
Privacy-Preserving Scoring of Tree Ensembles:
A Novel Framework for AI in Healthcare

Kyle Fritchman∗, Keerthanaa Saminathan∗, Rafael Dowsley†, Tyler Hughes‡,
Martine De Cock∗,§, Anderson Nascimento∗ and Ankur Teredesai∗,‡

∗Institute of Technology, University of Washington, Tacoma, Washington, USA
Email: kfritchman46@gmail.com, keergs@uw.edu, mdecock@uw.edu, andclay@uw.edu, ankurt@uw.edu

†Dept. of Computer Science, Aarhus University, Aarhus, Denmark
Email: rafael@cs.au.dk

‡KenSci, Seattle, Washington, USA
Email: tyler@kensci.com, ankur@kensci.com

§Dept. of Applied Math., Comp. Science and Statistics, Ghent University, Ghent, Belgium
Email: martine.decock@ugent.be

Abstract—Machine Learning (ML) techniques now impact
a wide variety of domains. Highly regulated industries such
as healthcare and finance have stringent compliance and
data governance policies around data sharing. Advances in
secure multiparty computation (SMC) for privacy-preserving
machine learning (PPML) can help transform these regulated
industries by allowing ML computations over encrypted data
with personally identifiable information (PII). Yet very little
of SMC-based PPML has been put into practice so far. In
this paper we present the very first framework for privacy-
preserving classification of tree ensembles with application
in healthcare. We first describe the underlying cryptographic
protocols that enable a healthcare organization to send en-
crypted data securely to a ML scoring service and obtain
encrypted class labels without the scoring service actually
seeing that input in the clear. We then describe the deployment
challenges we solved to integrate these protocols in a cloud
based scalable risk-prediction platform with multiple ML
models for healthcare AI. Included are system internals, and
evaluations of our deployment for supporting physicians to
drive better clinical outcomes in an accurate, scalable, and
provably secure manner. To the best of our knowledge, this
is the first such applied framework with SMC-based privacy-
preserving machine learning for healthcare.

Keywords-privacy-preserving machine learning; secure mul-
tiparty computation; encryption; healthcare; random forest;
boosted decision trees

I. INTRODUCTION

Data-driven applications are economic drivers of growth
and are becoming essential in many domains, including
healthcare, infrastructure, and public policy. The data in-
volved is often very sensitive and personal in nature. The
importance of protecting the privacy of individuals in a
data science ecosystem where large-scale collection and
processing are commonplace is central to achieving trans-
formational impact. The need to protect personal privacy in
the “era of big data”, and the potential to do so successfully
in the future, with techniques that allow computation over
encrypted data, are widely acknowledged [1], [2].

Industries like healthcare and finance are highly regulated
when it comes to data ownership, use and data sharing for
analytics. These regulations are always evolving. Organiza-
tions that are tasked with custody of personal information,
be it patient health or other data, are skeptical of their
ability to engage in machine learning (ML), partly due
to lack of clarity on policies governing use of such data,
and partly due to the fear of unknowingly violating the
privacy of individuals that may occur in the process of
mining such information [3], [4]. The kind of privacy-
preserving machine learning (PPML) solution we offer in
this paper can help policy makers understand and explain
the potential of ML over encrypted data, and how it may
inform future evolution of such regulation. The use of PPML
will enable organizations to decrease liability because they
will be able to provide ML services over encrypted data,
without requiring individuals to expose their personal data
to anyone.

In many ML applications, one party – such as a health
system or an insurer or a third party cloud platform –
possesses a trained ML model, and the need or desire arises
to make predictions with that ML model for an input that
is held by a second party, which could be a customer or a
patient. One such example is a physician using a prediction
model to estimate the risk of 30-day hospital readmission
of a patient [5], [6]. The problem that we address in this
paper is how to classify the second party’s input with the
first party’s classifier such that, at the end of the interaction,
the second party is still the only one who knows what their
input looks like, and the first party is still the only one who
knows what the classifier looks like.

To this end, we use techniques from secure multiparty
computation (SMC), an umbrella term for cryptographic
approaches that allow two or more parties to jointly com-
pute a specified output from their private information in
a distributed fashion, without actually revealing the private

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 2413

information to each other [7]. In particular, we work with
secret sharing based solutions in which the parties share
their information using a linear secret sharing scheme. Next,
operations are performed by the parties over the shares till
the desired outcome is obtained. The final result can be
recovered by combining the final shares, and disclosed as
intended, i.e. to one of the parties or to both. While SMC
has been hailed as a potential solution to enable PPML [2],
[8], very little of it has been put into practice so far [9]. Part
of this is due to the fact that while in theory any function can
be evaluated on private information from different parties
using a secure function evaluation protocol (SFE), the use
of conventional SFE protocols typically results in an increase
of computation time by up to several orders of magnitude. To
enable PPML, domain specific customized SMC techniques
need to be developed and implemented.

In this paper we describe (1) how we successfully de-
signed such cryptographic protocols for privacy-preserving
classification with tree ensembles [10] – random forests
(RFs) and boosted decision trees (boosted DTs) – and (2)
how we integrated them in the KenSci ML platform for
predicting clinical outcomes of patients.

The large majority of the economic value created by
AI today stems from supervised learning applications [11].
Within supervised learning, RFs and boosted DTs are among
the most common algorithms of choice for data scientists
across the world, because of their wide applicability and
their state-of-the-art performance. Our focus on tree ensem-
bles is therefore intentional: to create a widespread impact
on applied ML use-cases that are prevalent today. Acknowl-
edging that deployment of PPML solutions requires a non-
trivial effort, we describe how the SMC based retooling of
the KenSci ML platform required us to rework the KenSci
data science workflow. The secure prediction environment
has been developed in collaboration with expert physicians
at KenSci who currently work with many of the large
healthcare systems in the U.S., Europe, and Asia. Our system
produces the same precision (hit rate) compared to non-
encrypted in-the-clear models, while preserving the privacy
of patient records and trained machine learning models.
Widespread adoption of solutions such as one presented in
this paper will have a significant impact on health outcomes
and public policy, and enable global health systems to
transition to cloud-based ML systems.

