
The Feasibility of Dynamically Granted Permissions:
Aligning Mobile Privacy with User Preferences

Primal Wijesekera1, Arjun Baokar2, Lynn Tsai2, Joel Reardon2,

Serge Egelman2, David Wagner2, and Konstantin Beznosov1

1University of British Columbia, Vancouver, Canada,

{primal,beznosov}@ece.ubc.ca
2University of California, Berkeley, Berkeley, USA,

{arjunbaokar,lynntsai,joel.reardon}@berkeley.edu, {egelman,daw}@cs.berkeley.edu

Abstract—Current smartphone operating systems regulate ap-
plication permissions by prompting users on an ask-on-first-use
basis. Prior research has shown that this method is ineffective
because it fails to account for context: the circumstances under
which an application first requests access to data may be vastly
different than the circumstances under which it subsequently
requests access. We performed a longitudinal 131-person field
study to analyze the contextuality behind user privacy decisions
to regulate access to sensitive resources. We built a classifier
to make privacy decisions on the user’s behalf by detecting
when context has changed and, when necessary, inferring privacy
preferences based on the user’s past decisions and behavior.
Our goal is to automatically grant appropriate resource requests
without further user intervention, deny inappropriate requests,
and only prompt the user when the system is uncertain of the
user’s preferences. We show that our approach can accurately
predict users’ privacy decisions 96.8% of the time, which is a
four-fold reduction in error rate compared to current systems.

I. INTRODUCTION

One of the roles of a mobile application platform is to

help users avoid unexpected or unwanted use of their per-

sonal data [12]. Mobile platforms currently use permission

systems to regulate access to sensitive resources, relying on

user prompts to determine whether a third-party application

should be granted or denied access to data and resources.

One critical caveat in this approach, however, is that mobile

platforms seek the consent of the user the first time a given

application attempts to access a certain data type and then

enforce the user’s decision for all subsequent cases, regardless

of the circumstances surrounding each access. For example, a

user may grant an application access to location data because

she is using location-based features, but by doing this, the ap-

plication can subsequently access location data for behavioral

advertising, which may violate the user’s preferences.

Earlier versions of Android (5.1 and below) asked users to

make privacy decisions during application installation as an

all-or-nothing ultimatum (ask-on-install): either all requested

permissions are approved or the application is not installed.

Previous research showed that few people read the requested

permissions at install-time and even fewer correctly under-

stood them [17]. Furthermore, install-time permissions do not

present users with the context in which those permission will

be exercised, which may cause users to make suboptimal de-

cisions not aligned with their actual preferences. For example,

Egelman et al. observed that when an application requests

access to location data without providing context, users are

just as likely to see this as a signal for desirable location-

based features as they are an invasion of privacy [11]. Asking

users to make permission decisions at runtime—at the moment

when the permission will actually be used by the application—

provides more context (i.e., what they were doing at the

time that data was requested) [15]. However, due to the high

frequency of permission requests, it is not feasible to prompt

the user every time data is accessed [43].

In iOS and Android M, the user is now prompted at runtime

the first time an application attempts to access one of a set of

“dangerous” permission types (e.g., location, contacts, etc.).

This ask-on-first-use (AOFU) model is an improvement over

ask-on-install (AOI). Prompting users the first time an applica-

tion uses one of the designated permissions gives users a better

sense of context: their knowledge of what they were doing

when the application first tried to access the data should help

them determine whether the request is appropriate. Despite

that, Wijesekera et al. showed that AOFU fails to meet user

expectations over half the time. This is because AOFU does

not account for the varying contexts of future requests [43].

The notion of contextual integrity suggests that many per-

mission models fail to protect user privacy because they fail

to account for the context surrounding data flows [34]. That

is, privacy violations occur when sensitive resources are used

in ways that defy users’ expectations. We posit that more

effective permission models must focus on whether resource

accesses are likely to defy users’ expectations in a given

context—not simply whether the application was authorized to

receive data the first time it asked for it. Thus, the challenge

for system designers is to correctly infer when the context

surrounding a data request has changed, and whether the new

context is likely to be deemed “appropriate” or “inappropriate”

for the given user. Dynamically regulating data access based

on the context requires more user involvement to understand

users’ contextual preferences. If users are asked to make

privacy decisions too frequently, or under circumstances that

are seen as low-risk, they may become habituated to future,

2017 IEEE Symposium on Security and Privacy

© 2017, Primal Wijesekera. Under license to IEEE.

DOI 10.1109/SP.2017.51

1077

more serious, privacy decisions. On the other hand, if users are

asked to make too few privacy decisions, they may find that

the system has acted against their wishes. Thus, our goal is to

automatically determine when and under what circumstances

the system presents users with runtime prompts.

To this end, we collected real-world Android usage data in

order to explore whether we could infer users’ future privacy

decisions based on their past privacy decisions, contextual

circumstances surrounding applications’ data requests, and

users’ behavioral traits. We conducted a field study where

131 participants used Android phones that were instrumented

to gather data over an average of 32 days per participant.

Also, their phones periodically prompted them to make privacy

decisions when applications used sensitive permissions, and

we logged their decisions. Overall, participants wanted to

block 60% of these requests. We found that AOFU yields 84%

accuracy, i.e., its policy agrees with participants’ prompted

responses 84% of the time. AOI achieves only 25% accuracy.

We designed new techniques that use machine learning to

automatically predict how users would respond to prompts, so

that we can avoid prompting them in most cases, thereby re-

ducing user burden. Our classifier uses the user’s past decisions

in similar situations to predict their response to a particular

permission request. The classifier outputs a prediction and

a confidence score; if the classifier is sufficiently confident,

we use its prediction, otherwise we prompt the user for their

decision. We also incorporate information about the user’s

behavior in other security and privacy situations to make

inferences about their preferences: whether they have a screen

lock activated, how often they visit HTTPS websites, and so

on. We show that our scheme achieves 96.8% accuracy (a 4×
reduction in error rate over AOFU) with significantly less user

involvement than the status quo.

The specific contributions of our work are the following:

• We conducted the first known large-scale study on quan-

tifying the effectiveness of ask-on-first-use permissions.

• We show that a significant portion of the studied par-

ticipants make contextual decisions on permissions—

the foreground application and the visibility of the

permission-requesting application are strong cues partic-

ipants used to make contextual decisions.

• We show how a machine-learned model can incorporate

context and better predict users’ privacy decisions.

• To our knowledge, we are the first to use passively

observed traits to infer future privacy decisions on a case-

by-case basis at runtime.

II. RELATED WORK

There is a large body of work demonstrating that install-

time prompts fail because users do not understand or pay

attention to them [19], [23], [42]. When using install-time

prompts, users often do not understand which permission types

correspond to which sensitive resources and are surprised

by the ability of background applications to collect informa-

tion [17], [22], [41]. Applications also transmit a large amount

of location or other sensitive data to third parties without

user consent [12]. When possible risks associated with these

requests are revealed to users, their concerns range from being

annoyed to wanting to seek retribution [16].

To mitigate some of these problems, systems have been

developed to track information flows across the Android

system [12], [18], [24] or introduce finer-grained permission

control into Android [2], [21], [39], but many of these solu-

tions increase user involvement significantly, which can lead to

habituation. Additionally, many of these proposals are useful

only to the most-motivated or technically savvy users. For

example, many such systems require users to configure com-

plicated control panels, which many are unlikely to do [45].

Other approaches involve static analysis in order to better

understand how applications could request information [4], [8],

[14], but these say little about how applications actually use

information. Dynamic analysis improves upon this by allowing

users to see how often this information is requested in real

time [12], [40], [43], but substantial work is likely needed to

present that information to average users in a meaningful way.

Solutions that require user interruptions need to also minimize

user intervention in order to prevent habituation.

Other researchers have developed recommendation systems

to recommend applications based on users’ privacy prefer-

ences [46], or detect privacy violations and suggest prefer-

ences based on crowdsourcing [1], [27], but such approaches

often do not take individual user differences into account

without significant user intervention. Systems have also been

developed to predict what users would share on mobile so-

cial networks [7], which suggests that future systems could

potentially infer what information users would be willing to

share with third-party applications. By requiring users to self-

report privacy preferences, clustering algorithms have been

used to define user privacy profiles even in the face of diverse

preferences [26], [38]. However, researchers have found that

the order in which information is requested has an impact on

prediction accuracy [44], which could mean that such systems

are only likely to be accurate when they examine actual user

behavior over time (as opposed to one-time self-reports).

Liu et al. clustered users by privacy preferences and used

ML techniques to predict whether to allow or deny an ap-

plication’s request for sensitive user data [29]. Their dataset,

however, was collected from a set of highly privacy-conscious

individuals: those who choose to install a permission-control

mechanism. Furthermore, the researchers removed “conflict-

ing” user decisions, in which a user chose to deny a permission

for an application, and then later chose to allow it. These

conflicting decisions, however, do not represent noisy data.

They occur nearly 50% of the time in the real world [43],

and accurately reflect the nuances of user privacy preferences.

Models must therefore account for them. In fact, previous work

found that users commonly reassess privacy preferences after

usage [3]. Liu et al. also expect users to make 10% of permis-

sion decisions manually, which, based on field study results

from Wijesekera et al., would result in being prompted every

three minutes [43]. This is obviously impractical. Our goal is

to design a system that can automatically make decisions on

1078

behalf of users, that accurately models their preferences, while

also not over-burdening them with repeated requests.

Closely related to this work, Liu et al. [28] performed a

field study to measure the effectiveness of a Privacy Assistant

that offers recommendations to users on privacy settings that

they could adopt based on each user’s privacy profile—the

privacy assistant predicts what the user might want based on

the inferred privacy profile and static analysis of the third-party

application. While this approach increased user awareness on

resource usage, the recommendations are static: they do not

consider each application’s access to sensitive data on a case-

by-case basis. Such a coarse-grained approach goes against

previous work suggesting that people do want to vary their

decisions based on contextual circumstances [43]. A blanket

approval or denial of a permission to a given application car-

ries a considerable risk of privacy violations or loss of desired

functionality. In contrast, our work uses dynamic analysis to

infer the appropriateness of each given request by considering

the surrounding contextual cues and how the user has behaved

in similar situations in the past. As with Liu et al., their dataset

was also collected from privacy-conscious and considerably

tech-savvy individuals, which may limit the generalization of

their results. The field study we conduct in our work uses a

more representative sample.

