Pervasive and Mobile Computing 24 (2015) 210-223

Pervasive and Mobile Computing

: : - - X pervasive
Contents lists available at ScienceDirect “* @nd mobile
computing

journal homepage: www.elsevier.com/locate/pmc — ‘
Secure authentication scheme for IoT and cloud servers @Cmgmﬂ(

Sheetal Kalra®*, Sandeep K. Sood”

2 Department of Computer Science and Engineering, Guru Nanak Dev University, Regional Campus, Jalandhar, Punjab, 144001, India
b Department of Computer Science and Engineering, Guru Nanak Dev University, Regional Campus, Gurdaspur, Punjab, 143521, India

ARTICLE INFO

ABSTRACT

Article history:
Available online 11 August 2015

Keywords:
Authentication
Cookies

Cloud computing

Internet of Things (IoT) is an upcoming platform where information and communication
technology connect multiple embedded devices to the Internet for performing information
exchange. Owing to the immense development of this technology, embedded devices
are becoming more sophisticated every day and are being deployed in various arenas
of life. An important advancement in today’s technology is the ability to connect such
devices to large resource pools such as cloud. Integration of embedded devices and cloud

Elliptic Curve Cryptography servers brings wide applicability of IoT in many commercial as well as Government
Internet of Things sectors. However, the security concerns such as authentication and data privacy of these
devices play a fundamental role in successful integration of these two technologies. Elliptic
Curve Cryptography (ECC) based algorithms give better security solutions in comparison
to other Public Key Cryptography (PKC) algorithms due to small key sizes and efficient
computations. In this paper, a secure ECC based mutual authentication protocol for secure
communication of embedded devices and cloud servers using Hyper Text Transfer Protocol
(HTTP) cookies has been proposed. The proposed scheme achieves mutual authentication
and provides essential security requirements. The security analysis of the proposed
protocol proves that it is robust against multiple security attacks. The formal verification
of the proposed protocol is performed using AVISPA tool, which confirms its security in the
presence of a possible intruder.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An embedded system is a special purpose system composed of computer hardware, software and additional mechani-
cal components with processing capability dedicated to a specific task. Increased processing power and more sophisticated
software has evolved embedded devices from single microcontroller chip with limited capabilities to multi-component
intelligent systems. Single-function embedded devices have matured as “smart systems” with powerful processors, oper-
ating systems and efficient connectivity. With these smart systems, the enterprises can envision to deploy interconnected
complex systems that can collect, analyze and communicate data efficiently. Presently, many organizations are trying to
collaborate their embedded systems with cloud. Embedded devices can leverage vast amount of data storage and comput-
ing capability from cloud computing. Cloud computing has become increasingly popular over last few years because of its
infinite resources and dynamic elasticity. The cloud technology consists of both hardware and software provided by the data
center for which customers have to pay only for the resources they consume. The number of Internet connected devices is
rapidly increasing and these devices not only include personal computers but also small embedded devices such as Personal

* Corresponding author.
E-mail addresses: sheetal.kalra@gmail.com (S. Kalra), san1198@gmail.com (S.K. Sood).

http://dx.doi.org/10.1016/j.pmc;j.2015.08.001
1574-1192/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.pmcj.2015.08.001
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2015.08.001&domain=pdf
mailto:sheetal.kalra@gmail.com
mailto:san1198@gmail.com
http://dx.doi.org/10.1016/j.pmcj.2015.08.001

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 211

Digital Assistant (PDA), bank cards in the wallet and similarly many more. This evolution leads to a new scenario where
Internet connected devices could benefit from cloud computing abundant resources. A networked embedded device can
have capabilities based upon operations carried out in cloud and not simply restricted to its own local resources. Security
still remains the major issue while getting connected to cloud for using its resources [1,2]. Embedded devices must be au-
thenticated before getting services of a cloud and also cloud servers should be authenticated by these devices. Elliptic Curve
Cryptography (ECC) is a form of public key cryptography best suited for constrained environments of embedded devices
where resources like memory and processing power are very limited [3,4].

In this paper, mutual authentication scheme for embedded devices and cloud severs based on ECC has been proposed.
The proposed protocol ensures mutual authentication between embedded device and cloud service provider using Hyper
Text Transfer Protocol (HTTP) cookies. In Section 2, the operating environment of embedded devices connecting to cloud
has been discussed. In Section 3 of the paper, the related work and security issues in collaborating embedded devices with
cloud has been discussed. In Section 4, the preliminaries of ECC have been discussed. In Section 5, a novel ECC based mutual
authentication protocol between the embedded device and cloud server has been proposed. In Section 6, security analysis
based on an attack model has been done. In Section 7, cost and functionality analysis of the protocol has been discussed. The
protocol has been formally verified using Automated Validation of Internet Security Protocols and Applications (AVISPA)
tool. The results have been presented in Section 8. Lastly, Section 9 concludes the paper.

2. Embedded cloud computing: operating environment

Embedded systems have become an integral and indispensable part of everyone’s daily life. Embedded systems range
from portable devices such as digital watches and MP3 players to complex systems like traffic lights, factory controllers,
hybrid vehicles and avionics. Unlike a general-purpose personal computer, an embedded system performs one or few pre-
defined tasks that have specific requirements and limited field configuration capability. Since the system is dedicated to
specific tasks, design engineers are liable to optimize it in order to reduce the size and cost of the product. Therefore,
embedded systems have limited resources available in terms of memory, CPU, screen size, limited set (or absence) of
key inputs and diskless operations. These parameters play a crucial role in the design, development and testing of such
systems so that it can be bound to a relatively static and simple functionality device. Cloud computing is a computing
paradigm that uses Internet and central remote servers to maintain and compute multiple data applications. The latest
innovations in cloud computing is to make all business applications more mobile and collaborative. Embedded devices can
leverage cloud computing to expand their functionalities. Many applications in embedded systems require huge memory
and processing power necessary to run complex algorithms that can generate certain results. When cloud connectivity is
provided to embedded systems, the later can use resources of cloud to remotely resolve complex algorithms which reduces
power consumption in embedded devices. In this way, with few resources great results can be obtained using “external
intelligence” stored in cloud. The demand for Internet connected products is growing as Internet is becoming the most
cost effective way of remotely monitoring and controlling embedded systems. Internet of Things (IoT) is the name used to
depict a scenario where many devices are using the resources of a network without human intervention [5]. As Internet
has grown rapidly, it has become the world’s low cost network allowing data to be passed easily across continents. Though
the embedded system applications are still growing, Internet connected embedded systems is the next step in near future.
Embedded systems are generally at remote locations from people that operate them at far and distant places. In such cases,
tasks like monitoring their operation, checking their performance, collecting data or upgrading application software can
be a costly and time consuming process. In such a scenario, functionalities of embedded systems can be extended with
cloud based data storage and computing capabilities. Also, some applications could get great benefits if they could remotely
report their status, get remote data to process or even send remote messages to have their administrator informed about
some incidents. However, easier said than done, security undoubtedly is the major concern while getting connected to
cloud. Cloud security refers to a broad set of policies, technologies and controls deployed to protect data, applications and
associated infrastructure of cloud computing. Unauthorized access raises privacy and confidentiality concerns for embedded
systems using cloud computing. Security issues related to embedded devices connecting with cloud have discussed in the
next section.