II. RELATED WORK

SMC based Machine Learning. A significant body of
work in PPML with SMC has focused on the problem of
privacy-preserving training of machine learning models (see,
e.g., [12], [13], [14], [15], [16] and references therein).
Privacy-preserving protocols for predicting with trained ML
classifiers – hereafter also referred to as “scoring” – has
received far less attention. Non-application specific protocols

were designed just lately. Bost et al. [17] introduced privacy-
preserving protocols for hyperplane-based, Naive Bayes and
DT classifiers, Wu et al. [18] for DTs and RFs, David et al.
[19] for hyperplane-based and Naive Bayes classifiers, and
De Cock et al. [20] for DTs and hyperplane-based classifiers.
De Hoogh et al. [14] had also previously presented a proto-
col for privacy-preserving scoring of DTs with categorical
attributes. The protocol for privacy-preserving scoring of
DTs of De Cock et al. [20] cannot be directly used as a
building block to obtain random forests and boosted decision
trees. We present in Section III a modified protocol for
scoring decision trees that does the job.

Regarding tree ensembles, to the best of our knowledge,
no protocols have been proposed in the literature for privacy-
preserving scoring with boosted DTs. The protocol of Wu
et al. [18] for privacy-preserving scoring of RFs relies
on an original comparison protocol based on the Paillier
encryption scheme and on an oblivious transfer scheme.
Both of these building blocks involve expensive public-key
cryptography operations. Our solution, on the other hand,
only uses additions and multiplications over a finite ring in
the online phase.

Differential Privacy. Most work and results concerning
privacy-preserving data mining are based on differential
privacy (DP), a field in cryptography that aims to maximize
the accuracy of answers to queries from databases while
minimizing the chances of identifying its records. Before
releasing statistics of a dataset, noise is added to prevent
an adversary from learning information about any particular
individual in the dataset from the aggregate statistics [21].
While DP has been proven very useful in ensuring the
privacy of information in data, the need to address privacy
risks at the level of computations that manipulate data, and
the potential of SMC as a suitable technique for this, have
recently been acknowledged [1]. The aim of DP in an ML
setting is protecting the privacy of information in the dataset
used during training, whereas the focus in this paper is on
the use of SMC to protect the trained model and the privacy
of new user data that is classified with the model.

Deployed SMC systems for PPML. In contrast to DP,
SMC has come to the attention of the data mining and
knowledge discovery community only fairly recently, and
deployed prototypes are still few and far between. Notewor-
thy are the endeavors of the ICT company Cybernetica who
developed the SMC platform Sharemind, and deployed it in
privacy-preserving applications for statistical analysis and
fraud detection based on tax records in Estonia [22], [23].
As far as we are aware, there are no deployed SMC based
systems yet for privacy-preserving training of ML models,
nor for scoring, as we present in this paper.

Model Extraction Attacks. In the system that we present
in this paper, we classify one party’s input with another
party’s classifier. At the end of the interaction, the party
with the classifier will not have learned anything about the

2414

other party’s input, and the party with the input will not
have learned anything about the other party’s classifier (other
than the depth of the decision trees, see Section III). At
that point, the output of the classification (class label) is
typically disclosed to the party who gave the input, and
this class label in itself can leak information about the
model. It has been shown that popular ML model classes like
logistic regression, neural networks, and DTs are vulnerable
to model inversion attacks [24] and model extraction attacks
[25]. In a model inversion attack, an adversary who has
black-box query access to the model uses the revealed labels
and the associated confidence scores of the classifier to
uncover information about individuals in the training data.
In a model extraction attack, an adversary uses the same
kind of information to reverse engineer the model. Model
ensembles, such as the tree ensembles that we use in this
paper, are suspected to be more resilient to such extraction
attacks, because their output is an aggregate of a number of
individual models [25]. Nevertheless, some countermeasures
may be needed to prevent a model inversion or model
extraction attack, which is beyond the scope of the current
paper. Regardless, it should be clear that (1) the SMC
solution presented in this paper computes the class label in
a fully secure manner; (2) only the label that is revealed to
the party with the input after the secure computation might
leak some information about the classifier; (3) the party with
the classifier does not learn anything about the input of the
other party at any point. The privacy of the patient or user
who is using the ML scoring service is thus fully protected,
even if the trained ML model becomes subject to a model
inversion or a model extraction attack.

III. CRYPTOGRAPHIC PROTOCOLS

A. Problem Description

In many ML applications, one party – such as a hospital
or an insurance company – possesses a trained ML model,
and the need or desire arises to make predictions with that
model for an input that is held by a second party, which
could be a customer or a patient. Using terminology common
in cryptography, we will henceforth refer to the first party as
Alice, and the second party as Bob. A commonly adopted
approach is for Bob (the user) to give his input to Alice
(the company), so that Alice can classify the input and
return the predicted class label to Bob and/or follow up
with actions derived from the knowledge of the class label.
Typical examples are a Netflix customer who discloses his
preferences in the form of ratings, in return for personal-
ized movie recommendations; a user uploading a photo on
Microsoft’s how-old.net to get an estimate of the age of
the people in the photo; and a healthcare provider using a
clinical outcome prediction tool to estimate the risk of 30-
day hospital readmission of a patient. In all these cases,
the information of the customer, user, or patient (Bob) is

fully disclosed to the first party (Alice) holding the machine
learning model.