Nissenbaum’s theory of contextual integrity suggests that

permission models should focus on information flows that

are likely to defy user expectations [34]. There are three

main components involved in deciding the appropriateness

of a flow [6]: the context in which the resource request is

made, the role played by the requesting application under

the current context, and the type of resource being accessed.

Neither previous nor currently deployed permission models

take all three factors into account. This model could be used to

improve permission models by automatically granting access

to data when the system determines that it is appropriate,

denying access when it is inappropriate, and prompting the

user only when a decision cannot be made automatically,

thereby reducing user burden.

Access Control Gadgets (ACGs) were proposed as a mech-

anism to tie sensitive resource access to certain UI ele-

ments [32], [35]–[37]. Authors posit that such an approach will

increase user expectations, as a significant portion of partici-

pants expected a UI interaction before a sensitive resource us-

age, giving users an implicit mechanism to control access and

increasing awareness on resource usage. The biggest caveat in

this approach is that tying a UI interaction to each sensitive

resource access is impossible in practice because resources

are accessed at a high frequency [43], and because many

legitimate resource accesses occur without user initiation [15].

Wijesekera et al. performed a field study [43] to operational-

ize the notion of “context,” to allow an operating system to dif-

ferentiate between appropriate and inappropriate data requests

by a single application for a single data type. They found that

users’ decisions to allow a permission request significantly

correlated with that application’s visibility. They posit that

this visibility is a strong contextual cue that influences users’

Permission Type Activity
ACCESS_WIFI_STATE View nearby SSIDs
NFC Communicate via NFC
READ_HISTORY_BOOKMARKS Read users’ browser history
ACCESS_FINE_LOCATION Read GPS location

ACCESS_COARSE_LOCATION
Read network-inferred location
(i.e., cell tower and/or WiFi)

LOCATION_HARDWARE Directly access GPS data
READ_CALL_LOG Read call history
ADD_VOICEMAIL Read call history
READ_SMS Read sent/received/draft SMS
SEND_SMS Send SMS
*INTERNET Access Internet when roaming

*WRITE_SYNC_SETTINGS
Change application sync
settings when roaming

TABLE I
FELT ET AL. PROPOSED GRANTING A SELECT SET OF 12 PERMISSIONS AT

RUNTIME SO THAT USERS HAVE CONTEXTUAL INFORMATION TO INFER

WHY THE DATA MIGHT BE NEEDED [15]. OUR INSTRUMENTATION OMITS

THE LAST TWO PERMISSION TYPES (INTERNET & WRITE_SYNC_SETTINGS)
AND RECORDS INFORMATION ABOUT THE OTHER 10.

responses to permission prompts. They also observed that

privacy decisions were highly nuanced, demonstrating that a

one-size-fits-all model is unlikely to be sufficient; a given

information flow may be deemed appropriate by one user but

not by another user. They recommended applying machine

learning in order to infer individual users’ privacy preferences.
To achieve this, research is needed to determine what factors

affect user privacy decisions and how to use those factors to

make privacy decisions on the user’s behalf. While we cannot

automatically capture everything involved in Nissenbaum’s

notion of context, we can try to detect when context has

likely changed (insofar as to decide whether a different privacy

decision should be made for the same application and data

type), by seeing whether the circumstances surrounding a data

request are similar to previous requests.

III. METHODOLOGY

We collected data from 131 participants to understand what

factors could be used to infer whether a permission request is

likely to be deemed appropriate by the user.
Previous work by Felt et al. made the argument that certain

permissions are appropriate for runtime prompts, because they

protect sensitive resources and because viewing the prompt

at runtime imparts additional contextual information about

why an application might need the permission [15]. Similarly,

Thompson et al. showed that other permission requests could

be replaced with audit mechanisms, because they represent

either reversible changes or are sufficiently low risk to not

warrant habituating the user to prompts [41]. We collected

information about 10 of the 12 permissions Felt et al. suggest

are best-suited for runtime prompts. We omitted INTERNET

and WRITE_SYNC_SETTINGS, because those permissions only

warrant runtime prompts if the user is roaming and we did not

expect any participant to be roaming during the study period,

and focused on the remaining 10 permission types (Table I).

While there are many other sensitive permissions beyond this

1079

Fig. 1. A screenshot of an ESM prompt.

set, Felt et al. concluded that the others are best handled by

other mechanisms (e.g., install-time prompts, ACGs, etc.).

We used the Experience Sampling Method (ESM) to collect

ground truth data about users’ privacy preferences [20]. ESM

involves repeatedly questioning participants in situ about a

recently observed event; in this case, we probabilistically asked

them about an application’s recent access to data on their

phone, and whether they would have permitted it if given the

choice. We treated participants’ responses to these ESM probes

as our main dependent variable (Figure 1).

We also instrumented participants’ smartphones to obtain

data about their privacy-related behaviors and the frequency

with which applications accessed protected resources. The

instrumentation required a set of modifications to the Android

operating system and flashing a custom Android version onto

participants’ devices. To facilitate such experiments, the Uni-

versity of Buffalo offers non-affiliated academic researchers

access to the PhoneLab panel [33], which consists of more

than 200 participants. All of these participants had LG Nexus

5 phones running Android 5.1.1 and the phones were periodi-

cally updated over-the-air (OTA) with custom modifications to

the Android operating system. Participants can decide when to

install the OTA update, which marks their entry into new ex-

periments. During our experiment period, different participants

installed the OTA update with our instrumentation at different

times, thus we have neither data on all PhoneLab participants

nor data for the entire period. Our OTA update was available to

participants for a period of six weeks, between February 2016

and March 2016. At the end of the study period, we emailed

participants a link to an exit survey to collect demographic

Type Event Recorded

Behavioral
Instrumentation

Changing developer options
Opening/Closing security settings
Changing security settings
Enabling/Disabling NFC
Changing location mode
Opening/Closing location settings
Changing screen-lock type
Use of two factor authentication
Log initial settings information
User locks the screen
Screen times out
App locks the screen
Audio mode changed
Enabling/Disabling speakerphone
Connecting/Disconnecting headphones
Muting the phone
Taking an audio call
Taking a picture (front- vs. rear-facing)
Visiting an HTTPS link in Chrome
Responding to a notification
Unlocking the phone

Runtime
Information

An application changing the visibility
Platform switches to a new activity

Permission
Requests

An app requests a sensitive permission
ESM prompt for a selected permission

TABLE II
INSTRUMENTED EVENTS THAT FORM OUR FEATURE SET

information. Our study received institutional review board

(IRB) approval.1

A. Instrumentation

The goal of our instrumentation was to collect as much

runtime and behavioral data as could be observed from the An-

droid platform, with minimal performance cost. We collected

three categories of data: behavioral information, runtime infor-

mation, and user decisions. We made no modifications to any

third-party application code; our dynamic analysis techniques

could be used on any third-party Android application.

Table II contains the complete list of behavioral and runtime

events our instrumentation recorded. The behavioral data fell

under several categories, all chosen based on several hypothe-

ses that we had about the types of behaviors that might cor-

relate with privacy preferences: web-browsing habits, screen

locking behavior, third-party application usage behavior, audio

preferences, call habits, camera usage patterns, and behavior

related to security settings. For example, we hypothesized that

someone who manually locks their device screen are more

privacy-conscious than someone who lets it time out.

We also collected runtime information about the context of

each permission request, including the visibility of the request-

ing application at the time of request, what the user was doing

when the request was made (i.e., the name of the foreground

application), and the exact Android API function invoked by

the application to determine what information was requested..

The visibility of an application reflects the extent to which the

1Approved by the UC Berkeley IRB under protocol #2013-02-4992

1080

user was likely aware that the application was running; if the

application was in the foreground, the user had cues that the

application was running, but if it was in the background, then

the user was likely not aware that the application was running

and therefore might find the permission request unexpected—

some background services can still be visible to the user due to

on-screen notification or other cues that could be perceptible.

We monitored processes’ memory priority levels to determine

the visibility of all Android processes. We also collected

information about which Android Activity was active in

the application.2

Once per day we probabilistically selected one of these

permission requests and prompted the user about them at

runtime (Figure 1). We used weighted reservoir sampling to

select a permission request to prompt about. We weight the

combination of application, permission, visibility based on

their frequency of occurrence seen by the instrumentation; the

most-frequent combination has a higher probability of being

shown to participants using ESM. We prompted participants

a maximum of three times for each unique combination. We

tuned the wording of the prompt to make it clear that the

request had just occurred and their response would not affect

the system (a deny response would not actually deny data).

These responses serve as the ground truth for all the analysis

mentioned in the remainder of the paper.

The intuition behind using weighted reservoir sampling is

to focus more on the frequently occurring permission requests

over rare ones. Common permission requests contribute most

to user habituation due to their high frequency. Thus, it is

more important to learn about user privacy decisions on highly

frequent permission requests over the rare ones, which might

not risk user habituation or annoyance (and the context of rare

requests may be less likely to change).

B. Exit Survey

At the end of our data collection period, PhoneLab staff

emailed participants a link to our online exit survey, which

they were incentivized to complete with a raffle for two $100

Amazon gift cards. The survey gathered demographic informa-

tion and qualitative information on their privacy preferences.

Of the 203 participants in our experiment, 53 fully completed

the survey, and another 14 partially completed it. Of the 53

participants to fully complete the survey, 21 were male, 31

were female, and 1 undisclosed. Participants ranged from

20 to 72 years of age (μ = 40.83, σ = 14.32). Participants

identified themselves as 39.3% staff, 32.1% students, 19.6%

faculty, and 9% other. Only 21% of the survey respondents

had an academic qualification in STEM, which suggests that

the sample is unlikely to be biased towards tech-savvy users.

C. Summary

We collected data from February 5 to March 17, 2016.

PhoneLab allows any participant to opt-out of an experiment

at any time. Thus, of the 203 participants who installed our

2An Android Activity represents the application screen and UI elements
currently exposed to the user.

custom Android build, there were 131 who used it for more

than 20 days. During the study period, we collected 176M

events across all participants (31K events per participant/day).