3. Security issues and related work

Authentication is the process of identifying legitimate entity of a particular web application. Authentication plays the
most important role in successful integration of embedded devices and cloud computing services. Multitenant architecture
of cloud encourages the hackers for cybercrime. Survey conducted by International Data Corporation (IDC) in 2008-2009
showed that many organizations were adopting cloud computing as it provides low cost solutions for its users [6]. Security
of the information in cloud computing paradigm is still a major concern for them. There have been many cases of security
attacks on well known cloud computing providers such as Amazon Web Services (Amazon S3), Google (Gmail, App Engine)
and Salesforce.com [7]. In general, the major security parameters in cloud computing are authentication, confidentiality,
availability, integrity and non repudiation. Researchers are continuously making efforts to develop such solutions that cater
to the security needs of cloud. Recently, cloud computing services have gained a lot of popularity worldwide among business
enterprises. Amazon Elastic Compute Cloud (EC2) [8] and Elastic Block Store (EBS) [9] are used to provide both storage

http://Salesforce.com

212 S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223

services and cloud computing to their users. A remote user password is used to login to a Window instance in EC2. Microsoft
Window Azure [10] also provides cloud computing services in a similar manner. Researchers are trying to shift applications
on cloud platform without compromising on security of these applications. He et al. [11] migrated NASA climate prediction
application to Amazon EC2. An application called Nearby Supernova Factory was migrated by Jackson et al. [12] to a cluster
on Amazon EC2. GoGrid cloud and IBM cloud are other examples providing cloud computing services. Security turns out to
be the biggest challenge in successful implementation of any cloud service. The main aspect of security in cloud computing
services is to provide authorized access to legitimate entities of the cloud. Researchers need to develop such protocols that
only legitimate entities should be given access to the services and data of cloud whereas illegal access should be denied at
any cost.

Cookie technology is one of the most innovative features that have made the web stateful. Recently many authentication
schemes have been proposed using encrypted cookies. In 2008, Lei et al. [13] proposed a virtual password concept based
on randomized linear functions that involve a small amount of human computing to secure user’s password in an online
transaction. They analyzed that their scheme defends phishing, key logger and social engineering attacks. In 2008, Wu
et al. [14] proposed a Single Sign-On (SSO) anti-phishing technique based on encrypted cookie that defeats phishing attacks.
It encrypts the sensitive data with server’s public key and stores this cookie on the user’s machine. This Encrypted Cookie
Scheme (ECS) has an advantage that the user can ignore SSL indicator in online transaction procedure. Microsoft’s Passport
(Window Live ID) initiative [15] is a cookie-based password management system. This service authenticates the user to
different websites that are under the control of this centralized system. The main limitation of this approach is that the
users have to trust centralized server. Also, it requires Web administration changes on sites that use this system for its
authentication. In 2009, Sood et al. [16] proposed a cookie based single password anti-phishing protocol that is secure against
different possible attacks. In this protocol, the user’s machine browser generates a dynamic identity and a dynamic password
for each login request to the server.In 2011, Sood et al. [17] proposed an inverse cookie-based virtual authentication protocol
in which the cookies are not stored in trustworthy machines; instead they are stored on those machines from where the
user failed to log in.

The security requirements for large number of connected embedded devices are distinct on account of their limited
memory, constrained middleware and low computing power. Unfortunately, many networked embedded systems lack
robust encryption to protect sensitive information. This could be due to resource limitations, cost restrictions or design
limitations. Even the most encrypted secure protocols have the potential to be hacked using the processing power of cloud
computing servers. Regardless of the reason, lack of robust encryption can lead to disastrous consequences. Intruders or
malicious insiders could read, intercept, modify or remove communications. Insufficient cryptographic protection can lead
to compromises, many of which are not apparent at the time of system design. A prudent embedded system designer must
consider the implications of intercepted, deleted, modified and forged information from all components of a network system
and take appropriate steps to protect the system against such attacks. Use of cloud and centralized servers can increase the
risk of server harboring spying agents, password stealers or other cyber criminals. Therefore, we need protocols that are
robust and cannot be forged by the hackers. Elliptic Curve Cryptography (ECC) offers better security at minimum key size
and is the most cost-effective solution to implement security in embedded devices having constrained environment [18].
Recently, many authentication protocols have been proposed that are based on ECC. In 2011, Kalra and Sood [19] had done
a detailed survey of ECC based protocols. ECC also turns out to be the best choice among other public key cryptographic
techniques for achieving mutual authentication between smart devices and servers. ECC based authentication protocols
applicable for smart devices proposed by Wu et al. [20], Tian et al. [21], Abichar et al. [22] had various limitations. Protocol
proposed by Wu et al. [20] only supports user authentication by the server. This is unsafe as an attacker can impersonate a
server to obtain information from the user. On the other hand, protocols proposed by Tian et al. [21] and Abichar et al. [22]
provide mutual authentication using certificates. Certification schemes lead to increase in cost as the server and users have
to perform additional computations to verify each other’s identity. ECC based authentication protocols for smart devices
have also been proposed by Yang et al. [23], Hafizul et al. [24] and Debiao et al. [25], Ray et al. [26], Granjal et al. [27],
Jiang et al. [28]. These proposed protocols are based on different forms of ECC, using concepts ranging from time stamps
to certificate based mutual authentication. A light weight attribute based encryption scheme using ECC for IoT has been
proposed by Yao et al. [29] in 2014. In 2014, an authentication scheme based on ECC for RFID systems for IoT networks, was
developed by Moosavi et al. [30]. Another scheme for IoT based on ECC was proposed by Liao et al. [31] using ID verifier
transfer protocol in 2014. A survey of RFID authentication protocols for IoT in health care environment based on ECC has
been done by Debiao et al. [2] in 2014, where they have compared the computational and communication cost of both the
tag and the server side. In 2014, an authentication and key agreement protocol for heterogeneous ad hoc wireless sensor
networks and IoT was proposed by Muhamed et al. [32]. Recently, in 2015, Nguyen et al. [33] conducted an extensive survey
of protocols proposed for IoT networks. A detailed comparison, ranging from protocols based on symmetric cryptography to
protocols based on asymmetric cryptography has been done by the authors. Researchers have proposed novel authentication
schemes where wireless sensor networks are integrated in [oT networks. A top-down utility paradigm for IoT and cloud by
using sensor networks and mobile devices was proposed by Salvotore et al. [34] in 2015.In 2015, Persson et al. [35] proposed
a framework for merging IoT and cloud in a unified programming model that would make the communication efficient
between the device and cloud. In this paper, we propose an ECC based mutual authentication protocol for IoT devices and
cloud servers using encrypted cookies. A comparison of the proposed protocol with related protocols in Section 7.4, shows
that the proposed protocol is very efficient and has least computation cost among other protocols.