The problem that we address in this paper is how to
classify the input held by Bob with the classifier held by
Alice in such a way that no one, including Alice, learns
Bob’s input. A straightforward solution that might come to
mind is for Alice to give her classifier to Bob, so that Bob
can classify his input locally on his own machine. While this
approach would protect Bob’s privacy, it is in many cases
not a viable solution because it violates Alice’s privacy:
trained ML models are often proprietary and need to be
kept secret in order for the company not loose an important
competitive advantage [26]. The challenge faced is therefore
how to classify Bob’s input with Alice’s classifier such that,
at the end of the interaction, Bob is still the only one who
knows what his input looks like, and Alice is still the only
one who knows what her classifier looks like.

In Section III-D we present a cryptographic protocol for
solving the problem above in the case when the classifier is
a random forest (RF) or a boosted decision trees (boosted
DTs) model. We consider honest-but-curious, static adver-
saries, like other privacy-preserving classification protocols
so far. A static adversary chooses the set of corrupted
parties before the protocol execution. An honest-but-curious
adversary follows the instructions of the protocol, but tries
to gather additional information. We use as a building block
an adaptation of the protocol for privacy-preserving scoring
of DTs of De Cock et al. [20], which we recall in Section
III-C, after presenting preliminaries about the security model
in Section III-B.

B. Cryptographic Preliminaries and Building Blocks

Security Model: We consider the security of our pro-
tocols in the Universal Composability (UC) framework [7],
[27] due to the fact that this framework considers the security
of the protocols under arbitrary composition (i.e., multiple
copies of the protocol can be run concurrently to themselves
and to other protocols), which covers environments like the
Internet. It is the default model for considering the security
of cryptographic protocols nowadays. The UC composition
theorem ensures that a protocol that is proven UC-secure
can be securely executed in such environments. Additionally,
the UC framework allows the modular design of complex
protocols. A version of the UC composition theorem for the
setting with honest-but-curious, static adversaries, is given
by Cramer et. al. [7, Theorem 4.20].

Commodity-based Model: The commodity-based
model [28] is a setup assumption about the existence of a
trusted initializer that pre-distributes correlated randomness
during an initialization phase (which can happen far before
the protocol execution, even before knowing the inputs)
to the parties participating in the protocol. The trusted
initializer is not involved in any other part of the execution
and does not learn any input from the parties. The main

2415

advantage of this model is that it enables very efficient
solutions with unconditional security. The commodity-based
model allows the realization of non-trivial functionality in
the UC framework and has already been used to get very
efficient secure computation protocols for tasks such as
computing inner-products [29], [30] and other linear algebra
operations [31], string equality [30], set intersection [30],
oblivious polynomial evaluation [32] and verifiable secret
sharing [33]. It was used in protocols for PPML [15],
[19], [20]. In practice, this correlated randomness can be
distributed by: (1) a single trusted server, (2) many not
completely trusted servers (only a majority of honest servers
is necessary [28]), or (3) pre-computed by the parties in an
offline phase using an SMC protocol to emulate the trusted
initializer (in this case the advantage is in offloading the
heavy computation to be run at any idle time).

Secret Sharing: We perform SMC using additively
secret sharings to do computations modulo q. A value x
is secret shared over Zq = {0, 1, . . . , q − 1} between two
parties Alice and Bob by picking xA, xB ∈ Zq uniformly at
random subject to the constraint that x = xA +xB mod q,
and then revealing xA to Alice and xB to Bob. This secret
sharing will be denoted by JxK

q
, which can be thought of

as a shorthand for (xA, xB). Notice that from the point of
view of Alice (resp., of Bob), no information about x is
revealed by xA (resp., by xB). A secret shared value x can
be revealed to one party by sending him the share of the
other party.

Building Blocks: We use as a building block Beaver’s
protocol [34] for multiplication of numbers, denoted by
πDM . If two parties Alice and Bob each have shares xA,
yA, xB , and yB of numbers x and y, then they can follow
protocol πDM to compute shares zA and zB of z = x · y.

We also use the protocol πDC for performing secure
distributed bitwise comparison due to Garay et al. [35] with
secret sharings in the field Z2. In this case, Alice and Bob
have bitwise shares of two numbers x and y, which are
expressed as bit strings of length l, and they follow the
protocol to determine whether x ≥ y. πDC outputs a secret
sharing of 1 if x ≥ y and of 0 otherwise.

Finally we use the protocols for oblivious input selection
πOIS and for secure argmax πargmax of De Cock et al. [20].
In the case of πOIS , Alice has as input a vector of values,
x = (x1, . . . , xn), in which each value is expressed as a
bit string of length l. Bob has as input k, the index of the
desired input value xk. At the end of the protocol, Alice and
Bob have a secret sharing of zi over Z2, for i = 1, . . . , l,
which are the bits that make up xk. Bob has not learned any
of the values of Alice’s vector x, and Alice has not learned
which index k Bob was interested in. In the case of πargmax,
Alice and Bob have as input bitwise shares of m values that
need to be compared. At the end of the protocol, they have
a secret sharing of the index of the largest value.

For the proof that these protocols are correct and

UC-secure against honest-but-curious adversaries in the
commodity-based model, and for the description of opti-
mizations of these protocols (and also for more details), we
refer to [20], [36]. We use the same fixed-point representa-
tion of Catrina and Saxena [37] to deal with real numbers
(i.e., fixed-point precision real numbers are mapped into
integers).

C. Decision Trees

For privacy-preserving scoring with decision trees, we
propose a novel protocol that improves the method proposed
in [20]. In [20], Bob has an input feature vector x =
(x1, . . . , xn) ∈ Rn and Alice has a single decision tree used
to classify Bob’s feature vector. At the end of the privacy-
preserving scoring protocol in [20], the inferred class label
is opened to Bob. The case that we consider in this paper
is more general: instead of a single decision tree, Alice has
an ensemble of decision trees, that have each been trained
to output probabilities associated with the class labels (as
opposed to only the class labels themselves, as in [20]). Bob
should not learn the class label inferred by each individual
tree from the ensemble for his input, or their probabilities;
only the aggregated result should be disclosed to Bob (see
Section III-D). The privacy-preserving scoring protocol πDT

for DTs from [20] cannot be directly used in that scenario.
We propose a new protocol for scoring decision trees that is
different from the one in [20] in two ways: (1) at the end of
πDT the output is not opened towards Bob, but instead it is
kept as a secret sharing to perform further computations; and
(2) instead of having a category associated with each leaf
node of the decision tree, we have a probability vector over
the class labels, i.e. a class distribution, associated with each
leaf node. By using the novel protocol as a building block,
we can them obtain privacy preserving scoring of random
forests and boosted decision trees.