Our dataset consists of 1,686 unique applications and 13K

unique activities. Participants also responded to 4,636 prompts

during the study period. We logged 96M sensitive permission

requests, which translates to roughly one sensitive permission

request every 6 seconds per participant. For the remainder of

the paper, we only consider the data from the 131 participants

who used the system for at least 20 days, which corresponds

to 4,224 ESM prompts.

Of the 4,224 prompts, 55.3% were in response to AC-

CESS_WIFI_STATE, when trying to access WiFi SSID informa-

tion that could be used to infer the location of the smartphone;

21.0%, 17.3%, 5.08%, 0.78%, and 0.54% were from accessing

location directly, reading SMS, sending SMS, reading call

logs, and accessing browser history, respectively. A total of

137 unique applications triggered prompts during the study

period. Of the 4,224 prompts, participants wanted to deny

60.01% of them, and 57.65% of the prompts were shown when

the requesting application was running in the foreground or

the user had visual cues that the application was running (e.g.,

notifications). A Wilcoxon signed rank test with continuity

correction revealed a statistically significant difference in par-

ticipants’ desire to allow or deny a permission request based

on the visibility of the requesting application (p < 0.0152,

r = 0.221), which corroborates previous findings [43].

IV. TYPES OF USERS

We hypothesized that there may be different types of users

based on how they want to disclose their private information

to third parties. It is imperative to identify these different

sub-populations since different permission models affect users

differently based on their privacy preferences; performance

numbers averaged across a user population could be mislead-

ing since different sub-populations might react differently to

the same permission model.

While our study size was too small to effectively apply

clustering techniques to generate classes of users, we did

find a meaningful distinction using the denial rate (i.e., the

percentage of prompts to which users wanted to deny access).

We aggregated users by their denial rate in 10% increments

and examined how these different participants considered the

surrounding contextual circumstances in their decisions.

We discovered that application visibility was a significant

factor for users with a denial rate of 10–90%, but not for

users with a denial rate of 0–10% or 90–100%. We call

the former group Contextuals, as they seem to care about

the surrounding context (i.e., they make nuanced decisions,

allowing or denying a permission request based on whether

they had contextual cues that indicated that the requesting

application was running), and the latter group Defaulters,

because they seem to simply always allow or always deny

requests, regardless of contextual cues.

Defaulters accounted for 53% of 131 participants and Con-
textuals accounted for 47%. A Wilcoxon signed-rank test with

1081

0

5

10

15

0 25 50 75 100
Denial Rate

N
um

be
r

of
 P

ar
tic

ip
an

ts

Category

Contextuals

Defaulters

Fig. 2. Histogram of users based on their denial rate. Defaulters tended to
allow or deny almost all requests without regard for contextual cues, whereas
Contextuals considered the visibility of the requesting application.

Policy Contextuals Defaulters Overall Prompts
AOI 44.11% 6.00% 25.00% 0.00
AOFU-AP 64.49% 93.33% 84.61% 12.34
AOFU-APV 64.28% 92.85% 83.33% 15.79
AOFU-AF PV 66.67% 98.95% 84.61% 16.91
AOFU-VP 58.65% 94.44% 78.04% 6.43
AOFU-VA 63.39% 93.75% 84.21% 12.24
AOFU-A 64.27% 93.54% 83.33% 9.06
AOFU-P 57.95% 95.45% 82.14% 3.84
AOFU-V 52.27% 95.34% 81.48% 2.00

TABLE III
THE ACCURACY AND NUMBER OF DIFFERENT POSSIBLE ASK-ON-FIRST-

USE COMBINATIONS. A: APPLICATION REQUESTING THE PERMISSION, P:
PERMISSION TYPE REQUESTED, V: VISIBILITY OF THE APPLICATION

REQUESTING THE PERMISSION, AF : APPLICATION RUNNING IN THE

FOREGROUND WHEN THE REQUEST IS MADE. AOFU-AP IS THE POLICY

USED IN ANDROID MARSHMALLOW I.E., ASKING (PROMPTING) THE USER

FOR EACH UNIQUE APPLICATION, PERMISSION COMBINATION. THE TABLE

ALSO DIFFERENTIATES POLICY NUMBERS BASED ON THE SUBPOPULATION

OF Contextuals, Defaulters, AND ACROSS ALL USERS.

continuity correction revealed a statistically significant differ-

ence in Contextuals’ responses based on requesting application

visibility (p < 0.013, r = 0.312), while for Defaulters there

was no statistically significant difference (p = 0.227). That is,

Contextuals used visibility as a contextual cue, when deciding

the appropriateness of a given permission request, whereas

Defaulters did not vary their decisions based on this cue.

Figure 2 shows the distribution of users based on their denial

rate. Vertical lines indicate the borders between Contextuals
and Defaulters.

In the remainder of the paper, we use our Contextuals–
Defaulters categorization to measure how current and pro-

posed models affect these two sub-populations, issues unique

to these sub-populations, and ways to address these issues.

V. ASK-ON-FIRST-USE PERMISSIONS

Ask-on-first-use (AOFU) is the current Android permission

model, which was first adopted in Android 6.0 (Marshmallow).

AOFU prompts the user whenever an application requests a

dangerous permission for the first time [9]; the user’s response

to this prompt is thereafter applied whenever the same ap-

plication requests the same permission. As of March 2017,

only 34.1% of Android users have Android Marshmallow or

a higher version [10], and among these Marshmallow users,

those who upgraded from a previous version only see runtime

permission prompts for freshly-installed applications.

For the remaining 65.9% of users, the system policy is

ask-on-install (AOI), which automatically allows all runtime

permission requests. During the study period, all of our partic-

ipants had AOI running as the default permission model. Be-

cause all runtime permission requests are allowed in AOI, any

of our ESM prompts that the user wanted to deny correspond

to mispredictions under the AOI model (i.e., the AOI model

granted access to the data against users’ actual preferences).

Table III shows the expected median accuracy for AOI, as

well as several other possible variants that we discuss in this

section. The low median accuracy for Defaulters was due to

the significant number of people who simply denied most of

the prompts. The prompt count is zero for AOI because it

does not prompt the user during runtime; users are only shown

permission prompts at installation.

More users will have AOFU in the future, as they upgrade

to Android 6.0 and beyond. To the best of our knowledge,

no prior work has looked into quantifying the effectiveness of

AOFU systematically; this section presents analysis of AOFU

based on prompt responses collected from participants and cre-

ates a baseline against which to measure our system’s improve-

ment. We simulate how AOFU performs through our ESM

prompt responses. Because AOFU is deterministic, each user’s

response to the first prompt for each application:permission
combination tells us how the AOFU model would respond for

subsequent requests by that same combination. For participants

who responded to more than one prompt for each combination,

we can quantify how often AOFU would have been correct for

subsequent requests. Similarly, we also measure the accuracy

for other possible policies that the platform could use to decide

whether to prompt the user. For example, the status quo is

for the platform to prompt the user for each new applica-
tion:permission combination, but how would accuracy (and the

number of prompts shown) change if the policy were to prompt

on all new combinations of application:permission:visibility?

Table III shows the expected median accuracy3 for each

policy based on participants’ responses. For each policy, A
represents the application requesting the permission, P rep-

resents the requested permission, V represents the visibility

of the requesting application, and AF represents the applica-

tion running in the foreground when a sensitive permission

request was made. For instance, AOFU-AP is the policy

where the user will be prompted for each new instance of

an application:permission combination, which the Android

6.0 model employs. The last column shows the number of

runtime prompts a participant would see under each policy

over the duration of the study, if that policy were to be

3The presented numbers—except for average prompt count, which was nor-
mally distributed—are median values, because the distributions were skewed.

1082

implemented. Both AOFU-AP and AOFU-AF PV show about

a 4.9× reduction in error rate compared to AOI; AOFU-AF PV

would require more prompts over AOFU-AP, though yields a

similar overall accuracy rate. 4 Moving forward, we focus our

analysis only on AOFU-AP (i.e., the current standard).
Instances where the user wants to deny a permission and the

policy instead allows it (false positives) are privacy violations,

because they expose more information to the application than

the user desires. Instances where the user wants to allow

a permission, but the policy denies it (false negatives) are

functionality losses. This is because the application is likely

to lose some functionality that the user desired when it is

incorrectly denied a permission. Privacy violations and func-

tionality losses were approximately evenly split between the

two categories for AOFU-AP: median privacy violations and

median functionality losses were 6.6% and 5.0%, respectively.
The AOFU policy works well for Defaulters because, by

definition, they tend to be consistent after their initial responses

for each combination. In contrast, the decisions of Contextuals
vary due to other factors beyond just the requesting application

and the requested permission type. Hence, the accuracy of

AOFU for Contextuals is significantly lower than the accuracy

for Defaulters. This distinction shows that learning privacy

preferences for a significant portion of users requires a deeper

understanding of factors affecting their decisions, such as

behavioral tendencies and contextual cues. As Table III sug-

gests, superficially adding more contextual variables (such as

visibility of the requesting application) does not necessarily

help to increase the accuracy of the AOFU policy.
The context in which users are prompted under AOFU might

be a factor affecting its ability to predict subsequent instances.

In previous work [43], we found that the visibility of the

requesting application is a strong contextual cue users use to

vary their decisions. During the study period, under the AOFU-

AP policy, 60% of the prompts could have occurred when

the requesting application was visible to the participant—these

prompts had an accuracy of 83.3% in predicting subsequent

instances. In instances where participants were prompted when

the requesting application was running invisibly to the user,

AOFU-AP had an accuracy of 93.7% in predicting subsequent

instances. A Wilcoxon signed-ranks test, however, did not

reveal a statistically significant difference (p < 0.3735).
Our estimated accuracy numbers for AOFU may be inflated

because AOFU in deployment (Android 6 and above) does

not filter permission requests that do not reveal any sensitive

information. For example, an application can request the

ACCESS_FINE_LOCATION permission to check whether the

phone has a specific location provider, which does not leak

sensitive information. Our AOFU simulation uses the invoked

function to determine if sensitive data was actually accessed,

and only prompts in those cases (in the interest of avoiding any

false positives), a distinction that AOFU in Android does not

make. Thus, an Android user would see a permission request

4While AOFU-AF PV has greater median accuracy when examining De-
faulters and Contextuals separately, because the distributions are skewed, the
median overall accuracy is identical to AOFU-AP when combining the groups.

prompt when the application examines the list of location

providers, and if the permission is granted, would not subse-

quently see prompts when location data is actually captured.