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 213

Table 1
Comparison of ECC and RSA based on key size for same security levels,
supplied by NIST (National Institute of Standards and Technology) [36].

ECC key size (bits) RSA key size (bits) Key size ratio
163 1024 1:16
256 3072 1:12
384 7680 1:20
512 15360 1:30

4. Preliminaries of Elliptic Curve Cryptography

For providing the same level of security, ECC uses much smaller key sizes and ensures higher levels of security compared
to other asymmetric techniques. The benefits are more substantial for larger key sizes, i.e. a 256-bit symmetric key must be
protected by more than 15,000-bit RSA, while an ECC asymmetric key size of only 512 bits provides equivalent security [18].
The reduced key size of ECC leads to obvious cost savings. The use of smaller key size also enables the design of more compact
implementations and faster cryptographic operations that run on smaller chips. This leads to less heat production and
reduced power consumption which is beneficial for resource-constrained systems. Thus, ECC is an emerging cryptographic
technique and embedded implementations of ECC are now being designed and incorporated into systems. Table 1 shows
the comparison between ECC and RSA based on key size for same security level [36].

The security of any cryptographic system is directly proportional to the relative complexity of underlying mathematical
problem. An algorithm is said to be a polynomial time algorithm if its time complexity is upper bounded by a polynomial
expression of the form T(n) = 0(n*), where n is the size of input and k is a non negative integer. These algorithms are
mathematically easier to solve in comparison to exponential time algorithms. The security of ECC depends on the difficulty
of solving discrete logarithm problem over the points on an elliptic curve, i.e. Elliptic Curve Discrete Logarithm Problem
(ECDLP). The best known method to solve ECDLP (Pollard’s rho algorithm) [37] is fully exponential and substantially smaller
key sizes are used to obtain equivalent security. Therefore, ECC is better suited for smart devices that operate in constraint
environments [37].

4.1. ECDLP: the hard problem

Elliptic Curve Discrete Logarithm Problem can be stated as follows. P and Q are two points on an elliptic curve and kP
represents the point added to itself k times, where k is a scalar, such that kP = Q. For given P and Q, it is computationally
infeasible to obtain k, if k is sufficiently large. k is the discrete logarithm of Q to the base P.

The mathematical operations of ECC are defined over the elliptic curve equation:

y2 =x>+ax+b, whereda®+ 27b? # 0.

The elliptic curve is set of solutions (x, y) which satisfy the above equation. Each value of ‘a’ and ‘b’ gives a different elliptic
curve. All points (x, y) which satisfies the above equation plus a point O at infinity lies on the elliptic curve.

4.2. Mathematical operations involved in ECC

Point multiplication.

In point multiplication, a point P on the elliptic curve is multiplied with a scalar k using elliptic curve equations to
obtain another point Q on the same elliptic curve, i.e. kP = Q. Point multiplication is achieved by two basic elliptic curve
operations:

e Point addition, adding two points J and K on the curve to obtain another point L on curve, ie,,L =] + K.
e Point doubling, adding a point J on the curve to itself to obtain another point L on the curve, i.e. L = 2J.

Here is a simple example of point multiplication. Let P be a point on an elliptic curve. Let k be a scalar that is multiplied
with the point P to obtain another point Q on the curve, i.e. to find Q = kP.

If k = 23 then kP = 23.P = 2(2(2(2P) + P) + P) + P.

Thus, point multiplication uses point addition and point doubling repeatedly to give the result. The above method is
called ‘double and add’ method for point multiplication [37]. The order of the curve is the number of points lying on the
curve and is represented by |E| where E represents the elliptic curve. A point O is said to be a point at infinity and is the
identity element in addition over elliptic curve as for a point P we have P + O = P. A point on an elliptic curve, if repeatedly
added to itself will eventually reach O, the point at infinity. The number of times a point can be repeatedly added to itself
until it reaches infinity is called order of the point. The order of every point on the curve is co-factor of order of the curve.

5. Proposed protocol

In this section, we propose an ECC based authentication protocol for embedded devices that are HTTP clients. There are
various authentication protocols for smart devices, but the idea of using HTTP cookies for smart device authentication is

214 S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223

Table 2
Notations used in the protocol.
D; Embedded device
S Cloud server
ID; Identity of the device D;
P; Password of the device D;
R; Random number generated by the server
N1, N, Random numbers generated for ECC parameters
H() One-way hash function
X Private key of the server based on ECC
Z, Finite field group
p Large prime number of the order >216°
G Generator point of a large order n
CK Cookie information

EXP_TIME Expiration time of the cookie
| Concatenation
® XOR operation

novel. The embedded device needs to be configured with TCP/IP protocol stack in order to act as a HTTP client. HTTP is based
on a simple client/server protocol where the HTTP server and client communicate via a TCP connection. Today, almost every
personal computer offers necessary assistance for this protocol and this status is becoming valid for embedded devices
also. Most of the embedded devices in market are configured with a Web browser and can act as HTTP clients. For those
embedded devices which do not have any user interface and are deployed in field, organizations are providing specialized
software. Using the specialized software, the devices can communicate as HTTP clients to a corresponding cloud server
which is HTTP enabled (HTTP server). This implies that machine-to-machine (M2M) communication is also possible using
the proposed protocol with no human intervention. This is a novel authentication protocol, based on HTTP cookies, designed
for embedded devices working in constraint environments and cloud servers. Table 2 denotes the notations used in proposed
protocol.
Our protocol consists of three phases.

a. Registration Phase: In this phase, the embedded device registers itself with the cloud server and server stores a cookie
on embedded device.

b. Pre-computation and Login Phase: When device wants to connect with the server, it sends a login request in this phase.

c. Authentication Phase: In this phase, the embedded device and cloud server mutually authenticate each other using ECC
parameters.

Before the system begins, server S selects an elliptic curve equation y?> = x> + ax + b over Z, where Z, (p > 2190) is the
finite field group. Server selects two field elements a, b € Zp, where a and b satisfy the condition 4a> 4+ 27b%> (mod p) # 0.
Let G be the base point of the elliptic curve with a prime order n (n > 2'%°) and 0 be the point at infinity such thatn x G = 0.
The server selects a random number X as its private key. Fig. 1 shows the workflow of the protocol.