As stated above, Bob has as input his feature vector x =
(x1, . . . , xn) ∈ Rn. Alice has an ensemble of decision trees,
in which each tree is a model D = (d,G,H,w), where d is
the depth of the tree, G maps the leaves to the class output
ci, i = 1, · · · , k. Each class output is associated with a class
distribution. H maps branch nodes (always considered in
level-order) to input features and w is a vector of thresholds.
An example of a DT of depth d = 3 is depicted in Figure 1.
It is assumed without loss of generality that the binary tree
is full, i.e. that it contains all 2d − 1 internal nodes (branch
nodes) and 2d leaf nodes. A decision tree can always be
filled with dummy nodes to make it full. To this end, a leaf
that occurs at level s < d is expanded into a subtree of
depth d−s in which all the leaves are copies of the original
leaf, and the branch nodes contain a new dummy feature
with a randomly chosen threshold. Note that this can be
done offline by Alice, before she engages in any privacy-
preserving scoring protocol.

Each branch node of a decision tree tests the value of

2416

x2 ≥ w1

x1 ≥ w3

x3 ≥ w7

c1 : 0.2
c2 : 0.7
c3 : 0.1

c1 : 0.2
c2 : 0.2
c3 : 0.6

z7 = 1 z7 = 0

x4 ≥ w6

c1 : 0.1
c2 : 0.0
c3 : 0.9

c1 : 0.0
c2 : 0.6
c3 : 0.4

z6 = 1 z6 = 0

z3 = 1 z3 = 0

x3 ≥ w2

x2 ≥ w5

c1 : 0.1
c2 : 0.8
c3 : 0.1

c1 : 0.9
c2 : 0.1
c3 : 0.0

z5 = 1 z5 = 0

x1 ≥ w4

c1 : 0.1
c2 : 0.7
c3 : 0.2

c1 : 0.8
c2 : 0.2
c3 : 0.0

z4 = 1 z4 = 0

z2 = 1 z2 = 0

z1 = 1 z1 = 0

Figure 1. Example of a decision tree of depth d = 3 for a classification problem with three classes c1, c2 and c3.

Secure Decision Tree Protocol πDT

Alice has as input a decision tree model D = (d,G,H,w) and Bob has a feature vector x. Alice and Bob proceed
as follows:
1) For i = 1, . . . , 2d−1, Alice and Bob obtain bitwise secret sharings of xH(i) by using πOIS with inputs x1, · · · , xn

from Bob and input H(i) from Alice.
2) Let [pD(c1), pD(c2), . . . , pD(ck)] be a class distribution vector in which pD(ci) is the probability that x belongs

to class ci according to decision tree D. There will be one class distribution vector per possible output of the tree.
3) Alice multiplies the probabilities in the leaf nodes of each decision tree D by a confidence factor α offline. Alice

them maps these real numbers as integers according to the procedure in [20] and bit-wise shares the resulting
weighted probability vectors pi = [α · pD(c1), α · pD(c2), . . . , α · pD(ck)] with Bob, for i = 1, . . . , 2d − 1.

4) For i = 1, . . . , 2d − 1, Alice and Bob securely compare xH(i) and wi. For the input wi, Alice inputs its bit
representation and Bob inputs zeros. Let JziK2

denote the result.
5) For j = 0, . . . , 2d − 1, let jd . . . j1 be the binary representation of j with d bits and let bk . . . b1 be the one-hot

encoding of G(j + 1)− 1. For r = 1, . . . , k, initialize Jyj,rK2 with the shares (0, br). Initialize u = 1 and s = d.
While s > 0 do:

a) For r = 1, . . . , k, Jyj,rK2 ← Jyj,rK2(JzuK2 + js).
b) Update u← 2u+ js and s← s− 1.

6) For all r = 1, . . . , k compute JσrK2
←

∑2d−1
j=0 Jyj,rK2

7) Alice and Bob secure compute qi = [σ1 ·α·pD(c1), σ2 ·α·pD(c2), . . . , σk ·α·pD(ck)] with Bob, for i = 1, . . . , 2d−1
by using πDM . Alice and Bob securely add all the resulting vectors qi component-wise producing the secret sharing
JpK

2
of the weighted probability vector p, the desired output.

Figure 2. The protocol for secure scoring of a decision tree

a particular feature xH(i) against a specified threshold wi

and branches according to the results. Let zi be the Boolean
variable denoting the result of the comparison, i.e. zi = 1
if xH(i) ≥ wi, and zi = 0 otherwise. Each leaf node
specifies a probability distribution over the k possible classes
c1, . . . , ck. The classification algorithm for a stand-alone
decision tree proceeds as follows:

• Starting from the root node, for the current branch node
vi, evaluate zi. If zi = 1, take the left branch; otherwise,
the right branch.

• When a leaf node is reached, output G(j), where j is
the index of the leaf, and G(j) the class distribution

corresponding to that leaf, and terminate.

Inspired by the ideas of Bost et al. [17], we per-
form inference with a decision tree D by evaluating a
polynomial PD: {0, 1}2d−1→{1, . . . , 2d}. On input z =
(z1, . . . , z2d−1), PD gives the index of the selected leaf
level. This polynomial is a sum of terms such that each
term corresponds to one possible path in the tree. Given z,
the term corresponding to the path taken by x in the tree
evaluates to the inference result (i.e., the index of the leaf),
while the remaining terms evaluate to zero.

