one of the common ancestors calculated is the root of the hierarchy, then

the calculations stop. This approach requires at maximum O(N) checks and each check requires

O(M) operations, where N is the total number of values and M is the height of the generalization

hierarchy.

We will now describe how we calculate the common ancestor between two values. We will

use the hierarchy of Figure 2 as an example. Let us consider the root of the hierarchy to be

level 2. We begin from the fact that all the encrypted values in the data will belong to the leaves

of the hierarchy (level 0). Given two encrypted values from the data, v1 and v2, we find the

nearest node from level 1 for each value using a secure kNN approach[3], [4] with k = 1. Let

us call the nearest nodes N1(v1) and N1(v2). We subtract the values N1(v1) and N1(v2) and

we forward the difference to Party P2. If the distance is zero, then it means it is the same node

and thus we found the common ancestor. If the difference is non-zero, we then follow the same

process for N1(v1) and N1(v2) and we find their nearest nodes from the next level and so on.

As an optimization, whenever we want to calculate the common ancestor of two values, we look

immediately for the maximum level stopped at the previous steps. The entire process stops if

for any given pair we reach the root level.

E. Risk and utility assessment

In this Section, we sketch out how various risk and utility assessment algorithms can be

implemented on top of encrypted data.

Inference-based risk metrics, such as the ones described in [33], [34], [35] rely solely on

the size of the equivalence classes and additional external information, such as population size

(required) and bias estimation (optional). Thus, it is only required to group the data based on

their equivalence class and count the size of each group.

Simple information loss metrics, such as Average Equivalence Class Size (AECS) [22] and

discernibility [36], also rely on the equivalence class size to provide a result. Categorical

precision [37] relies on the level of generalization applied for each value. This information
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is computed when we perform the data anonymization step (see Section V-D4). Similarly,

generalized loss metric [38] requires the number of leaves for each anonymized value. However,

metrics like non-uniform entropy [39] and global certainty penalty [40] require either frequency

calculations or knowledge of the data diameter, which can be only aquired with access to the

original values.

VI. SECURITY GUARANTEES

As described earlier both the Parties P1 and P2 are considered in the Honest-but-Curious secu-

rity model where both the parties correctly execute the protocol but may try to learn the plaintext

value from their view of the encrypted data processing. We also assume that Party P1 and

Party P2 do not collude. Further, Party P2 is additionally trusted with the secret key of the SHE

encryption scheme. We want to emphasize that this cloud model is not new and has been used

in related problem domain [3], [4].

Given above assumptions, informally we will prove that, the views of Party P1 and

Party P2 does not reveal any useful information about the plaintext database during the execution

of secure k-Anonymization protocol. We will formally prove this statement using Leakage Profile

Analysis.

A. Leakage profile at Party P1

Below we enumerate the leakage to Party P1 :

1) Direct Identifier : In Algorithm 1, for each encrypted value in the attribute,

Party P1 computes its difference from the remaining N−1 values and then multiplies them

with a different random value. Both these operations are performed using the homomorphic

properties of the SHE scheme. Hence any leakage in this step will break the security

guarantee of the underlying SHE encryption scheme.

2) ComputeMinIndex : In Algorithm 3, for each entry in vector D∗i , Party P1 evaluates a

randomly chosen polynomial using the homomorphic properties of the SHE scheme. Now,

since the polynomial evaluation is done over encrypted data, hence the security guarantee

of the SHE scheme ensures that there is no leakage to Party P1 . Next P1 chooses a

pseudo-random permutation to hide the physical order of elements in vector D∗′i . This step

further breaks any physical order co-relation between the entries in different D∗i vectors.
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3) RecomputeClusterCentres : In Algorithm 4, Party P1 computes the number of data points

in every cluster and the corresponding cluster sum. To compute the count, P1 applies

addition operation over the encrypted cluster assignment vector I∗ and to compute the

cluster sum, P1 first multiplies the encrypted vector I∗ and encrypted data points T ∗i and

then adds the encrypted values. All the operations in this algorithm are performed over

encrypted data using the properties of the SHE scheme, hence the security guarantee of the

SHE scheme ensures that there is no possible leakage to Party P1 .