5.1. Registration phase

In order to register with the cloud server S, the embedded device D; sends a unique ID; to the server. On receiving this
request, the cloud server generates a unique password P; for every device D;.
Step 1: Embedded Device D; — Server S: ID;, Server S generates P;

The server selects a unique random number R; for every device and generates a cookie CK = H (R;|X|EXP_TIME|ID;) where
X is the private key of the server and stores the cookie on the embedded device as ECC point CK' = CK x G. The server also
calculates the security parameters T; = Ri@H(X),A; = HRi®H(X) ®P;® CK') and stores A = H(R; @H(X) ®P; & CK') x G,
T; corresponding to the identity ID; of the device D; in its database. The server itself stores the expiration time of the cookie
EXP_TIME corresponding to a particular embedded device’s identity. When the cookie expires, the expiration time is updated
to EXP_TIME' and cookie is updates as CK = H (R;|X |EXP_TIME'|ID;).
Step 2: Server — Embedded Device D;: Cookie CK’

5.2. Pre-computation and login phase

Before every login, the device selects a random number N; and calculates an ECC point P; = N7 x G and stores it in its
memory.
Step 1: Embedded Device Calculates ECC point P;.

In order to login with the cloud server, the device calculates the ECC point P, = H(N; x CK’) sends the P;, P, and its ID;
to the server.
Step 2: Embedded Device — Server: ID;, P1, P,.

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 215

Server Selects Ep : y2=03+ ax + bg mod p over Zp
where (4a®+27b°) mod p # 0, p>2"6°

X : Private key of server ; Ps = (X x G) : Public key of server
G : Generator point; n x G = O, n> 216°

1. Registration
Phase

2. Pre computation
and Login Phase

EMBEDDED DEVICE

Device Di
Submits I1Di
1D -

CK'=CK X G
-
Selects N1
Calculates
P1=N1XG
P2= H(N1 x CK”)

1Di, P41,P2

3.Authentication Calculates

Phase

A'=H(T. PP.PCK")

Pa’=P3 x Ai . Pa,Pa,Ti

Pa?=Pa

SERVER

Generates Pi

Selects Ri and Calculates
Ti= R H(X)

Ai= HREPH(X)P PP CK”)
CcK = H(Ril x| EXP_TIME D)
Stores

Ai’=Ai X G, Ti, IDi
EXP_TIME

Calculates
Ri=Ti e H(X

)
CK=H(Ri | X | EXP_TIME|I1D))

Pz2’=H(P1 x CK)
P2’ ?7=Pz
Selects Nz
Pa=Nz2 X G

Calculates

Pa=Nz2 X A"

Vi= H((Ni x CK”) | Pa”)
Vi > VI=H{(P1xCK)| Pa)
Vit ?=Vi

After mutual authentication Session key is generated

sk=H(X|IDiIN1I1N2)

Fig. 1. Workflow of the protocol.

5.3. Authentication phase

After receiving the parameters on login request, the cloud server calculates cookie information CK = H(R;|X |EXP_TIME]|
ID;) by calculating the random number R; from T; using its private key X as R; = T; @ H(X) and using its private key, identity
of the device ID; and expiration time EXP_TIME. It then calculates the point Pj = H(P; x CK). The cloud server then checks
whether the value of P; is equal to the received value of P,. In case they are equal, the server proceeds to the next step
otherwise it terminates the session.

Step 1: S checks P}? = P,.

Then the server selects a random number N, and calculates the ECC point P; = N, X G, P4 = N, x Aj and sends P, P4
and T; to the embedded device.

Step 2: S — Embedded Device D;: P3, P4 and T;.

The device then calculates A; = H(T; & P; & CK’) and calculate ECC point P, = P53 x A; and compares the value of P, with
the received value of Py.

Step 3: Embedded Device D; checks P;? = Ps.

Then, the embedded device calculates V; = H((N; x CK')|P;) and sends V; to the server. The server calculates V/ =
H((P; x CK)|P4) and compares the value to the received value of V; to authenticate the device.

Step 4: Server checks V/? = V,.

After mutual authentication between the embedded device and the cloud server, both the entities agree on a common
session key SK = H(X|ID;|N1|N,). Afterwards all the subsequent messages communicated between the device and cloud
server are XOR® with this session key.

6. Security analysis

In this never ending race between the developers and hackers, the later will always try to find out ways to intrude
a system seeking an unauthorized access. An attacker may try to get access to the cloud server in place of a legitimate
embedded device. In this section, the security of the proposed scheme by considering a formal attack model has been
discussed. An attack model or attack types, in general, specify how much information a cryptanalyst or a hacker has access
to while cracking an encrypted message. For correct analysis, an efficient and convincing formal methodology is required to
evaluate the proposed scheme.

6.1. Attack model

The adversary can engage in various illegal ways to acquire sensitive information of a user. The following is the definition
of attack model used by an adversary to acquire information from the system.

216 S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223

e Eavesdropping: The communication messages between the server and embedded device travel through insecure channel
and the adversary can acquire the user’s secret information via eavesdropping or initiate another attack by using the
eavesdropped message.

o Traffic analysis: Traffic analysis is a method to analyze the messages eavesdropped during communication between the
device and the server. By analyzing this information, the attacker can acquire information needed to authenticate the
device to the server. An attacker can perform brute-force attacks using traffic analysis tools such as Flowd [38] and
pcNetFlow [38]. This type of attack is also called brute force attack.

e Replay attack: A very common attack in which an adversary transmits a message obtained by eavesdropping on a regular
communication between server and a device during authentication process.

e Man-in-the-middle attack: This is similar to replay attack. It this attack an adversary impersonates a legitimate device
by transmitting response message that is obtained from a device by impersonating a legitimate server.

e Cookie theft attack: After obtaining a smart device and physically acquiring the cookie stored on it, the adversary can
counterfeit or alter it.

o Offline dictionary attack: The attacker can record the transmitted messages and may try to gather security parameters
from the previously transmitted messages.

e Leak of verifier attack: The attacker can break into the server and steal information stored in it. The adversary can use
this information to calculate user’s information and impersonate as a legitimate user.

6.2. System security requirements

In order to strengthen the security of the system, the system requirements that need to be considered while designing
an authentication protocol has been discussed. The system requirements are defined in terms of mutual authentication,
confidentiality, anonymity and forward secrecy.

e Mutual authentication: This is the most essential requirement as the device and the cloud server must authenticate each
other for secure communication.

o Confidentiality: Confidentiality requires that the secret information is securely transmitted during all communications.
Therefore, to ensure confidentiality, the device and server transmit encrypted information so that only they can recognize
it.

e Anonymity: Anonymity is another important security requirement for privacy. Anonymity means that adversary cannot
trace the device’s information in place of a legitimate server. If the transmitted information cannot satisfy anonymity, an
attacker can continuously trace the messages of a specific device and may get authenticated to the cloud server.

e Forward secrecy: It is essential that the previously transmitted information does not get traced using present transmis-
sion information. If the previous information of a specific device can be compromised, it constitutes a serious privacy
issue.