Similar as in [20], the idea of the secure protocol πDT

for scoring decision trees (see Figure Figure 2) is that, for

2417

each branch node, Alice and Bob use the oblivious input
selection protocol πOIS to obtain bitwise secret sharings of
the value xH(i) that will be compared against the threshold
wi of this node. πOIS guarantees that Bob does not learn
which feature will be used in the comparison at each branch
node, and also that Alice does not learn the values of the
features. Then the comparisons are performed using the
secure distributed comparison protocol πDC in order to
obtain z, which is then used to evaluate the polynomial
PD using the secure multiplication protocol πDM and local
addition of secret sharings. The only information leaked
about the tree structure to Bob is its depth d. The full
description of protocol πDT is given in Figure 2. The proof
that the decision tree protocol πDT is correct and UC-secure
against honest-but-curious adversaries in the commodity-
based is simmilar to the one in [20], [36].

D. Tree Ensembles

We assume that Alice has an ensemble of decision trees
D1, D2, . . . , Dm, each with an associated confidence factor
or weight α1, α2, . . . , αm, and Bob wants to classify his
input x = (x1, . . . , xn) with this ensemble. For each tree
Dj individually, the inference algorithm produces a class
distribution vector [pDj

(c1), pDj
(c2), . . . , pDj

(ck)] in which
pDj

(ci) is the probability that x belongs to class ci according
to decision tree Dj . To obtain a final classification result,
these intermediate results are aggregated as follows:

c = arg
k

max
i=1

m∑
j=1

αj · pDj (ci) (1)

i.e. the predicted label is that of the class with the highest
weighted average of probabilities among the individual
decision trees. In the case of random forests, all αj’s are
usually 1, while in boosted decision tree models the αj’s
can vary, reflecting the confidence in each tree as a correct
classifier. Without loss of generality, we can assume that
Alice multiplies the probabilities in the leaf nodes of each
decision tree Dj with αj offline, before engaging in any
computation with Bob. As a result, the outcome of the pro-
tocol πDT will be secret sharings of the weighted probability
vectors pj = [αj · pDj (c1), αj · pDj (c2), . . . , αj · pDj (ck)]
thereby stripping away the need for computationally more
expensive secure multiplications of the tree weights with the
class probabilities.

Our solution for obtaining this final class label in a
privacy-preserving manner then works as follows. First, for
each tree Dj in the ensemble we use the protocol πDT

for scoring x, obtaining as a result a secret sharing of
the weighted probability vector, i.e. the probability vector
multiplied by the weight αj of the tree Dj . After that, a
secure bitwise addition protocol [38] is used to add these
weighted vectors and obtain one accumulator for each of
the possible categories (note that these accumulators are still
kept as secret sharings). Finally, the secure argmax protocol

is executed with these accumulators as input to obtain the
most likely category. The full description of protocol πTE

is in Figure 3.
The security of protocol πTE follows from the UC-

security of the building blocks using the UC composition
theorem.

IV. SYSTEM DESIGN

A. The KenSci Platform

KenSci has developed a novel healthcare-specific AI plat-
form where standardized ML models are used by customers
as templates to enable end-to-end solutions for various
problems across care management, cost predictions, and
operational efficiency in health systems. The design of
this platform required KenSci to solve non-traditional ML
challenges such as feature standardization for healthcare,
data integration across multiple data sources, and setting up
cloud-based scalable data pipelines, subject to the constraint
that all services need to be compliant with various regulatory
standards. Over the years, KenSci has developed many ML
models for various use cases, as well as proprietary model
orchestration components to be able to score these models
at scale on datasets that may contain PHI (protected health
information). KenSci also developed innovative ways to ex-
pose ML model end-points to backward integrate into health
IT systems that are prevalent in the healthcare systems.

Figure 4 and 5 present a high level system overview
of a KenSci deployment service for model scoring. Both
diagrams depict a server (Alice) with a model bank of
classifiers, and a client (Bob/Healthcare System) that wishes
to risk-stratify and score patient data. The KenSci healthcare
AI platform acts as an intermediary. Figure 4 depicts the
traditional process where the client’s data is encrypted at-
rest, say in a database, at the client side, as well as in-
transit to the server’s side. At server side, the data is then
decrypted before classification, and a score or class label is
generated. This class label or score is then encrypted and
returned to the client side, where it is again subsequently
decrypted. The next Figure 5 depicts our approach using
the cryptographic protocols presented in Section III where
the data is kept encrypted during computation as well, in
addition to the traditional encryption at-rest (in storage)
and in-transit. The fundamental difference between the two
approaches in Figure 4 and 5, is that with the approach in
Figure 5, the client’s data is never exposed to the ML model
server.

In-the-clear scoring (Figure 4) can operate without the
use of sessions initiated by KenSci between the client and
the server; the client can provide all of the required inputs
to a traditional model, and receive a score in response.
Invocation of the privacy-preserving execution environment
as described in Figure 5 requires iterative back-and-forth
communication between the client and the server during the
scoring operation. To accomplish this, we must guarantee

2418

Secure Tree Ensemble Protocol πTE

Alice has as input decision tree models D1, . . . , Dm, with Dj = (dj , Gj , Hj ,wj), and Bob has a feature vector x.
Alice and Bob proceed as follows:
1) For each of the trees D1, . . . , Dm in the ensemble, use the protocol πDT to obtain a secret sharing JpjK2

of the
weighted probability vector pj .

2) Compute JaK
2
←

∑
jJpjK2

using a protocol for secure bitwise addition [38].
3) The secure argmax protocol πargmax is run with the k elements of a as input and Bob obtains the most likely

category as output.

Figure 3. The protocol for secure scoring of a tree ensemble

Figure 4. KenSci ML Platform deployment with “in-the-clear” scoring.
Data is encrypted during storage and transit, but decrypted before model
scoring. Data and models both reside in the customer’s cloud subscription.