Previous work found that 79% of first-time permission requests

do not reveal any sensitive information [43], and nearly 33.9%

of applications that request these sensitive permission types do

not access sensitive data at all. The majority of AOFU prompts

in Marshmallow are therefore effectively false positives, which

incorrectly serve as the basis for future decisions. Given this,

AOFU’s average accuracy is likely less than the numbers

presented in Table III. We therefore consider our estimates of

AOFU to be an upper bound.

VI. LEARNING PRIVACY PREFERENCES

Table III shows that a significant portion of users (the 47%

classified as Contextuals) make privacy decisions that depend

on factors other than the application requesting the permission,

the permission requested, and the visibility of the requesting

application. To make decisions on behalf of the user, we must

understand what other factors affect their privacy decisions.

We built a machine learning model trained and tested on our

labeled dataset of 4,224 prompts collected from 131 users over

the period of 42 days. This approach is equivalent to training a

model based on runtime prompts from hundreds of users and

using it to predict those users’ future decisions.

We focus the scope of this work by making the following as-

sumptions. We assume that the platform, i.e., the Android OS,

is trusted to manage and enforce permissions for applications.

We assume that applications must go through the platform’s

permission system to gain access to protected resources. We

assume that we are in a non-adversarial machine-learning

setting wherein the adversary does not attempt to circumvent

the machine-learned classifier by exploiting knowledge of its

decision-making process—though we do present a discussion

of this problem and potential solutions in Section IX.

A. Feature Selection

Using the behavioral, contextual, and aggregate features

shown in Table II, we constructed 16K candidate features,

formed by combinations of specific applications and actions.

We then selected 20 features by measuring Gini importance

through random forests [30], significance testing for corre-

lations, and singular value decomposition (SVD). SVD was

particularly helpful to address the sparsity and high dimension-

ality issues caused by features generated based on application

and activity usage. Table IV lists the 20 features used in the

rest of this work.

The behavioral features (B) that proved predictive relate to

browsing habits, audio/call traits, and locking behavior. All

behavioral features were normalized per day/user and were

scaled in the actual model. Features relating to browsing

habits included the number of websites visited, the proportion

of HTTPS-secured links visited, the number of downloads,

and proportion of sites visited that requested location access.

Features relating to locking behavior included whether users

employed a passcode/PIN/pattern, the frequency of screen

1083

Feature
Group Feature Type

Behavioral
Features
(B)

Number of times a website is loaded to
the Chrome browser.

Numerical

Out of all visited websites, the proportion
of HTTPS-secured websites.

Numerical

The number of downloads through Chrome. Numerical
Proportion of websites requested location
through Chrome.

Numerical

Number of times PIN/Password was used to
unlock the screen.

Numerical

Amount of time spent unlocking the screen. Numerical
Proportion of times screen was timed out
instead of pressing the lock button.

Numerical

Frequency of audio calls. Numerical
Amount of time spent on audio calls. Numerical
Proportion of time spent on silent mode. Numerical

Runtime
Features
(R1)

Application visibility (True/False) Categorical
Permission type Categorical
User ID Categorical
Time of day of permission request Numerical

Aggregated
Features
(A)

Average denial rate for (A1)
application:permission:visibility

Numerical

Average denial rate for (A2)
applicationF :permission:visibility

Numerical

TABLE IV
THE COMPLETE LIST OF FEATURES USED IN THE ML MODEL

EVALUATION. ALL THE NUMERICAL VALUES IN THE BEHAVIORAL GROUP

ARE NORMALIZED PER DAY. WE USE ONE-HOT ENCODING FOR

CATEGORICAL VARIABLES. WE NORMALIZED NUMERICAL VARIABLES BY

MAKING EACH ONE A Z-SCORE RELATIVE TO ITS OWN AVERAGE.

unlocking, the proportion of times they allowed the screen to

timeout instead of pressing the lock button, and the average

amount of time spent unlocking the screen. Features under the

audio and call category were the frequency of audio calls, the

amount of time they spend on audio calls, and the proportion

of time they spent on silent mode.

Our runtime features (R1/R2) include the requesting appli-

cation’s visibility, permission requested, and time of day of

the request. Initially, we included the user ID to account for

user-to-user variance, but as we discuss later, we subsequently

removed it. Surprisingly, the application requesting the per-

mission was not predictive, nor were other features based on

the requesting application, such as application popularity.

Different users may have different ways of perceiving

privacy threats posed by the same permission request. To

account for this, the learning algorithm should be able to

determine how each user perceives the appropriateness of

a given request in order to accurately predict future deci-

sions. To quantify the difference between users in how they

perceive the threat posed by the same set of permission

requests, we introduced a set of aggregate features that could

be measured at runtime and that may partly capture users’

privacy preferences. We compute the average denial rate for

each unique combination of application:permission:visibility
(A1) and of applicationF 5:permission:visibility (A2). These

aggregate features indicate how the user responded to previous

prompts associated with that combination. As expected, after

5The application running in the foreground when the permission is re-
quested by another application.

Feature Set Contextuals Defaulters Overall
R1 69.30% 95.80% 83.71%
R2 + B 69.48% 95.92% 83.93%
R2 + A 75.45% 99.20% 92.24%

TABLE V
THE MEDIAN ACCURACY OF THE MACHINE LEARNING MODEL FOR

DIFFERENT FEATURE GROUPS ACROSS DIFFERENT SUB POPULATIONS.

we introduced the aggregate features, the relative importance

of the user ID variable diminished and so we removed it (i.e.,

users no longer needed to be uniquely identified). We define

R2 as R1 without the user ID.

B. Inference Based on Behavior

One of our main hypotheses is that passively observing

users’ behaviors helps infer users’ future privacy decisions.

To this end, we instrumented Android to collect a wide

array of behavioral data, listed in Table II. We categorize

our behavioral instrumentation into interaction with Android

privacy/security settings, locking behavior, audio settings and

call habits, web-browsing habits, and application usage habits.

After the feature selection process (§VI-A), we found that

only locking behavior, audio habits, and web-browsing habits

correlated with privacy behaviors. Appendix B contains more

information on feature importance. All the numerical values

under the behavioral group were normalized per day.

We trained an SVM model with an RBF kernel on only the

behavioral and runtime features listed in Table IV, excluding

user ID. The 5-fold cross-validation accuracy (with random

splitting) was 83% across all users. This first setup assumes we

have prior knowledge of previous privacy decisions to a certain

extent from each user before inferring their future privacy

decisions, so it is primarily relevant after the user has been

using their phone for a while. However, the biggest advantage

of using behavioral data is that it can be observed passively

without any active user involvement (i.e., no prompting).

We use leave-one-out cross validation to measure the extent

to which we can infer user privacy decisions with absolutely
no user involvement (and without any prior data on a user). In

this second setup, when a new user starts using a smartphone,

we assume there is a ML model which is already trained

with behavioral data and privacy decisions collected from a

selected set of other users. We then measured the efficacy

of such a model to predict the privacy decisions of a new

user, purely based on passively observed behavior and runtime

information on the request, without ever prompting that new

user. This is an even stricter lower bound on user involvement,

which essentially mandates that a user has to make no effort

to indicate privacy preferences, something that no system

currently does.

We performed leave-one-out cross validation for each of

our 131 participants, meaning we predicted a single user’s

privacy decisions using a model trained using the data from

the other 130 users’ privacy decisions and behavioral data.

The only input for each test user was the passively observed

1084

behavioral data and runtime data surrounding each request.

The model yielded a median accuracy of 75%, which is a 3×
improvement over AOI. Furthermore, AOI requires users to

make active decisions during the installation of an application,

which our second model does not require.

Examining only behavioral data with leave-one-group-out

cross validation yielded a median accuracy of 56% for Contex-
tuals, while for Defaulters it was 93.01%. Although, prediction

using solely behavioral data fell short of AOFU-AP for Con-
textuals, it yielded a similar median accuracy for Defaulters;

AOFU-AP required 12 prompts to reach this level of accuracy,

whereas our model would not have resulted in any prompts.

This relative success presents the significant observation that

behavioral features, observed passively without user involve-

ment, are useful in learning user privacy preferences. This

provides the potential to open entirely new avenues of user

learning and reduce the risk of habituation.

C. Inference Based on Contextual Cues

Our SVM model with an RBF kernel produced the best

accuracy. The results in the remainder of this section are

trained and tested with five-fold cross validation with random

splitting for an SVM model with an RBF kernel using the ksvm
library in R. In all instances, the training set was bootstrapped

with an equal number of allow and deny data points to

avoid training a biased model. For each feature group, all

hyperparameters were tuned through grid search to achieve

highest accuracy. We used one-hot encoding for categorical

variables. We normalized numerical variables by making each

one a z-score relative to its own average. Table V shows how

the median accuracy changes with different feature groups.

As a minor note, the addition of the mentioned behavioral

features to runtime features performed only marginally better;

this could be due to the fact that those two groups do not

complement each other in predictions. In this setup, we assume

that there is a single model across all the users of Android.

By incorporating user involvement in the form of prompts,

we can use our aggregate features to increase the accuracy

for Contextuals, slightly less so for Defaulters. The aggregate

features primarily capture how consistent users are for particu-

lar combinations (i.e., application:permission:visibility, appli-
cationF :permission:visibility), which greatly affects accuracy

for Contextuals. Defaulters have high accuracy with just run-

time features (R1), as they are likely to stick with a default

allow or deny policy regardless of the context surrounding a

permission. Thus, even without any aggregate features (which

do not impart any new information about this type of user),

the model can predict privacy preferences of Defaulters with

a high degree of accuracy. On the other hand, Contextuals
are more likely to vary their decision for a given permission

request. However, as the accuracy numbers in Table V suggest,

this variance is correlated with some contextual cues. The high

predictive power of aggregate features indicates that they may

be capturing the contextual cues, used by Contextuals to make

decisions, to a greater extent.