6.3. Security analysis and system requirement analysis

6.3.1. Resistance to replay attack

Having intercepted previous communication, the attacker can replay the same message of receiver or sender to pass the
verification of system. The malicious user tries to login as a legitimate user by listening and replaying the communication
messages between client and the server. In our protocol, the elliptic curve point P; is generated using a unique nonce N;
which is further used to generate P, using a one way hash function. When malicious device will try to login with a nonce N’,
the login will fail in the very step of login phase when the server authenticates the message. In case the attacker tries to use
the previous values of P; and P, to calculate points P/ = N’ x P; and P; = N’ x P,, he will fail in the first step authentication
phase of the protocol. This is because when the server will calculate the point P using the nonce as P{ = N’ x H(P{ x CK)
and compare it with the expected value of P; = H(N’ x G x CK), they come out to be unequal. Hence, the protocol is secure
against replay attack. Therefore, the malicious user cannot replay the login message. Further, if the attacker keeps a record
of all messages passed during an authentication between a device and a server, it still cannot replay those messages to be
authenticated by the server. It cannot generate V; = H((N; x CK')|P;) because it does not have access to the value of N;
or CK'. Moreover, it cannot reuse the same value of P, for replay as P4 depends on the nonce N3 generated randomly by the
server for each authentication attempt.

6.3.2. Resistance to man-in-the-middle attack

In this type of attack, the malicious user may gather the communication parameters such as CK’, Py, P,, P3, P4. The
malicious user cannot compute these ECC points as they have high entropy. It is impossible to solve ECDLP in real polynomial
time [27]. Moreover, it is required for the malicious user to know the random nonce values of N7 and N, that cannot be forged.
Hence, proposed protocol is secure against man-in-the-middle attack.

6.3.3. Resistance to cookie theft attack
A malicious user may steal the cookie information from an embedded device and then try to login to the cloud server S
using this information. But in our protocol, the cookie information CK = H (R;|X|EXP_TIME|ID;) x G is stored as an ECC point

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 217

and therefore cannot be manipulated to get the correct parameters necessary to login. Moreover, our protocol does not send
the cookie CK to the server in any communication message. So even if the malicious user is able to get the cookie CK, it is
practically of no use to him. The reason is that under any circumstances the malicious user cannot log onto the server with
the help of stolen cookie.

6.3.4. Resistance to eavesdropping

Impersonation is when the attacker forges the authentication messages of a legitimate user and then tries to modify the
login request into ID}, P}, P; from ID;, Py, P,. But in our proposed scheme, the malicious user cannot obtain random numbers
Np and N,. Moreover, the entropies of P; and P, are very high and therefore the ECC points cannot be forged. Therefore, this
type of attack fails in very first step of authentication phase.

6.3.5. Resistance to brute force attack

In order to launch a brute force attack, the malicious user first obtains the parameters from communication messages P,
Py, P3, P4 and T;. Even if the malicious user successfully records this information, he will still not be able to find the correct
password P; using the brute force attack as he cannot know the server’s secret key X and there is no way to guess the random
numbers N; and N,. Hence, our scheme is secure against brute force attack.

6.3.6. Resistance to offline dictionary attack

In this type of attack, the malicious user first records the communication messages and then attempts to guess the
legitimate user’s password from them. But in the proposed protocol, it is impossible to calculate the password in real
polynomial time from the recorded communication messages that are high entropy ECC points. Therefore, the protocol
is secure against offline dictionary attack.

6.3.7. Resistance to leak of verifier attack

In this type of attack, the malicious user breaks into the system and steals the server’s database information. Then he may
use that information to calculate the vital information such as legitimate user’s password. In our protocol, the information
stored in device’s database is CK = H(R;|X|EXP_TIME'|ID;), A} = H(R; & H(X) @ P;) x G which is an ECC point. So the
malicious user cannot guess server’s private key X or ECC point A;. Therefore, leak of verifier attack is not possible in our
protocol.

6.3.8. Provides mutual authentication

The server checks the authenticity of the smart device by comparing the received value P, and the calculated value P;. In
step 5.2 of the protocol, the device calculates P, using the equation P, = H(N; x CK'), where CK’ = CK x G, and sends it to
the server. The server then calculates value P, using the equation P; = H(P; x CK), where P; = Ny x G. Thus, if the values
are equal, the server successfully authenticates the user. The user authenticates the server by comparing the received value
P4 and calculated value P;. In step 5.3 of the protocol, server calculates P4 using the equation Py = N, X A}, where A] = A; x G
and sends it to the device. The device then calculates P, using the equation P, = P} x A; where P, = N, x G. If both the
values are equal, the device successfully authenticates the server.

6.3.9. Provides confidentiality

The proposed protocol protects the information necessary for device authentication by using ECC points and hash
functions. It ensures that only the authenticated device gets access to legitimate server. Further, the proposed protocol
is secure against traffic analysis and eavesdropping and guarantees confidentiality by ensuring that the complexity of brute
force attack is high.

6.3.10. Provides anonymity

The device can send messages for authentication to any server in its vicinity. If an attacker impersonating as a server
comes in contact with it, the device will exchange initial messages with the attacker. According to the proposed protocol,
attacker has no access to the cookie (CK’) related to the device and cannot generate the correct value of A, = H(T; & P; &
CK') x G and consequently generating an incorrect value of P, = N, x A[. The received value of P, will not be verified with
the expected value of Py = P; x A;, where A; = H(T; @ P; @ CK'). Therefore, anonymity is maintained, as the device will not
authenticate the attacker and the session will be dropped.

6.3.11. Provides forward secrecy

It is essential that the previously transmitted information cannot be traced using the present transmitted information
of device. The proposed protocol prevents a malicious user from acquiring device information by providing confidentiality
based on fresh value of nonce in every session. As the protocol prevents replay attack, the malicious user has no means
to know the random numbers generated inside the device. Therefore, the protocol ensures forward secrecy by providing
unpredictable variations in the past communication messages.