Figure 5. KenSci ML Platform deployment with privacy-preserving
scoring. Data is encrypted at-rest (in storage), in-transit, and for scoring
computations.

that the intermediate state about the scoring operation is held
on both sides of the connection, and the model bank is built
in a way to allow this run-time communication. Our solution
uses a session-style approach, pairing a client with a model
service in favor of other implementations. We have also
designed a solution that maintains the tally of calculations
done on the model side in a database store on the model
cluster, such that any model server can respond to a client’s
request.

B. From Standard to Encrypted Model Format

As part of our deployment framework we created a
capability that allows us to accept any tree-based classifier
into the encrypted model bank of the privacy-preserving
model execution environment at KenSci. Different adapters
were used to convert from native R, Python, or the Predictive
Model Markup Language PMML, to the format required by
the privacy-preserving model execution environment. These
adapters work by iteratively traversing the model’s branches
(or multiple trees) to produce a standardized representation.
Ultimately, the nature of the model’s tree (nodes and their
weights) must be communicated. Once this format has been
produced, it can be associated with the appropriate metadata
about a model (model identifier, performance characteristics,
and so on) and made consumable to clients.

Decision trees, random forests and boosted decision tree
models are all stored as a TreeModel data structure, repre-
sented as a dictionary, and saved as a JSON string. This
TreeModel contains a list of the class labels, the input
features that the model requires, the weights/confidence of
the trees, and a list of the trees themselves. The ‘weights’
field only exists if the model is a boosted decision tree
model. The ‘classes’ field is a list of the resulting labels
the model can produce. For each tree in the ensemble,
TreeModel contains the following properties:
• Features: A list of the feature names for each node in

the tree, in level-order. For the tree in Figure 1, this list
is [x2, x3, x1, x1, x2, x4, x3]. The same feature can occur
more than once. The function H(i) returns the index of the
input feature for node i, e.g. H(5) = 2. The ith feature
corresponds to the ith threshold. There can be duplicate
features, but each feature/threshold pair is a unique tuple
and generally represents a unique node. Sometimes you
may have nodes in different parts of the tree with identical
feature/threshold values. We only need to store the tuple
once. Let fi represent the feature name of the ith node.
Let the function H(i) return the index of the input feature
for node i.

• Thresholds: A list of the thresholds for each node
of the tree. For the tree in Figure 1, this list is
[w1, w2, w3, w4, w5, w6, w7]. The ith threshold, denoted by

2419

wi, corresponds to the ith feature. There can be duplicate
thresholds, but each feature/threshold pair is a unique
tuple. Let ti represent the threshold value of the ith node.

• Depth: It is an integer that represents the depth of the
tree.

• Classifiers: An array of arrays where each internal array
maps to the leaf of the tree whose nodal path is represented
by the corresponding internal array of the ‘polynomial’
field. So the ith array of the ‘classifier’ field is the votes
of the leaf attained by the threshold comparison of every
node listed in the ith array of the ‘polynomial’ field
evaluating to 1. The length of each internal array is the
same as the length of the ‘classes’ field in the TreeModel,
since each element of the classifier’s internal arrays is
that leaf’s vote to the corresponding class. In other words,
each internal array corresponds to the probability distri-
bution over the class labels in the leaf of a tree. Let
classifier[i][c] be the vote for class c from leaf i. For the
tree in Figure 1 this array is [[0.8, 0.2, 0.0], [0.1, 0.7, 0.2],
[0.9, 0.1, 0.0], [0.1, 0.8, 0.1], [0.0, 0.6, 0.4], [0.1, 0.0, 0.9],
[0.2, 0.2, 0.6], [0.2, 0.7, 0.1]].

C. Implementation

We now present detailed information about the implemen-
tation of our protocol described in Section III-D.

1) Requested model and data are piped into the ClientSide
secure multiparty computation DT/RF/ADA evaluator
as a json string in the following format: {“cmd” :
“score”, “modelName” : “name”, “modelID” :
“id”, “data” : {“feature1” : value1, . . . ,
“featuren” : valuen}}. The model name and
id are model identifiers used to identify exactly which
type of model the client is requesting.

2) The ClientSide evaluator sends the ServerSide evaluator
the list of variable names in their given order of
evaluation: [“feature1”, . . . , “featuren”] v

3) Score model. If the model is an Adaboost model and
has tree confidence values, we multiply these weights
into the classifiers of each tree before starting the
multiparty computation scoring on data. Each tree can
be scored in parallel, but in our current deployments
the tree scoring is serial.

a) For each tree, the ServerSide evaluator sends the di-
mensions of the ‘polynomial’ field to the ClientSide
evaluator. This leaks the depth of the tree - the
only information that the client ever learns about the
model.

b) For i = 1, . . . , 2d−1, the client and the server obtain
bitwise secret sharings of xH(i) by executing the
protocol πOIS with inputs x1, . . . ;xn from the client
and input H(i) from the server.

c) For i = 1, ..., 2d − 1, securely compare xH(i)
and wi. For the input wi, the server inputs its bit

representation and the client inputs zeros. Let [[zi]]2
denote the result.

d) Create a two dimensional array y such that y[i]
contains the bitwise shares of the one hot encod-
ing of G(i + 1) − 1 for i = 0, . . . , 2d − 1. For
i = 0, . . . , 2d−1, iteratively multiply every bit in y[i]
d times where d is the depth of the tree according to
Step 5 in Secure Decision Tree protocol in Figure 2.

e) For j = 0, . . . , 2d − 1, add the bit shares of y[j] as
TreeOutput[r] =

∑2d−1
j=0 y[j][r] according to Step 6

in Figure 2. Both the evaluators now hold the shares
of the one hot encoding of the output leaf.

f) For i = 0, . . . , 2d − 1, do secure bitwise multi-
plication of the i′th bit in the tree output with
the bit representation of the weighted probability
vectors of (i + 1)′th leaf. Do a bitwise addition of
the weighted probability vectors of 2d leaf nodes.
The evaluators now hold the bitwise shares of the
weighted probability vector corresponding to the tree
output.

g) When all the trees have been scored and the shares
of each final classifier have been calculated, the cor-
responding ‘votes’ from each tree are added together
via bitwise addition.

h) Perform the secure argmax function to select the
index k of the highest vote.

i) Open k to the client. The client can then get class[k]
from the known list of classes.