4) Non-kClusters : In Algorithm 5, Party P1 evaluates a randomly chosen polynomial

over the encrypted cluster count values and the encrypted identification factor k, using

the homomorphic properties of the SHE scheme. Hence, any leakage in these steps will

break the security guarantee of the SHE scheme.

5) Suppress and Reassign Clusters : In this step, Party P1 only replaces some encrypted

cluster count values with random values or adds two encrypted vectors , hence there is no

extra leakage.

The above leakage profile for Party P1 leads to the following security guarantee :

Theorem VI.1. Security Guarantee for Party P1 : The secure k-Anonymization protocol

leaks no information to Party P1 except that it learns if an attribute is a direct identifier and

number points in the non-k clusters. In particular, Party P1 does not gain any knowledge about

the encrypted data points, the difference between two data points, the cluster to which a data

point is assigned and the cluster centre representatives.

B. Leakage profile at Party P2

Below we enumerate the leakage to Party P2 :

1) Direct Identifier : In Algorithm 1, Party P2 decrypts the encrypted matrix M using the

secret key sk. But since Party P1 has multiplied each entry of the matrixM with a different

random value before sending it to Party P2 , the decrypted matrix M effectively contains

random values. Hence the only leakage in this step is that Party P2 learns if two values in

the attribute are equal since the corresponding decrypted difference will be 0 but nothing

is revealed about the original data points or the difference between two unequal values.

2) ComputeMinIndex : In Algorithm 3, for every data point, Party P2 receives a vector

D∗
′′
i of size k′. The entries in this vector are the output of encrypted polynomial evaluation
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Fig. 7: Execution time for varying number of dimensions with 1800 data points

poly(x) over the distance of the data point i from the cluster centres. Further, the order of

elements in the vector is permuted using a secure pseudo-random permutation, hence the

exact identity of cluster centres associated with any given difference value is hidden from

Party P2 .

Party P2 decrypts the entries in the vector D∗′′i and since the polynomial poly(x) is order

preserving, hence Party P2 can sort the decrypted values and identify the index of the

nearest cluster centre.

In Appendix A, we prove that recovering the plaintext distances form D
′′
i is com-

putationally infeasible for Party P2 . The only possible leakage to Party P2 in this

round is the presence of such points in the database that are equidistant from two or

more cluster centres. This is leaked from the presence of identical values in the set

{poly(d′′
i,1), poly(d

′′
i,2), · · · , poly(d

′′

i,k′)}. However, since the order of the values is randomly

permuted by Party P1 , Party P2 cannot map these values back to the original index of

either the data point or the corresponding cluster centres in the database.
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3) RecomputeClusterCentres : In this phase, Party P2 gains access (by virtue of decryption)

to the following plaintext (but randomized) quantities:

• Sum of data points nearest in each cluster centre

• Number of data points in each cluster centre

We note that since these quantities are multiplicatively randomized by Party P1 , their actual

values are effectively hidden from Party P2 . It is also worth noting that the randomization

used is different for each cluster, implying that Party P2 cannot hope to leverage any sharing/

re-use of randomization across different cluster centres to gain additional information about

the sum or number of data points for any given cluster centre.

4) Non-kClusters : In Algorithm 5, Party P2 gets access to the plaintext (but masked) of

the anonymization factor k and the number of data points in each cluster center. But since

Party P1 evaluates a random polynomial poly(x) over their encrypted values before sending

them, hence Party P2 does not learn the actual anonymization factor k and the number

of data points in each cluster centre. A similar proof as shown in Step 2 above can be

presented here.