218 S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223

Table 3
Comparison of proposed protocol with related work.
Attributes Protocols
Abichar Hafizul Debiao Ray Granjal Jiang Yao Moosavi Liao Proposed
etal.[22] etal.[24] etal.[25] etal.[26] etal.[27] etal.[28] etal.[29] etal.[30] etal.[31] protocol
Computation cost (Server) 2Tegcm + 3Tecm + 6Tgcy + 14Tgey 8Tecm 6Tgcum 3Tecm + 3Tecm + 3Tecm + ATecm
2Tgca 2Tgca 4Teca 1Ty 2Tkca 5Tkca
Computation cost (device) 3TECM + S5Teem + 3TECM + STECM 4TECM 4TECM 3TECM + 3TECM + 3TECM + ?’TECM
2Tgca 2Tgca 2Tgca 1Tsyn® 2Tgca 2Tkca
Communication cost (bits) 800 1280 1216 1280 1216 1218 1280 336 1680 1280
Memory cost (device) 448 352 224 448 448 352 256 496 652 224
Certificate based Yes No No Yes No Yes No Yes No No
authentication
Key agreement Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Clock synchronization No No No Yes No No No No No No
problem
Attack resistance No No No No No No Yes Yes No Yes

2 Tsyy is the time involved in one symmetric encryption/decryption operation.

7. Computation and communication cost analysis

An efficient authentication protocol must consider computation and communication cost while authenticating entities.
Along with ECC, our protocol uses XOR operations and one-way hash functions, both of which are very inexpensive
operations in cryptography. Our protocol is very secure and efficient as it is based on random nonce values. The protocol
has no time synchronization problem as it does not use timestamps. While calculating the cost of the protocol, the identity
ID;, password P;, nonce values (N1, N,), random number R; and the security parameters T;, R; all are assumed to be 128 bits
long. Also, the output of one way hash function is 128 bits and elliptic curve cryptosystem is ECC—224 bits. Let Ty, T, Tecu,
Teca be the time for one hashing operation, one exponential operation, one multiplication of a number over elliptic curve
and elliptic curve point addition respectively. The comparison of the time complexity associated with these operations can
be expressed as Tg > Tecyr > Teca > Ty. This is because the time taken to perform an exponential operation is much more
(approx. 8 times) than the time taken to perform one elliptic point multiplication [20].

7.1. Communication cost of the protocol

Communication cost of a protocol is the cost involved in the transmission of security parameters. Let C1 be the cost of
communication parameters involved in the authentication process. In the proposed protocol, the communication parame-
ters are [Py, Py, P3, P4, T, ID;, Vi] = [4 x 224 + 3 x 128] = 1280 bits.

7.2. Computation cost of the protocol

Let C2 be the cost of registration that includes the total time of all operations executed by the server S in the registration
phase. In the proposed protocol, the cost of registration is (3Ty + 2Tgqy). Let C3 be the computation cost of the cloud server
during the process of authentication. In proposed protocol, the total time spent by the servers is (4Ty + 4Tgcy). Let C4 be the
cost of the time spent by the embedded device for computation during the authentication process. In the proposed protocol,
this time is (3TH + 3TECM)

7.3. Storage cost of the protocol

Let C5 be the memory needed by the embedded device and C6 be the memory needed by the server to store security
parameters. In the proposed protocol, the embedded device stores cookie CK' as ECC point so C5 = 224 bits. The cloud
server stores (A7, ID;) so C6 = 224 + 128 = 352 bits.

7.4. Functionality comparisons

A comparative study of various security and cost attributes of the proposed protocol is performed with related ECC
based authentication protocols in Table 3. Comparisons show that the proposed protocol is very efficient and practical for
embedded devices.

Hence, with a low computation and communication cost, the proposed protocol can be efficiently used for embedded
devices that opt for using cloud computing services. This protocol provides mutual authentication between the device and
cloud server at low cost.

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 219

role device(U,S : agent,
K,Ea : symmetric_key,
Hash : hash_func,

SND,RCV : channel(dy))

played_by U

def=

local

State : nat,
Un1,Pass1,Ck,N1,Ga,Ck2 . text,
P1,P2,Ti,P3,P4,Da,Ai,P44 Vi : text

const e_m,g_m,h_m,a_m,b_m,d_d:protocol_id
init State := 0

transition
1.State = 0 ARCV(start) =|>
State' := 2 A\Un1"' := new()

N Pass1' := new()
A SND(U.{Un1'.Pass1}_Ea.S)
Nsecret(Pass1',g_m,{U,S})
Nsecret(Un1',h_m,{U,S})
Nwitness(U,S,seq1,Un1'.Pass1')

2.State = 2 N RCV({Ck'}_K) =|>

State' := 4 \N1" := new()
NGa' := new()
AUNT := new()
AP1' := exp(N1',Ga)
NCk2' := {{CK'}_K} K
N P2' = exp(N1,Ck2")
ASND({UNn1".P1'.P2'}_Ea)
Nsecret(Un1',e_m,{U,S})
Nsecret(P1',a_m,{U,S})
Nsecret(P2',b_m,{U,S})
Nwitness(U,S,seq2,Un1'.P1'.P2")
Nrequest(U,S,req1,Ck")

3.State =4 N RCV({Ti'.P3'.P4"}_K)=|>
State' :=6 /\ Pass1' := new() A N1':=new()

N AI' := Hash(xor(Ti',Pass1'))
N P44’ := exp(P3'Ai') \ CK:=new()
N Vi:=Hash(exp(N1',Ck').P44")
NASND({Vi'}_K)
Nsecret(Vi',d_d,{U,S})
Nwitness(U,S,seq3,Vi")
Nrequest(U,S,req2,Ti".P3'.P4")

end role

Fig. 2. Role—device. (Note: The names of the parameters in the protocol have been changed in the code according to the syntax of the AVISPA tool.)
8. Formal verification of the protocol using AVISPA

The Automated Validation of Internet Security Protocols and Applications (AVISPA) [39] project was funded by the
European Union. This project intended to develop a real working environment for error detection in security protocols
by targeting the design of the protocols. In order to achieve this, High Level Protocol Specification Language (HLPSL) was
developed. HLPSL is an expressive language for modeling communication and security protocols. HLPSL has been defined
in such a way as to closely resemble a language for defining guarded transitions within a state-transition system and
is equipped with constructs that allow modular specification of protocols. It supports symmetric and asymmetric keys,
key-tables, hash functions, etc. Protocol specification in HLPSL is divided into roles that describe the actions of one single
agent in a run of a protocol or sub-protocol. Also, HLPSL code must be open to automated formal analysis. This is achieved
by a translation of HLPSL into the Intermediate Format. The HLPSL2IF translator automatically translates a HLPSL protocol
specification provided by the user into an IF specification, which is then given as input to the different back-ends of the
AVISPA tool [40]. Hence, the main goal in the design of the IF was to provide a low-level description of the protocol that
is suitable for automatic analysis and yet this format should be independent from the analysis methods employed by the
various back-ends. The back-ends are implemented using formal methods and theoretical axioms and are used to provide
protocol falsification, bounded and unbounded verification. Two backs ends used for analysis of the proposed protocol are
On-the-Fly Model-Checker (OFMC) and CL-based Attack Searcher (CL-Atse).