V. PERFORMANCE

The overall runtime of the protocol is O(2d · l · log(l)),
where l is the bit length used for the feature values, the
thresholds in the branch nodes, and the probabilities, and d is
the depth of the decision trees. The round complexity, i.e. the
number of sequential steps in the protocol (discounting on
operations that can be done in parallel) is O(log l).

To illustrate the practical runtime performance, we apply
the protocol to predict the risk that patients run to get
an infection after surgery using tree ensemble models as
described in [39]. Each patient is characterized by a vector
with 94 features, namely their gender, age, and 92 features
derived from blood tests done prior to surgery. The task is
to predict whether the patient will develop an infection after
surgery or not.

Table I shows the time it takes to classify a patient in
a privacy-preserving manner with AdaBoost models (ADA)
and random forests (RF), with a varying number of trees
(10, 50, 100). The predictive accuracy is the same as when
classifying without any encryption (i.e. an AUC of around
85%, depending on the model), since the cryptographic
protocols perform the same operations as the traditional,
unencrypted classification algorithms, thereby obtaining the
same class labels. The experiments were run on a 64 bit
Linux virtual machine with 72 vCPUs and 144 GB RAM.

2420

Table I
TIME REQUIRED TO CLASSIFY A PATIENT IN A PRIVACY-PRESERVING

MANNER; AVERAGE RUNTIME OVER 3 RUNS

Model Number of Trees Depth of Trees Runtime (sec)
ADA 10 1 3
ADA 50 1 10
ADA 100 1 19
RF 10 4 18
RF 50 4 84
RF 100 4 160

Each experiment was repeated 3 times, and the average
runtime is recorded in Table I.

In the ADA models, by default, each of the trees in the
trained models is a decision stump, i.e. a tree of depth 1.
In RF models, each tree is of depth d = 4. In all models,
the number of bits used for the representation of numbers
is l = 30.

As the experiments show, the runtime grows with the
number of trees as well as with the depth of the trees. With
an AdaBoost model of 50 trees, which was the best model in
[39], it takes approximately 10 sec to make a prediction for a
patient in a fully privacy-preserving manner, allowing secure
predictions for 360 patients per hour on a single machine.

VI. CONCLUSION

In this paper we have presented the first secure multiparty
computation (SMC) enabled cryptographic protocols for
private classification with tree ensembles – random forests
and boosted decision trees – and the deployment of our
protocols in the KenSci healthcare analytics platform. To the
best of our knowledge this is the very first time a SMC-based
privacy-preserving machine learning protocol goes live in
a real world scenario. Techniques such as the ones here
presented are making it increasingly clear that sacrificing
privacy for the benefits of Big Data and AI shouldn’t be
necessary. From a technological perspective, SMC makes
privacy-preserving machine learning possible. The field is
still in its infancy, and deployed solutions are few and far
between. Our results help bringing this exciting field a step
closer to practical use.

ACKNOWLEDGMENT

Kyle Fritchman was employed at KenSci, Inc. while
conducting this work. Rafael Dowsley has received funding
from the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation
programme under grant agreement No 669255 (MPCPRO)
and from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731583
(SODA).

REFERENCES

[1] C. Dwork and G. J. Pappas, “Privacy in information-rich
intelligent infrastructure,” arXiv preprint arXiv:1706.01985,
2017.

[2] Commission of Evidence-Based Policymaking, “The
promise of evidence-based policymaking,” https:
//www.cep.gov/content/dam/cep/report/cep-final-report.pdf,
2017.

[3] K. Fiveash, “Google AI given access to health
records of 1.6 million english patients,” ArsTechnica,
https://arstechnica.com/information-technology/2016/05/
google-deepmind-ai-nhs-data-sharing-controversy/, 2016.

[4] Royal Free London NHS, “Google Deepmind data
agreement with NHS UK,” https://drive.google.com/file/
d/0BwQ4esYYFC04NFVTRW12TTFFRFE/view, 2016.

[5] S. Basu Roy, A. Teredesai, K. Zolfaghar, R. Liu, D. Hazel,
S. Newman, and A. Marinez, “Dynamic hierarchical classifi-
cation for patient risk-of-readmission,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 1691–1700.

[6] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and
N. Elhadad, “Intelligible models for healthcare: Predicting
pneumonia risk and hospital 30-day readmission,” in Pro-
ceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2015, pp. 1721–
1730.

[7] R. Cramer, I. Damgård, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. Cambridge University
Press, 2015.

[8] R. Wyden, “Wyden pushes for stronger security in collec-
tion of personal information,” https://www.wyden.senate.gov/
download/20170515-wyden-mpc-letter-to-cep, 2017.

[9] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler,
T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter et al., “Secure multiparty computation
goes live,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2009, pp. 325–343.

[10] T. G. Dietterich, “Ensemble methods in machine learning,” in
International Workshop on Multiple Classifier Systems, ser.
LNCS, vol. 1857. Springer, 2000, pp. 1–15.

[11] A. Ng, “The state of artificial intelligence,” MIT Technical
Review, https://www.youtube.com/watch?v=NKpuX yzdYs,
2017.

[12] C. C. Aggarwal and S. Y. Philip, “A general survey of privacy-
preserving data mining models and algorithms,” in Privacy-
preserving data mining. Springer, 2008, pp. 11–52.

[13] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft, “Privacy-preserving ridge regression
on hundreds of millions of records,” in 2013 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May
2013, pp. 334–348.