5) Suppress and Reassign Clusters : In this step, Party P2 receives a permuted vector of

size k′ having the encrypted counts of the number of elements in non-k clusters padded

with some fake values. Hence after decryption of this vector Party P2 cannot identify the

number of elements in the non-k clusters, since we have picked a secure pseudo-random

permutation, which is computationally difficult to invert, implying that the exact identity of

cluster centres associated with any cluster count is hidden from Party P2 .

The above leakage profile for Party P2 leads to the following security guarantee :

Theorem VI.2. Security Guarantee for Party P2 : The secure k-Anonymization protocol

leaks no information to Party P2 except that it only learns if an attribute is a direct identifier

but does not gain any knowledge about the encrypted data points or the cluster to which a data

point is assigned and the cluster centre representatives.

VII. PERFORMANCE

In this section, we empirically evaluate the performance of our protocols. The experimental

setup consists of three machines, representing the Data Owner, Party P1 and Party P2 . The

configuration of machines representing Party P1 and Party P2 is: 4 core 2.8 GHz processors, 64
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GB RAM running Ubuntu 16.04 LTS; the configuration of the machine representing Data Owner

is: 4 core 2.8 GHz processors, 8 GB RAM running Ubuntu 16.04 LTS. We use the HELib [41]

library to encrypt the data using LFHE. Specifically, for HELib we set (i) p = 1099511627689,

a large prime between 240 and 287, (ii) the maximum depth to 10 and (iii) the security parameter

to 128.

The two parameters affecting the performance of our protocols are the number of data points

and the number of dimensions in the data. To study the independent effect of each of these

parameters on our protocols, we use simulated data. We generated two datasets, one with a

varying number of data points (results shown in Figure 6) and one with a varying number of

dimensions (results shown in Figure 7). The data were generated using a uniform distribution.

We repeated each experiment multiple times with a newly generated dataset. The average time

across these experiments is reported here.

LFHE allows SIMD operations by packing multiple plaintext data values into a single structure

and then encrypting them together into a single ciphertext. We utilize this feature of LFHE

extensively. We encrypt each dimension of the data point independently. For each dimension,

we pack data from multiple data points into a single structure and then encrypt this structure to

get a single ciphertext. This ciphertext is then outsourced to Party P1 . The time taken to encrypt

the plaintext data is shown in Figure 6a and Figure 7a. These figures clearly show that the data

encryption time scales linearly with the number of data points and the number of dimensions.

The second major step in our protocols is to check if a particular combination of dimensions

is a privacy vulnerability identifier or not. The actual number of combinations that need to be

tested is data-dependent. To remove this data dependence from the performance evaluation, we

report the average time taken to identify a quasi-identifier. The results are shown in Figure 6b

and Figure 7b. From the figures, it is clear that the time taken to identify a quasi-identifier scales

linearly with the number of data points and is independent of the number of dimensions (this is

because, the most computationally heavy step is decryption of distance at Party P2 , which is

independent of the number of dimensions).

Once a quasi-identifier is identified, the next step is to cluster the data in the quasi-identifiers.

Furthermore, after clustering, we use the “Cluster to Cluster” re-assignment strategy to eliminate

non-k clusters. Both of these operations are highly dependent on the data and the choice of initial

cluster centres. To remove this data dependence from the performance evaluation we report the

average time taken for each iteration of clustering and the time taken to re-assign a single cluster.
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Figure 6c and Figure 7c show that both the above operations scale linearly with the number

of data points. The number of dimensions has a negligible effect on the cluster reassignment

(again, the most expensive step being decryption of inter-cluster distance at Party P2 , which is

independent of the number of dimensions).

The above performance evaluation shows that our protocols scale linearly with the number of

data point as well as the number of dimensions in the dataset.