The fact that both application:permission:visibility and

applicationF :permission:visibility are highly predictive (Ap-

pendix A) indicates that user responses for these combina-

tions are consistent. The high consistency could relate to

the notion that the visibility and the foreground application

(applicationF
6) are strong contextual cues people use to make

their privacy decisions; the only previously studied contextual

cue was the visibility of the application requesting the sensitive

data [43]. We offer a hypothesis for why foreground appli-

cation could be significant: the sensitivity of the foreground

application (i.e., high-sensitivity applications like banking,

low-sensitivity applications like games) might impact how

users perceive threats posed by requests. Irrespective of the

application requesting the data, users may be likely to deny

the request because of the elevated sense of risk. We discuss

this further in §IX.
The model trained on feature sets R2, A1, and A2 had

the best accuracy (and the fewest privacy violations). For the

remainder of the paper, we will refer to this model unless

otherwise noted. We now compare AOFU-AP (the status quo

as of Android 6.0 and above, presented in Table III) and our

model (Table V). Across all users, our model reduced the error

rate from 15.38% to 7.76%, nearly a two-fold improvement.
Mispredictions (errors) in the ML model were split between

privacy violations and functionality losses (54% and 46%).

Deciding which error type is more acceptable is subjective

and depends on factors like the usability issues surrounding

functionality losses and gravity of privacy violations. However,

the (approximately) even split between the two error types

shows that the ML is not biased towards one particular deci-

sion (denying vs. allowing a request). Furthermore, the area

under the ROC curve (AUC), a metric used to measure the

fairness of a classifier, is also significantly better in the ML

model (0.936 as opposed to 0.796 for AOFU). This indicates

that the ML model is equally good at predicting when to

both allow and deny a permission request, while AOFU tends

to lean more towards one decision. In particular, with the

AOFU policy, users would experience privacy violations for

10.01% of decisions, compared to just 4.2% with the ML

model. Privacy violations are likely more costly to the user

than functionality loss: denied data can always be granted at

a later time, but disclosed data cannot be taken back.
While increasing the number of prompts improves classifier

accuracy, it plateaus after reaching its maximum accuracy, at

a point we call the steady state. For some users, the classifier

might not be able to infer their privacy preferences effectively,

regardless of the number of prompts. As a metric to measure

the effectiveness of the ML model, we measure the confidence

of the model in the decisions it makes, based on prediction

class probabilities.7 In cases where the confidence of the model

6Even when the requesting application is running visible to the user, the
foreground application could still be different from the requesting application
since the only visible cue of the requesting application could be a notification
in the notification bar.

7To calculate the class probabilities, we used the KSVM library in R. It
employs a technique proposed by Platt et al. [25] to produce a numerical
value for each class’s probability.

1085

is below a certain threshold, the system should use a runtime

prompt to ask the user to make an explicit decision. Thus,

we looked into the prevalence of low-confidence predictions

among the current predictions. With a 95% confidence inter-

val, on average across five folds, low-confidence predictions

accounted for less than 10% of all predictions. The remaining

high-confidence predictions (90% of all predictions) had an

average accuracy of 96.2%, whereas predictions with low

confidence were only predicted with an average accuracy of

72%. §VII-B goes into this aspect in detail and estimates the

rate at which users will see prompts in steady state.

The caveat in our ML model is that AOFU-AP only re-

sulted in 12 prompts on average per user during the study,

while our model averaged 24. The increased prompting stems

from multiple prompts for the same combination of appli-
cation:permission:visibility, whereas in AOFU, prompts are

shown only once for each application:permission combination.

During the study period, users on average saw 2.28 prompts

per unique combination. While multiple prompts per combi-

nation help the ML model to capture user preferences under

different contextual circumstances, it risks habituation, which

may eventually reduce the reliability of the user responses.

The evaluation setup mentioned in the current section does

not have a specific strategy to select the training set. It

randomly splits the data set into the 5 folds and picks 4 out

of 5 as the training set. In a real-world setup, the platform

needs a strategy to carefully select the training set so that the

platform can learn most of the user’s privacy preferences with

a minimum number of prompts. The next section presents an

in-depth analysis on possible ways to reduce the number of

prompts needed to train the ML model.

VII. LEARNING STRATEGY

This sections presents a strategy the platform can follow

in the learning phase of a new user. The key objective of

the learning strategy should be to learn the user’s privacy

preferences with minimal user involvement (prompts). Once

the model reaches adequate training, we can use model deci-

sion confidence to analyze how the ML model performs for

different users and examine the tradeoff between user involve-

ment and accuracy. We also utilize the model’s confidence on

decisions to present a strategy that can further reduce model

error through selective permission prompting.

A. Bootstrapping

The bootstrapping phase occurs when the ML model is

presented with a new user about whom the model has no

prior information. In this section, we analyze how the accuracy

improves as we prompt the user. Since the model presented

in §VI is a single model trained with data from all users, the

ML model can still predict a new user’s privacy decisions by

leveraging the data collected on other users’ preferences.

We measured the accuracy of the ML model as if it had

to predict each user’s prompt responses using a model trained

using other users’ data. Formally, this is called leave-one-out

cross-validation, where we remove all the prompt responses

from a single user. The training set contains all the prompt re-

sponses from 130 users and the test set is the prompt responses

collected from the single remaining user. The model had a

median accuracy of 66.6% (56.2% for Contextuals, 86.4%

for Defaulters). Although this approach does not prompt new

users, it falls short of AOFU. This no-prompt model behaves

close to random guessing for Contextuals and significantly

better for Defaulters. Furthermore, Wijesekera et al. found that

individuals’ privacy preferences varied a lot [43], suggesting

that utilizing other users’ decisions to predict decisions for a

new user has limited effectiveness, especially for Contextuals;

some level of prompting is necessary.

There are a few interesting avenues to explore when

determining the optimal way to prompt the user in the

learning phase. One option would be to follow the same

weighted-reservoir sampling algorithm mentioned in §III-A.

The algorithm is weighted by the frequency of each appli-
cation:permission:visibility combination. The most frequent

combination will have the highest probability of creating a

permission prompt and after the given combination reaches

a maximum of three prompts, the algorithm will no longer

consider that combination for prompting, giving the second

most frequent combination the new highest probability. Due

to frequency-weighting and multiple prompts per combina-

tion, the weighted-reservoir sampling approach requires more

prompts to cover a broader set of combinations. However,

AOFU prompts only once per combination without frequency-

weighting. This may be a useful strategy initially for a new

user since it allows the platform to learn about the users’

privacy preferences for a wide array of combinations with

minimal user interaction.

To simulate such an approach, we extend the aforemen-

tioned no-prompt model (leave-one-out validation). In the no-

prompt model, there was no overlap of users in the train and

test set. In the new approach, the training set includes the

data from other users as well as the new user’s responses to

the first occurrence of each unique combination of applica-
tion:permission:visibility. The first occurrence of each unique

combination simulates the AOFU-APV policy. That is, this

model is bootstrapped using data from other users and then

adopts the AOFU-APV policy to further learn the current

user’s preferences. The experiment was conducted using the

same set of features mentioned in §VI-A (R2 + A1 + A2 and

an SVM with a RBF kernel). The test set only contained

prompt responses collected after the last AOFU prompt to

ensure chronological consistency.

Figure 3 shows how accuracy changes with the varying

number of AOFU prompts for Contextuals and Defaulters.

For each of the 131 users, we ran the experiment varying

the AOFU prompts from 1 to 12. We chose this upper bound

because, on average, a participant saw 12 different unique ap-
plication:permission combinations during the study period—

the current permission model in Android. AOFU relies on user

prompts for each new combination. The proposed ML model,

however, has the advantage of leveraging data collected from

other users to predict a combination not seen by the user; it can

1086

+

+ + +
+

+
+

+ + +

+
+

x x x x x
x x x x x x x

o

o o
o o o o o

o
o o

o

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12
Prompt Count

A
cc

ur
ac

y

Population

+++

xxx

ooo

Contextuals

Defaulters

Overall

Fig. 3. How the median accuracy varies with the number of seen prompts

significantly reduce user involvement in the learning phase.

After 12 prompts, accuracy reached 96.8% across all users.

Each new user starts off with a single model shared by

all new users and then moves onto a separate model trained

with AOFU prompt responses. We analyze its performance for

Defaulters and Contextuals separately, finding that it improves

accuracy while reducing user involvement in both cases, com-

pared to the status quo.

We first examine how our model performs for Defaulters,

53% of our sample. Figure 3 shows that our model trained

with AOFU permission-prompt responses outperforms AOFU

from the very beginning. The model starts off with 96.6%

accuracy (before it reaches close to 100% after 6 prompts),

handily exceeding AOFU’s 93.33%. This is a 83.3% reduction

in permission prompts compared to AOFU-AP (the status quo).

Even with such a significant reduction in user involvement,

the new approach cuts the prediction error rate in half.

Contextuals needed more prompts to outperform the AOFU

policy; the hybrid approach matches AOFU-AP with just 7

prompts, a 42% reduction in prompts. With 12 permission

prompts, same as needed for AOFU-AP, the new approach

had reduced the error rate by 43% over AOFU-AP (the status

quo). The number of prompts needed to reach this level of

accuracy in the new approach is 25% less than what is needed

for AOFU-APV. We also observed that as the number of

prompts increased, the AUC of our predictions also similarly

increased. Overall, the proposed learning strategy reduced the

error rate by 80% after 12 user prompts over AOFU-AP.

Given, Defaulters plateau early in their learning cycle (after

only 6 prompts), the proposed learning strategy, on average,

needs 9 prompts to reach its maximum capacity, which is a

25% reduction in user involvement over AOFU-AP.

Contextuals have a higher need for user involvement than

Defaulters, primarily because it is easy to learn about De-
faulters, as they are more likely to be consistent with early

decisions. On the other hand, Contextuals vary their decisions

based on different contextual cues and require more user

involvement for the model to learn the cues used by each user

and how do they affect their decisions. Thus, it is important to

find a way to differentiate between Defaulters and Contextuals
early in the bootstrapping phase to determine which users

require fewer prompts. The analysis of our hybrid approach

addresses the concern of a high number of permission prompts

initially for an ML approach. Over time, accuracy can always

be improved with more prompts.

Our new hybrid approach of using AOFU-style permission

prompts in the bootstrapping phase to train our model can

achieve higher accuracy than AOFU, with significantly fewer

prompts. Having a learning strategy (use of AOFU) over ran-

dom selection helped to minimize user involvement (24 vs. 9)

while significantly reducing the error rate (7.6% vs. 3.2%)

over a random selection of the training set.