[14] S. de Hoogh, B. Schoenmakers, P. Chen, and H. op den Akker,
“Practical secure decision tree learning in a teletreatment ap-
plication,” in FC 2014, ser. LNCS, N. Christin and R. Safavi-
Naini, Eds., vol. 8437. Springer, Heidelberg, Mar. 2014, pp.
179–194.

2421

[15] M. De Cock, R. Dowsley, A. C. A. Nascimento, and S. C.
Newman, “Fast, privacy preserving linear regression over
distributed datasets based on pre-distributed data,” in AISec
2015, 2015.

[16] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” ACM
SIGKDD Explorations Newsletter, vol. 4, no. 2, pp. 28–34,
2002.

[17] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine
learning classification over encrypted data,” in NDSS 2015.
The Internet Society, Feb. 2015.

[18] D. J. Wu, T. Feng, M. Naehrig, and K. E. Lauter, “Privately
evaluating decision trees and random forests,” PoPETs, vol.
2016, no. 4, pp. 335–355, 2016.

[19] B. M. David, R. Dowsley, R. Katti, and A. C. A. Nascimento,
“Efficient unconditionally secure comparison and privacy pre-
serving machine learning classification protocols,” in ProvSec
2015, ser. LNCS, M. H. Au and A. Miyaji, Eds., vol. 9451.
Springer, Heidelberg, Nov. 2015, pp. 354–367.

[20] M. De Cock, R. Dowsley, C. Horst, R. Katti, A. Nascimento,
W.-S. Poon, and S. Truex, “Efficient and private scoring of
decision trees, support vector machines and logistic regression
models based on pre-computation,” IEEE Transactions on
Dependable and Secure Computing, vol. PP, no. 99, 2017.

[21] C. Dwork, “Differential privacy: A survey of results,” in In-
ternational Conference on Theory and Applications of Models
of Computation. Springer, 2008, pp. 1–19.

[22] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht,
“Privacy-preserving tax fraud detection in the cloud
with realistic data volumes,” T-4-24, Cybernetica AS,
https://cyber.ee/en/research/, Tech. Rep., 2016.

[23] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk,
and R. Talviste, “Students and taxes: a privacy-preserving
study using secure computation,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 3, pp. 117–135, 2016.

[24] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confidence information and basic coun-
termeasures,” in Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, 2015,
pp. 1322–1333.

[25] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction APIs,” in
USENIX Security Symposium, 2016, pp. 601–618.

[26] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vi-
tali, and G. Felici, “Hacking smart machines with smarter
ones: How to extract meaningful data from machine learning
classifiers,” International Journal of Security and Networks,
vol. 10, no. 3, pp. 137–150, 2015.

[27] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in 42nd FOCS. IEEE
Computer Society Press, Oct. 2001, pp. 136–145.

[28] D. Beaver, “Commodity-based cryptography (extended ab-
stract),” in 29th ACM STOC. ACM Press, May 1997, pp.
446–455.

[29] R. Dowsley, J. Graaf, D. Marques, and A. C. A. Nascimento,
“A two-party protocol with trusted initializer for computing
the inner product,” in WISA 10, ser. LNCS, Y. Chung and
M. Yung, Eds., vol. 6513. Springer, Heidelberg, Aug. 2011,
pp. 337–350.

[30] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and
A. Paskin-Cherniavsky, “On the power of correlated ran-
domness in secure computation,” in TCC 2013, ser. LNCS,
A. Sahai, Ed., vol. 7785. Springer, Heidelberg, Mar. 2013,
pp. 600–620.

[31] B. David, R. Dowsley, J. van de Graaf, D. Marques, A. C. A.
Nascimento, and A. C. B. Pinto, “Unconditionally secure,
universally composable privacy preserving linear algebra,”
Information Forensics and Security, IEEE Transactions on,
vol. 11, no. 1, pp. 59–73, 2016.

[32] R. Tonicelli, A. C. A. Nascimento, R. Dowsley, J. Müller-
Quade, H. Imai, G. Hanaoka, and A. Otsuka, “Information-
theoretically secure oblivious polynomial evaluation in the
commodity-based model,” International Journal of Informa-
tion Security, vol. 14, no. 1, pp. 73–84, 2015.

[33] R. Dowsley, J. Müller-Quade, A. Otsuka, G. Hanaoka,
H. Imai, and A. C. A. Nascimento, “Universally composable
and statistically secure verifiable secret sharing scheme based
on pre-distributed data,” IEICE Transactions, vol. 94-A, no. 2,
pp. 725–734, 2011.

[34] D. Beaver, “Efficient multiparty protocols using circuit ran-
domization,” in CRYPTO’91, ser. LNCS, J. Feigenbaum, Ed.,
vol. 576. Springer, Heidelberg, Aug. 1992, pp. 420–432.

[35] J. A. Garay, B. Schoenmakers, and J. Villegas, “Practical and
secure solutions for integer comparison,” in PKC 2007, ser.
LNCS, T. Okamoto and X. Wang, Eds., vol. 4450. Springer,
Heidelberg, Apr. 2007, pp. 330–342.

[36] R. Dowsley, “Cryptography based on correlated data: Foun-
dations and practice,” Ph.D. dissertation, Karlsruhe Institute
of Technology, Germany, 2016.

[37] O. Catrina and A. Saxena, “Secure computation with fixed-
point numbers,” in FC 2010, ser. LNCS, R. Sion, Ed., vol.
6052. Springer, Heidelberg, Jan. 2010, pp. 35–50.

[38] S. J. A. de Hoogh, “Design of large scale applications of
secure multiparty computation: Secure linear programming,”
Ph.D. dissertation, Technische Universiteit Eindhoven, 2012.

[39] P. Mandagani, S. Coleman, A. Zahid, A. Pugel Ehlers,
S. Basu Roy, and M. De Cock, “Machine learning models
for surgical site infection prediction,” in AMIA KDDM-
WG Symposium (American medical Informatics Association
Knowledge Discovery and Data Mining Working Group),
2016.

2422