VIII. CONCLUSIONS

This paper presents a set of secure algorithms on how to apply anonymization over

homomorphically encrypted databases. It does not focus on a single anonymization approach

but touches various components that are required for end-to-end privacy. It demonstrated how to

achieve uniqueness discovery, data masking, differential privacy and k-anonymity over encrypted

data without leaking information about original values. Feasibility of this solution is shown by

empirical evaluation. This work is the first to perform several techniques, like vulnerability

assessment, differential privacy and k-anonymity, over encrypted datasets which means there is

room for improvement and future work, especially on the performance and optimization side.
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APPENDIX

We now examine the possibility of any leakage to Party P2 from the resulting system of

ordered equations. Let d′′
i,1 < d

′′
i,2 < · · · < d

′′

i,k be the ordered set of plaintext distances, and

poly(d
′′
i,1) < poly(d

′′
i,2) < · · · < poly(d

′′

i,k) be the ordered set of polynomial outputs obtained

by Party P2 upon decryption. As mentioned earlier, the polynomial poly(x) is of the form

a0+a1 ·x+a2 ·x2+ · · ·+ap ·xp for some random p ∈ N. Party P2 can formulate the following

system of equations for j ∈ {1, k′}:

poly(d
′′

i,j) = a0 + a1 · d
′′

i,j + a2 · (d
′′

i,j)
2 + · · ·+ ap · (d

′′

i,j)
p

where only the left hand side of each equation is known to Party P2 . Without loss of generality,

we may assume that Party P2 can guess with high probability the degree p of the polynomial

chosen by Party P1 , as well as the range of values (say [0, 2N ]) that each plaintext distance d′′
i

can take. This is a particularly relevant assumption in the context of real world datasets, where

https://github.com/shaih/HElib
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the adversary may possess some apriori knowledge of the range of Euclidean distances between

the data points. In addition, since homomorphic polynomial evaluation in the encrypted domain

is a costly operation, the degree p can only take a small range of values, which Party P2 can also

accurately guess in a small number of trials. However, we prove that even if Party P2 has full

knowledge of the aforementioned parameters, it cannot recover the original data points within a

feasible amount of computation time. Observe that the system of equations has exactly k′+p+1

unknown variables from Party P2 ’s point of view, while the number of equations is only k.

Hence, Party P2 must correctly guess the p+1 smallest distances d′′
i,1, d

′′
i,2, · · · , d

′′
i,p+1 to recover

the polynomial coefficients. The average number of possible values that these distances can take

is
(
2N

p+1

)
, which is approximately the same as 2N ·(p+1) for 2N � (p + 1). In other words, the

probability that Party P2 successfully recovers the polynomial coefficients, and subsequently

the plaintext distances, is approximately 1/2N ·(p+1), which is close to negligible. For example,

for N = 16 and p = 9, the probability that Party P2 is able to recover the plaintext distances

is approximately 2−160, which is close to negligible for a security level of 160 bits. Thus, even

when the range of plaintext distances and the degree of the polynomial chosen by Party P1 are

reasonable small and known apriori to Party P2 , the information leakage is negligible. Also

note that Party P1 refreshes the polynomial for each data point, implying that Party P2 gains

no additional information across the data points. Finally, even if Party P2 is able to recover the

plaintext distances in some extreme cases (e.g., when the plaintext distance values follow some

specific pattern), it still does not directly reveal the plaintext data points to Party P2 , as the

candidate cluster centres are also unknown.

We clarify here that the ordered set of polynomial outputs obtained by Party P2 upon

decryption are not necessarily uniformly distributed over the entire plaintext space since this

would potentially lead to wrap-arounds and make it impossible to preserve ordering, which is

crucial to the correctness of the protocol. It turns out that, for our security argument to hold, the

distribution of the polynomial outputs need not be uniformly random. Recall that the probability

that Party P2 is able to recover the plaintext distances is bounded from above by 1/2N ·(p+1),

where N is the maximum plaintext distance value pertaining to a given data set. Hence, so long

as the semi-honest Party P1 chooses p to be sufficiently large, recovering the plaintext distances

is computationally infeasible for Party P2 .
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