B. Decision Confidence

In the previous section, we looked into how we can optimize

the learning phase by merging AOFU and the ML model to

reach higher accuracy with minimal user prompts. However,

for a small set of users, more permission prompts will not

increase accuracy, regardless of user involvement in the boot-

strapping phase. This could be due to the fact that a portion

of users in our dataset are making random decisions, or that

the features that our ML model takes into account are not

predictive of those users’ decision processes. While we do

not have the data to support either explanation, we examine

how we can measure whether the ML model will perform

well for a particular user and quantify how often it does not.

We present a method to identify difficult-to-predict users and

reduce permission prompting for those users.

While running the experiment in §VII-A, we also measured

how confident the ML model was for each decision it made. To

measure the ML model’s confidence, we record the probability

for each decision; since it is a binary classification (deny or

allow), the closer the probability is to 0.5, the less confident

it is. We then chose a class probability threshold above which

a decision would be considered a high-confidence decision.

In our analysis, we choose a class probability threshold of

0.6, since this value resulted in >96% accuracy for our fully-

trained model (≈25 prompts per user) for high-confidence

decisions, but this is a tunable threshold. Thus, in the re-

mainder of our analysis, decisions that the ML model made

with a probability of >0.60 were labeled as high-confidence

decisions, while those made with a probability of <0.60 were

labeled as low-confidence decisions.

Since the most accurate version of AOFU uses 12 prompts,

we also evaluate the confidence of our model after 12 AOFU-

style prompts. This setup is identical to the bootstrapping

approach; the model we evaluate here is trained on responses

from other users and the first 12 prompts chosen by AOFU.

With this scheme, we found that 10 users (7.63% of 131

users) had at least one decision predicted with low confidence.

The remaining 92.37% of users had all privacy decisions

predicted with high confidence. Among those users whose

decisions were predicted with low confidence, the proportion

of low-confidence decisions on average accounted for 17.63%

(median = 16.67%) out of all their predicted decisions. With

1087

a sensitive permission request once every 15 seconds [43],

prompting even for 17.63% of predictions is not practical.

Users who had low-confidence predictions had a median accu-

racy of 60.17%, compared to 98% accuracy for the remaining

set of users with only high-confidence predictions. Out of the

10 users who had low-confidence predictions, there were no

Defaulters. This further supports the observation in Figure 3

that Defaulters require a shorter learning period.

In a real-world scenario, after the platform (ML model)

prompts the user for the first 12 AOFU prompts, the plat-

form can measure the confidence of predicting unlabeled

data (sensitive permission requests for which the platform

did not prompt the user). If the proportion of low-confidence

predictions is below some threshold, the ML model can

be deemed to have successfully learned user privacy pref-

erences and the platform should keep on using the regu-

lar permission-prompting strategy. Otherwise, the platform

may choose to limit prompts (i.e., two per unique applica-
tion:permission:visibility combination). It should also be noted

that rather than having a fixed number of prompts (e.g., 12) to

measure the low-confidence proportion, the platform can keep

track of the low-confidence proportion as it prompts the user

according to any heuristic (i.e., unique combinations). If the

proportion does not decrease with the number of prompts, we

can infer that the ML model is not learning user preferences

effectively or the user is making random decisions, indicating

that limiting prompts and accepting lower accuracy could

be a better option for that specific user, to avoid excessive

prompting. However, depending on which group the user is

in (Contextual or Defaulter), the point at which the platform

could make the decision to continue or limit prompting could

change. In general, the platform should be able to reach this

deciding point relatively quickly for Defaulters.

Among participants with no low-confidence predictions, we

had a median error rate of 2% (using the new hybrid approach

after 12 AOFU prompts); for the same set of users, AOFU

could only reach a median error rate of 13.3%. However, using

AOFU, a user in that set would have needed an average of

15.11 prompts to reach that accuracy. Using the ML model,

a user would need just 9 prompts on average (Defaulters
require far fewer prompts, dropping the average); the model

only requires 60% of the prompts that AOFU requires. Even

with far fewer prompts in the learning phase, the ML model

achieves a 84.61% reduction in error rate relative to AOFU.

While our model may not perform well for all users, it does

seem to work quite well for the majority of users (92.37% of

our sample). We provide a way of quickly identifying users for

whom our system does not perform well, and propose limiting

prompts to avoid excessive user burden for those users, at the

cost of reduced efficacy. In the worst case, we could simply

employ the AOFU model for users our system does not work

well for, resulting in a multifaceted approach that is at least

as good as the status quo for all users.

C. Online Model

Our proposed system relies on training models on a trusted

server, sending it to client phones (i.e., as a weight vector),

and having phones make classifications. By utilizing an online

learning model, we can train models incrementally as users

respond to prompts over time. There are two key advantages

to this: (i) this model adapts to changing user preferences over

time; (ii) it distributes the overhead of training increasing the

practicality of locally training the classifier on the phone itself.

Our scheme requires two components: a feature extraction

and storage mechanism on the phone (a small extension to our

existing instrumentation) and a machine learning pipeline on

a trusted server. The phone sends feature vectors to the server

every few prompts, and the server responds with a weight

vector representing the newly trained classifier. To bootstrap

the process, the server’s models can be initialized with a model

trained on a few hundred users, such as our single model across

all users. Since each user contributes data points over time,

the online model adapts to changing privacy preferences even

if they conflict with previous data. When using this scheme,

each model takes less than 10 KB to store. With our current

model, each feature and weight vector are at most 3 KB each,

resulting in at most 6 KB of data transfer per day.

To evaluate the accuracy of our online model, we trained

a classifier using stochastic gradient descent (SGD) with five-

fold cross validation on our 4,224-point data set. This served

as the bootstrapping phase. We then simulated receiving the

remaining data one-at-a-time in timestamp order. Any features

that changed with time (e.g., running averages for aggregate

features, event counts) were computed with each incoming

data point, creating a snapshot of features as the phone would

see it. We then tested accuracy on the chronologically last

20% of our dataset. Our SGD classifier had 93.8% accuracy

(AUC=0.929). We attribute the drop in accuracy (compared

to our offline model) to the fact that running averages take

multiple data points to reach steady-state, causing some earlier

predictions to be incorrect.

A natural concern with a trusted server is compromise.

To address this concern, we do not send any personally-

identifiable data to the server, and any features sent to the

server are scaled; they are reported in standard deviations from

the mean, not in raw values. Furthermore, using an online

model with incremental training allows us to periodically train

the model on the phone (i.e., nightly, when the user is charging

her device) to eliminate the need for a trusted server.

VIII. CONTEXTUAL INTEGRITY

Contextual integrity is a conceptual framework that helps

explain why most permission models fail to protect user

privacy—they often do not take the context surrounding pri-

vacy decisions into account. In addressing this issue, we

propose an ML model that infers when context has changed.

We believe that this is an important first step towards opera-

tionalizing the notion of contextual integrity. In this section,

we explain the observations that we made in §VI-C based on

the contextual integrity framework proposed by Barth et al. [6].

1088

Contextual integrity provides a conceptual framework to

better understand how users make privacy decisions; we use

Barth et al.’s formalized model [6] as a framework in which to

view Android permission models. Barth et al. model parties as

communicating agents (P) knowing information represented

as attributes (T). A knowledge state κ is defined as a subset

of P×P×T . We use κ = (p, q, t) to mean that agent p knows

attribute t of agent q. Agents play roles (R) in contexts (C).

For example, an agent can be a game application, and

have the role of a game provider in an entertainment context.

Knowledge transfer happens when information is communi-

cated between agents; all communications can be represented

through a series of traces (κ, (p, r), a), which are combinations

of a knowledge state κ, a role state (p, r), and a communi-

cation action a (information sent). The role an agent plays

in a given context helps determine whether an information

flow is acceptable for a user. The relationship between the

agent sending the information and the role of the agent ((p, r))
receiving the information must follow these contextual norms.

With the Android permission model, the same framework

can be applied. Both the user and the third-party applica-

tion are communicating agents, and the information to be

transferred is the sensitive data requested by the applica-

tion. When a third-party application requests permission to

access a guarded resource (e.g., location), knowledge of the

guarded resource is transferred from the one agent (i.e., the

user/platform) to another agent (i.e., the third-party applica-

tion). The extent to which a user expects a given request

depends not on the agent (the application requesting the data),

but on the role that agent is playing in that context. This

explains why the application as a feature itself (i.e., application

name) was not predictive in our models: this feature does not

represent the role when determining whether it is unexpected.

While it is difficult for the platform to determine the exact role

an application is playing, the visibility of the application hints

at its role. For instance, when the user is using Google Maps to

navigate, it is playing a different role from when Google Maps

is running in the background without the user’s knowledge.

We believe that this is the reason why the visibility of the

requesting application is significant: it helps the user to infer

the role played by the application requesting the permission.

The user expects applications in certain roles to access

resources depending on the context in which the request is

made. We believe that the foreground application sets this

context. Thus a combination of the role and the context

decides whether an information flow is expected to occur or

not. Automatically inferring the exact context of a request is

likely an intractable problem. For our purposes, however, it is

possible that we need to only infer when context has changed,

or rather, when data is being requested in a context that is no

longer acceptable to the user. Based on our data, we believe

that features based on foreground application and visibility are

most useful for this purpose, from our collected dataset.

We now combine all of this into a concrete example within

the contextual integrity framework: If a user is using Google

Maps to reach a destination, the application can play the

role of a navigator in a geolocation context, whereby the

user feels comfortable sharing her location. In contrast, if the

same application requests location while running as a service

invisible to the user, the user may not want to provide the same

information. Background applications play the role of “passive

listeners” in most contexts; this role as perceived by the user

may be why background applications are likelier to violate

privacy expectations and consequently be denied by users.

AOFU primarily focuses on controlling access through

rules for application:permission combinations. Thus, AOFU

neglects the role played by the application (visibility) and

relies purely on the agent (the application) and the information

subject (permission type). This explains why AOFU is wrong

in nearly one-fifth of cases. Based on Table III, both AOFU-

VA (possibly identifying the role played by the application)

and AOFU-AF PV (possibly identifying the current context

because of the current foreground application-AF) have higher

accuracy than the other AOFU combinations. However, as the

contextual integrity framework suggests, the permission model

has to take both the role and the current context into account

before making an accurate decision. AOFU (and other models

that neglect context) only makes it possible to consider a single

aspect, a limitation that does not apply to our model.