e OFMC: This back-end builds the infinite tree defined by the protocol analysis problem and executes different symbolic
techniques to search the state space in a demand-driven way, i.e., on-the-fly. OFMC helps to detect attacks and verify

220 S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223

role server(U,S : agent,

K,Ea, Sk :symmetric_key,

Hash : hash_func,

SND,RCV: channel(dy))
played_by S
def=
local
State : nat,
Un1,Pass1,Ra,Ai Ai1,Xa,Ga,Ck,Vii : text,
Exp_tm,P1,P2,P22,P3,P4,N2,Da,Ti,Vi : text
constf n,y k,z km_k,p_p,s_p : protocol_id
init State := 1
transition

1.State = 1 ARCV(U.{Un1'.Pass1'}_Ea.S) =|>

State' := 3\ Ra' := new()
NAXa' := new()
NGa' == new()
NExp_tm' := new()
ATi' ;= xor(Ra',Hash(Xa"))
N AJ' := Hash(xor(xor(Ra',Hash(Xa')),Pass1"))
N Ai1' := exp(Hash(xor(xor(Ra',Hash(Xa')),Pass1')),Ga')
A Ck' := Hash(Hash(Ra'.Xa').Hash(Exp_tm'.Un1))
N SND{{Ck'}_K)
Nsecret(Ck',f_n,{U,S})
Nwitness(S,U,seq4,Ck')
Nrequest(S,U,req3,Un1'.Pass1')

2.State = 3 A RCV({Un1'.P1'.P2"}_Ea) =|>
State' := 5 A\ Xa' := new()

A Ti' ;= xor(Ra',Hash(Xa"))
A Ra' := xor(Ti',Hash(Xa'))
N Exp_tm' := new()
N Ck' := Hash(Ra'.Xa'.Exp_tm'.Un1")
N P22' :=exp(P1',Ck')
N Ga':= new() A N2' := new()
NP3 :=exp(N2',Ga') \ Pass1' := new()
NAI' ;= Hash(xor(xor(Ra',Hash(Xa')),Pass1'))
A P4’ := exp(N2' Ai')
NASND({Ti".P3'.P4'}_K)
Nsecret(Ti'y_k,{U,S})
Nsecret(P3',p_p,{U,S})
Nsecret(P4',s_p,{U.S})
Nwitness(S,U,seq5,Ti'.P3'.P4")
Nrequest(S,U,req4,Un1".P1'.P2)

3.State =5/ RCV({Vi7}_K) =|>
State' := 7 \ P1":=new() A P4"=new()
A Ck":=new()
A\ Vii=Hash(exp(P1',Ck').P4)

end role

Fig. 3. Role—server. (Note: The names of the parameters in the protocol have been changed in the code according to the syntax of the AVISPA tool.)

the correctness of the protocol for a bounded number of sessions but without limiting the number of messages that an
intruder can generate [40-42].

o CL-AtSe: This back-end is used to detect the attacks on the protocol by using a set of constraints that are obtained by
translating the security protocol specification written in Intermediate Format (IF). Detection of attacks and translation
of protocol specifications that are designed based on the adversary’s knowledge, are fully automated and are internally
performed by the CL-AtSe model checker [40-42].

8.1. Protocol specification in AVISPA

The analysis of the protocol is performed by defining the protocol in HLPSL and testing it using AVISPA back-ends. This
type of analysis is useful in locating design flaws and problems that would be very difficult and expensive to solve once the
protocol has been deployed in real systems. Although this approach plays a very important role in the evaluation of security
protocols by analyzing their design and security from a theoretical and formal point of view, the actual implementation
results may vary. In order to analyze the protocol using AVISPA tool, the following steps are executed:

Step 1. The protocol is represented in the HLPSL specification.
Step 2. Using the translator HLPSL2IF, the HLPSL code is to be translated into IF.
Step 3. The translated IF specification is input to the back-end of the AVISPA tool.

In our protocol model described in HLPSL, there are two basic roles ‘device’ and ‘server’, which represent the agents U
and S respectively. Here, we represent the HLPSL coding of ‘device’ role in Fig. 2 and ‘server’ role in Fig. 3.

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 221

role session(U,S : agent,
K,K4,K2,P : symmetric_key,
Hash hash_func)
def=

local SA,SB,RA,RB :channel(dy)

composition
device(U,S ,K,P,Hash,SA ,RA) N\ server(U,S,K,K4, K2 Hash,SB,RB)

end role

Fig. 4. Role—session.

role environment() def=

const k1,e_m.,g_m,h_m, f_n,y_k,z_k,m_Kk,p_p,s_p.a_m,b_m :protocol_id,

seq1,seq2,seq3,seq4,seq5 :protocol_id,
reql,req2,req3,req4 :protocol_id,
kab,kai,kib,kba,k11,k12,k13,k14 kia,kbi :symmetric_key,
k15,k16,k17,k18,k19,k20,k21,k22 :symmetric_key,
u,s : agent,

h : hash_func

intruder_knowledge= {u,s,kai,kia,kbi,kib}

composition
session(u,s,kab,k11,k12,k13,h)

Nsession(u,i,kai,k14,k15,k16,h)

Nsession(i,s,kib,k17,k18,k19,h)

end role
goal

secrecy_of k1,e_m,g m,h_m,f ny k,z km_Kk,p_p,s_p,a_ m,b_m,d_d
authentication_on seq1
authentication_on seq2
authentication_on seq3
authentication_on seq4
authentication_on seq5

authentication_on req1
authentication_on req2
authentication_on req3
authentication_on req4
end goal

environment()

Fig. 5. Role—environment.

After mutual verification is accomplished, a session is setup between device and server. In order to define the session of
the protocol, composed roles are defined after defining the basic roles. Fig. 4 depicts the role ‘session’.

In session segment, both the basic roles (Device, Server) are instanced with concrete arguments. ‘Session’ role contains
global constants and a composition of other roles, where the intruder may act as the role of a legitimate user. Then a
top-level role ‘Environment’ is defined that is depicted in Fig. 5. The constant ‘I’ is used to personify as an intruder. The
intruder also participates in the execution of the protocol as a concrete session. The properties specified in ‘Goal’ section are
also depicted in Fig. 5. The symbol (seq1) is the protocol ID used to authenticate the identity and password using predefined
function of AVISPA library. WITNESS function authenticates the value transmitted over the channel safely to another role
and check for various attacks. REQUEST function authenticates the value that the role receives safely by any other role.
SECRET function is used to share the value in encrypted form among the roles corresponding to the protocol ID. The current
version of HLPSL supports the standard authentication and secrecy goals and identifies various types of attacks over the
communication channel.