While the data presented in this work suggest the impor-

tance of capturing context to better protect user privacy, more

work is needed along these lines to fully understand how peo-

ple use context to make decisions in the Android permission

model. Nevertheless, we believe we contribute a significant

initial step towards applying contextual integrity to improve

smartphone privacy by dynamically regulating permissions.

IX. DISCUSSION

The primary goal of this research was to improve the

accuracy of the Android permission system so that it more

correctly aligns with user privacy preferences. We began with

four hypotheses: (i) that the currently deployed AOFU policy

frequently violates user privacy; (ii) that the contextual infor-

mation it ignores is useful; (iii) that a ML-based classifier can

account for this contextual information and thus improve on

the status quo; and (iv) that passively observable behavioral

traits can be used to infer privacy preferences.

To test these hypotheses, we performed the first large-scale

study on the effectiveness of AOFU permission systems in

the wild, which showed that hypotheses (i) and (ii) hold.

We further built an ML classifier that took user permission

decisions along with observations of user behaviors and the

context surrounding those decisions to show that (iii) and (iv)

hold. Our results show that existing systems have significant

room for improvement, and other permission-granting systems

may benefit from applying our results.

A. Limitations of Permission Models

Our field study confirms that users care about their privacy

and are wary of permission requests that violate their expec-

tations. We observed that 95% of participants chose to block

at least one permission request; in fact, the average denial

1089

rate was 60%—a staggering amount given that the AOI model

permits all permission requests for an installed application.

While AOFU improves over the AOI model, it still violates

user privacy around one in seven times, as users deviate from

their initial responses to permission requests. This amount is

significant because of the high frequency of sensitive permis-

sion requests: a 15% error rate yields thousands of privacy

violations per user—based on the latest dataset, this amounts to

a potential privacy violation every minute. It further shows that

AOFU’s correctness assumption—that users make binary deci-

sions based only on the application:permission combination—

is incorrect. Users take a richer space of information into

account when making decisions about permission requests.

B. Our ML-Based Model

We show that ML techniques are effective at learning from

both the user’s previous decisions and the current environmen-

tal context in order to predict whether to grant permissions on

the user’s behalf. In fact, our techniques achieve better results

than the methods currently deployed on millions of phones

worldwide—while imposing significantly less user burden.

Our work incorporates elements of the surrounding context

into a machine-learning model. This better approximates user

decisions by finding factors relevant for users that are not

encapsulated by the AOFU model. In fact, our ML model

reduces the errors made by the AOFU model by 75%. Our

ML model’s 97% accuracy is a substantial improvement over

AOFU’s 85% and AOI’s 25%; the latter two of which comprise

the status quo in the Android ecosystem.

Our research shows that many users make neither random

nor fixed decisions: the environmental context plays a signif-

icant role in user decision-making. Automatically detecting

the precise context surrounding a request for sensitive data is

an incredibly difficult problem (e.g., inferring how data will

be used), and is potentially intractable. However, to better

support user privacy, that problem does not need to be solved;

instead, we show that systems can be improved by using

environmental data to infer when context has changed. We

found that the most predictive factors in the environmental

context were whether the application requesting the permission

is visible, and what the foreground application the user is

engaged with. These are both strong contextual cues used by

users, insofar as they allowed us to better predict changes

in context. Our results show that ML techniques have great

potential in improving user privacy, by allowing us to infer

when context has changed, and therefore when users would

want data requests to be brought to their attention.

C. Reducing the User Burden

Our work is also novel in using passively observable data

to infer privacy decisions: we show that we can predict

a user’s preferences without any permission prompts. Our

model trained solely on behavioral traits yields a three-fold

improvement over AOI; for Defaulters—who account for 53%

of our sample—it was as accurate as AOFU-AP. These results

demonstrate that we can match the status quo without any

active user involvement (i.e., the need for obtrusive prompts).

These results imply that learning privacy preferences may be

done entirely passively, which, to our knowledge, has not

yet been attempted in this domain. Our behavioral feature

set provides a promising new direction to guide research in

creating permission models that minimize user burden.

The ML model trained with contextual data and past

decisions also significantly reduced the user burden while

achieving higher accuracy than AOFU. The model yielded

an 81% reduction in prediction errors while reducing user

involvement by 25%. The significance of this observation is

that by reducing the risk of habituation, it increases reliability

when user input is needed.

D. User- and Permission-Tailored Models

Our ML-based model incorporates data from all users into

a single predictive model. It may be the case, however, that

a collection of models tailored to particular types of users

outperforms our general-purpose model—provided that the

correct model is used for the particular user and permission.

To determine if this is true, we clustered users into groups

based first on their behavioral features, and then their denial

rate, to see if we could build superior cluster-tailored ML

models. Having data for only 131 users, however, resulted

in clusters too small to carry out an effective analysis. We

note that we also created a separate model for each sensitive

permission type, using data only for that permission. Our

experiments determined, however, that these models were no

better (and often worse) than our general model. It is possible

that such tailored models may be more useful when our system

is implemented at scale.

E. Attacking the ML Model

Attacking the ML model to get access to users’ data without

prompting is a legitimate concern [5]. There are multiple ways

an adversary can influence the proposed permission model: (i)

imposing an adversarial ML environment [31]; (ii) polluting

the training set to bias the model to accept permissions; and

(iii) manipulating input features in order to get access without

user notification. We assume in this work that the platform is

not compromised; a compromised platform will degrade any

permission model’s ability to protect resources.

A thorough analysis on this topic is outside of our scope.

Despite that, we looked at the possibility of manipulating

features to get access to resources without user consent. None

of the behavioral features used in the model can be influ-

enced, since that would require compromising the platform.

An adversary can control the runtime features for a given

permission request by specifically choosing when to request

the permission. We generated feature vectors manipulating

every adversary-controlled value and combination from our

dataset, and tested them on our model. We did not find any

conclusive evidence that the adversary can exploit the ML

model by manipulating the input features to get access to

resources without user consent.

1090

As this is not a comprehensive analysis on attack vectors,

it is possible that a scenario exists where the adversary is able

to access sensitive resources without prompting the user first.

Our preliminary analysis suggests that such attacks may be

non-trivial, but more work is needed to study and prevent such

attacks, particularly examining adversarial ML techniques and

feature brittleness.

F. Experimental Caveat
We repeat a caveat about our experimental data: users

were free to deny permissions without any consequences.

We explicitly informed participants in our study that their

decisions to deny permission requests would have no impact

on the actual behavior of their applications. This is important

to note because if an application is denied a permission, it

may exhibit undefined behavior or lose important functionality.

In fact, researchers have noted that many applications crash

when permissions are denied [13]. If these consequences are

imposed on users, they may decide that the functionality is

more important than their privacy decision.
If we actually denied permissions, users’ decisions may

skew towards a decreased denial rate. The denial rates in

our experiments therefore represent the actual privacy prefer-

ences of users and their expectations of reasonable application

behavior—not the result of choosing between application func-

tionality and privacy. We believe that how people react when

choosing between functionality and privacy preferences is an

important research question beyond the scope of this paper.

Such a change, however, will not limit this contribution, since

our proposed model was effective in guarding resources of the

users who are selective in their decision making—the proposed

classifier reduced the error rate of Contextuals by 44%.
We believe that there are important unanswered questions

about how to solve the technical hurdles surrounding enforcing

restrictive preferences with minimal usability issues. As a first

step towards building a platform that does not force users to

choose between their privacy preferences and required func-

tionality, we must develop an environment where permissions

appear—to the application—to be allowed, but in reality only

spurious or artificial data is provided.

G. Types of Users
We presented a categorization of users based on the sig-

nificance that the application’s visibility played towards their

individual privacy decisions. We believe that in an actual

permission denial setting, the distribution will be different

from what was observed in our study. Our categorization’s

significance, however, motivates a deeper analysis on under-

standing the factors that divide Contextuals and Defaulters.

While visibility was an important factor in this division, there

may be others that are significant and relevant. More work

needs to be done to explore how Contextuals make decisions

and which behaviors correlate with their decisions.

H. User Interface Panel
Any model that predicts user decisions has the risk of

making incorrect predictions. Making predictions on a user’s

behalf, however, is necessary because permissions are re-

quested by applications with too high a frequency for manual

examination. While we do not expect any system to be able to

obtain perfect accuracy, we do expect that our 97% accuracy

can be improved upon.
One plausible way of improving the accuracy of the per-

mission model is to empower the user to review and make

changes on how the ML model makes decisions through a

user feedback panel. This gives users recourse to correct

undesirable decisions. The UI panel could also be used to

reduce the usability issues and functionality loss stemming

from permission denial. The panel should help the user figure

out which rule incurred the functionality loss and to change it

accordingly. A user may also use this to adjust their settings

as their privacy preferences evolve over time.

I. The Cost of Greater Control
A more restrictive platform means users will have greater

control over the data being shared with third parties. Applica-

tions that generate revenue based on user data, however, could

be cut off from their primary revenue source. Such an effect

could disrupt the current eco-system and force app developers

to degrade app functionality based on the availability of the

data. We believe the current eco-system is unfairly biased

against users and tighter control will make the user an equal

stakeholder. While more work is needed to understand the ef-

fects of a more restrictive platform, we believe it is imperative

to let the user have greater control over their own data.

J. Conclusions
We have shown a number of important results. Users care

about their privacy: they deny a significant number of requests

to access sensitive data. Existing permission models for An-

droid phones still result in significant privacy violations. Users

may allow permissions some times, while denying them at

others, implying that there are more factors that go into the

decision-making process than simply the application name and

the permission type. We collected real-world data from 131

users and found that application visibility and the current fore-

ground application were important factors in user decisions.

We used the data we collected to build a machine-learning

model to make automatic permission decisions. One of our

models had a comparable error rate to AOFU and benefited

from not requiring any user prompting. Another of our models

required some user prompts—less than is required by AOFU—

and achieved a reduction of AOFU’s error rate by 81%.

ACKNOWLEDGMENTS

This research was supported by the United States De-

partment of Homeland Security’s Science and Technology

Directorate under contract FA8750-16-C-0140, the Center for

Long-Term Cybersecurity (CLTC) at UC Berkeley, the Na-

tional Science Foundation under grant CNS-1318680, and Intel

through the ISTC for Secure Computing. The content of this

document does not necessarily reflect the position or the policy

of the U.S. Government and no official endorsement should

be inferred.

1091

REFERENCES

[1] Y. Agarwal and M. Hall, “Protectmyprivacy: Detecting and mitigating
privacy leaks on ios devices using crowdsourcing,” in Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’13. New York, NY, USA: ACM, 2013,
pp. 97–110. [Online]. Available: http://doi.acm.org/10.1145/2462456.
2464460

[2] H. M. Almohri, D. D. Yao, and D. Kafura, “Droidbarrier: Know
what is executing on your android,” in Proc. of the 4th ACM Conf.
on Data and Application Security and Privacy, ser. CODASPY ’14.
New York, NY, USA: ACM, 2014, pp. 257–264. [Online]. Available:
http://doi.acm.org/10.1145/2557547.2557571

[3] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck,
L. F. Cranor, and Y. Agarwal, “Your location has been shared 5,398
times!: A field study on mobile app privacy nudging,” in Proc. of the
33rd Annual ACM Conference on Human Factors in Computing Systems.
ACM, 2015, pp. 787–796.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proc. of the 2012 ACM
Conf. on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[5] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in Proceedings of the 2006 ACM
Symposium on Information, computer and communications security.
ACM, 2006, pp. 16–25.

[6] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum, “Privacy
and contextual integrity: Framework and applications,” in Proc. of
the 2006 IEEE Symposium on Security and Privacy, ser. SP ’06.
Washington, DC, USA: IEEE Computer Society, 2006. [Online].
Available: http://dx.doi.org/10.1109/SP.2006.32

[7] I. Bilogrevic, K. Huguenin, B. Agir, M. Jadliwala, and J.-P.
Hubaux, “Adaptive information-sharing for privacy-aware mobile social
networks,” in Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, ser. UbiComp
’13. New York, NY, USA: ACM, 2013, pp. 657–666. [Online].
Available: http://doi.acm.org/10.1145/2493432.2493510

[8] E. Bodden, “Easily instrumenting android applications for security
purposes,” in Proc. of the ACM Conf. on Comp. and Comm. Sec.,
ser. CCS ’13. NY, NY, USA: ACM, 2013, pp. 1499–1502. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516759

[9] A. Developer, “Requesting permissions,” https://developer.android.com/
guide/topics/permissions/requesting.html, accessed: March 18, 2017.

[10] G. Developer, “Distribution of android versions,” http://developer.
android.com/about/dashboards/index.html, accessed: March 15, 2017.

[11] S. Egelman, A. P. Felt, and D. Wagner, “Choice architecture and
smartphone privacy: There’s a price for that,” in The 2012 Workshop
on the Economics of Information Security (WEIS), 2012.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[13] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian, and
H. Chen, “revdroid: Code analysis of the side effects after dynamic
permission revocation of android apps,” in Proceedings of the 11th ACM
Asia Conference on Computer and Communications Security (ASIACCS
2016). Xi’an, China: ACM, 2016.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of the ACM Conf. on Comp. and
Comm. Sec., ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 627–
638. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046779

[15] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How
to ask for permission,” in Proc. of the 7th USENIX conference on Hot
Topics in Security. Berkeley, CA, USA: USENIX Association, 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2372387.2372394

[16] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems,
but vibration ain’t one: a survey of smartphone users’ concerns,”
in Proc. of the 2nd ACM workshop on Security and Privacy
in Smartphones and Mobile devices, ser. SPSM ’12. New York,

NY, USA: ACM, 2012, pp. 33–44. [Online]. Available: http:
//doi.acm.org/10.1145/2381934.2381943

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
Proc. of the Eighth Symposium on Usable Privacy and Security, ser.
SOUPS ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2335356.2335360

[18] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale,” in Proc. of the 5th Intl. Conf. on Trust and
Trustworthy Computing, ser. TRUST’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 291–307. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-30921-2_17

[19] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1025–1035. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568276

[20] S. E. Hormuth, “The sampling of experiences in situ,” Journal of
personality, vol. 54, no. 1, pp. 262–293, 1986.

[21] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications,” in Proc. of the ACM Conf. on Comp. and
Comm. Sec., ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 639–
652. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046780

[22] J. Jung, S. Han, and D. Wetherall, “Short paper: Enhancing mobile
application permissions with runtime feedback and constraints,”
in Proceedings of the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, ser. SPSM ’12. New
York, NY, USA: ACM, 2012, pp. 45–50. [Online]. Available:
http://doi.acm.org/10.1145/2381934.2381944

[23] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing applications
on an android smartphone,” in Proc. of the 16th Intl. Conf.
on Financial Cryptography and Data Sec., ser. FC’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 68–79. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34638-5_6

[24] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program
Analysis, ser. SOAP ’14, New York, NY, USA, 2014. [Online].
Available: http://doi.acm.org/10.1145/2614628.2614633

[25] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on platt’s probabilistic
outputs for support vector machines,” Machine learning, vol. 68, no. 3,
pp. 267–276, 2007.

[26] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users’ mobile
app privacy preferences: Restoring usability in a sea of permission
settings,” in Symposium On Usable Privacy and Security (SOUPS
2014). Menlo Park, CA: USENIX Association, 2014, pp. 199–
212. [Online]. Available: https://www.usenix.org/conference/soups2014/
proceedings/presentation/lin

[27] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: understanding users’ mental models of
mobile app privacy through crowdsourcing,” in Proc. of the 2012
ACM Conf. on Ubiquitous Computing, ser. UbiComp ’12. New
York, NY, USA: ACM, 2012, pp. 501–510. [Online]. Available:
http://doi.acm.org/10.1145/2370216.2370290

[28] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang,
N. Sadeh, Y. Agarwal, and A. Acquisti, “Follow my recommendations:
A personalized assistant for mobile app permissions,” in Twelfth Sym-
posium on Usable Privacy and Security (SOUPS 2016), 2016.

[29] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy
and usability on smartphones: Could user privacy profiles help?” in
Proceedings of the 23rd International Conference on World Wide Web,
ser. WWW ’14. New York, NY, USA: ACM, 2014, pp. 201–212.
[Online]. Available: http://doi.acm.org/10.1145/2566486.2568035

[30] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Advances in
Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013. [Online]. Available: http://papers.nips.cc/paper/
4928-understanding-variable-importances-in-forests-of-randomized-trees.
pdf

1092

[31] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discov-
ery in data mining. ACM, 2005, pp. 641–647.

[32] K. Micinski, D. Votipka, R. Stevens, N. Kofinas, J. S. Foster, and M. L.
Mazurek, “User interactions and permission use on android,” in CHI
2017, 2017.

[33] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao,
S. Y. Ko, and G. Challen, “Phonelab: A large programmable smartphone
testbed,” in Proceedings of First International Workshop on Sensing and
Big Data Mining. ACM, 2013, pp. 1–6.

[34] H. Nissenbaum, “Privacy as contextual integrity,” Washington Law
Review, vol. 79, p. 119, February 2004.

[35] T. Ringer, D. Grossman, and F. Roesner, “Audacious: User-driven access
control with unmodified operating systems,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 204–216.

[36] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond,” in Presented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), 2013, pp. 97–112.

[37] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 224–238.

[38] J. L. B. L. N. Sadeh and J. I. Hong, “Modeling users’ mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Symposium on Usable Privacy and Security (SOUPS), 2014.

[39] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino, “Identidroid:
Android can finally wear its anonymous suit,” Trans. Data Privacy,
vol. 7, no. 1, pp. 27–50, Apr. 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2612163.2612165

[40] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a deeper look into android applications,”
in Proceedings of the 28th Annual ACM Symposium on Applied
Computing, ser. SAC ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2480362.2480701

[41] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King, “When
it’s better to ask forgiveness than get permission: Designing usable audit
mechanisms for mobile permissions,” in Proc. of the 2013 Symposium
on Usable Privacy and Security (SOUPS), 2013.

[42] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission
evolution in the android ecosystem,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser. ACSAC ’12.
New York, NY, USA: ACM, 2012, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420956

[43] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on
contextual integrity,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, Aug. 2015,
pp. 499–514. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/wijesekera

[44] H. Wu, B. P. Knijnenburg, and A. Kobsa, “Improving the prediction of
users’ disclosure behavior by making them disclose more predictably?”
in Symposium on Usable Privacy and Security (SOUPS), 2014.

[45] K.-P. Yee, “Guidelines and strategies for secure interaction design,”
Security and Usability: Designing Secure Systems That People Can Use,
vol. 247, 2005.

[46] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proc. of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2623330.2623705

APPENDIX A

INFORMATION GAIN OF CONTEXTUAL FEATURES

Contextuals Defaulters Overall
A1 0.4839 0.6444 0.5717
A2 0.4558 0.6395 0.5605
Permission 0.0040 0.0038 0.0050
Time 0.0487 0.1391 0.0130
Visibility 0.0015 0.0007 0.0010

TABLE VI
FEATURE IMPORTANCE OF CONTEXTUAL FEATURES

APPENDIX B

INFORMATION GAIN OF BEHAVIORAL FEATURES

Feature Importance
Amount of time spent on audio calls 0.327647825
Frequency of audio calls 0.321291184
Proportion of times screen was timed out
instead of pressing the lock button

0.317631096

Number of times PIN was used to
unlock the screen.

0.305287288

Number of screen unlock attempts 0.299564131
Amount of time spent unlocking the screen 0.29930659
Proportion of time spent on loud mode 0.163166296
Proportion of time spent on silent mode 0.138469725
Number of times a website is loaded to
the Chrome browser

0.094996437

Out of all visited websites, the proportion
of HTTPS-secured websites.

0.071096898

Number of times Password was used to
unlock the screen

0.067999523

Proportion of websites requested location
through Chrome

0.028404167

Time 0.019799623
The number of downloads through Chrome 0.014619351
Permission 0.001461635
Visibility 0.000162166

TABLE VII
FEATURE IMPORTANCE OF BEHAVIORAL FEATURES

1093