8.2. Formal security analysis of the protocol
The proposed scheme is analyzed using OFMC and CL-AtSe back-ends and the results are shown in Figs. 6 and 7. Under this

model, the intruder has full control over the network in such a manner that all messages sent by the agents corresponding
to the roles are available to the intruder. The intruder may intercept, analyze and/or modify messages as long as he knows

222 S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223

% OFMC
% Version of 2006/02/13
SUMMARY
SAFE
DETAILS
BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL
fhome/avispa/web-interface-computation/./tempdir/workfilevHfaiv.if
GOAL
as_specified
BACKEND
OFMC
COMMENTS
STATISTICS
parseTime: 0.00s
searchTime: 0.14s
visitedNodes: 6 nodes
depth: 3 plies

Fig. 6. Output of OFMC backend.

SUMMARY
SAFE

DETAILS
BOUNDED_NUMBER_OF_SESSIONS
TYPED_MODEL

PROTOCOL
/home/avispa/web-interface-computation/./tempdir/workfilevHfaiv.if

GOAL
As Specified

BACKEND
CL-AtSe

STATISTICS

Analysed : 2 states
Reachable : 0 states
Translation: 0.05 seconds
Computation: 0.00 seconds

Fig. 7. Output of CL-AtSe backend.

the required keys. He can act as any agent and send any message to some other agent participating over the communication
channel. The back-ends execute all possible security threats on the protocol as in this model intruder is given full control of
the communication channel. The simulation results show that the proposed protocol is secure. Moreover, the mathematical
security analysis based on the attack model also proves the security of the protocol. Hence, the protocol can be deployed
safely for practical implementations.

9. Conclusion

An ECC based mutual authentication protocol for secure communication between embedded devices and cloud servers
has been presented in this paper. Previously proposed schemes based on ECC either have high computation cost or do not
satisfy all the essential security requirements. A formal security analysis based on attack model proves that the protocol
is robust against all the security threats. Automated verification of the protocol using AVISPA tool has been performed.
Results of the protocol show that the protocol is safe and is efficient in terms of computation cost. Besides having low
computation cost, the proposed security protocol can be practically implemented with any of the embedded devices that
are HTTP enabled. Also, the implementation of the protocol will expand the coverage of capabilities offered by IoT making
them more reliable.

References

[1] M. Sascha, W. Sebastian, Secure communication in microcomputer bus systems for embedded devices,]. Syst. Archit. 54 (2008) 1065-1076.
[2] H. Debiao, Z. Sherali, An analysis of RFID authentication schemes for Internet of Things in health care environment using elliptic curve cryptography,
IEEE Internet Things J. 2 (1) (2015) 72-83.

http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref1
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref2

S. Kalra, S.K. Sood / Pervasive and Mobile Computing 24 (2015) 210-223 223

[3] A.Rahat, S.C. Mehrotra, A review on elliptic curve cryptography for embedded systems, Int. J. Comput. Sci. Inf. Technol. 3 (3) (2011) 84-103.
[4] M. Salas, A secure framework for OTA smart device ecosystem using ECC encryption and biometrics, in: Communications in Computer and Information
Sciences (CCIS), Vol. 381, Springer-Verlag, 2013, pp. 204-218.
[5] M. Kranz, P. Holleis, A. Schmidt, Embedded interaction: Interacting with the Internet of Things, IEEE Internet Comput. 14 (2) (2010) 46-53.
[6] S.Subashini, V. Kavitha, A survey on security issues in service delivery models of cloud computing, J. Netw. Comput. Appl. 34 (1) (2011) 1-11.
[7] T.S. Chou, Security threats on cloud computing vulnerabilities, Int. J. Comput. Sci. Inf. Technol. 5 (3) (2013) 79-88.
[8] Amazon.com, Amazon elastic compute cloud, URL: http://aws.amazon.com/ec2/ (accessed June 2015).
[9] Amazon.com, Amazon elastic block store, URL: http://aws.amazon.com/ebs/ (accessed June 2015).
[10] Microsoft Windows Azure Platform, URL: http://www.microsoft.com/azure/default.mspx (accessed June 2015).
[11] Q. He, S. Zhou, B. Kobler, D. Duffy, T. McGlynn, Case study for running hpc applications in public clouds, in: High Performance Distributed Computing,
ACM, 2010, pp. 395-401.
[12] KR. Jackson, L. Ramakrishnan, KJ. Runge, R.C. Thomas, Seeking supernovae in the clouds: a performance study, in: High Performance Distributed
Computing, ACM, 2010, pp. 421-429.
[13] M. Lei, Y. Xiao, S.V. Vrbsky, C.C. Li, Virtual password using random linear functions for online services. ATM machines and pervasive computing,
Comput. Comm. 31 (18) (2008) 4367-4375.
[14] Y. Wu, H. Yao, F. Bao, Minimizing SSO effort in verifying SSL anti-phishing indicators, in: International Information Security Conference, IFIP TC 11,
vol. 278, 2008, pp. 47-61.
[15] Microsoft Passport, 2009. Available from: http://www.passport.net/ (accessed June 2015).
[16] S.K. Sood, A.K. Sarje, K. Singh, Dynamic identity-based single password anti-phishing protocol, Secur. Commun. Netw. 4 (4) (2009) 418-427.
[17] S.K. Sood, AK. Sarje, K. Singh, Inverse cookie-based virtual password authentication protocol, Int. J. Netw. Secur. 12 (3) (2011) 292-302.
[18] K. Imamoto, K. Sakurai, Design and analysis of Diffie-Hellman based key exchange using one-time ID by SVO logic, Electron. Notes Theor. Comput.
Sci. 135 (2005) 79-94.
[19] S.Kalra, S. Sood, Elliptic curve cryptography: survey and its security applications, in: International Conference on Advances in Computing and Artificial
Intelligence, ACM, 2011, pp. 113-117.
[20] S.T. Wu, J.H. Chiu, B.C. Chieu, ID-based remote authentication with smart cards on open distributed system from elliptic curve cryptography, in: [EEE
International Conference on Electro Information Technology, 2005.
[21] X. Tian, D.S. Wong, RW. Zhu, Analysis and improvement of authenticated key exchange protocol for sensor networks, IEEE Commun. Lett. 9 (11)
(2005) 970-972.
[22] P.E. Abichar, A. Mhamed, B. Elhassan, A fast and secure elliptic curve based authenticated key agreement protocol for low power mobile
communications, in: International Conference on Next Generation Mobile Applications, Services and Technologies, 2007, pp. 235-240.
[23] J.H. Yang, C.C. Chang, An ID based remote mutual authentication with key agreement scheme for mobile devices on elliptic curves cryptosystems,
Comput. Secur. 28 (3-4) (2009) 138-143.
[24] S.K.Hafizul, G.P. Biswas, A more efficient and secure ID-based remote mutual authentication with key agreement scheme for mobile devices on elliptic
curve cryptosystems, J. Syst. Softw. 84 (11) (2011) 1892-1898.
[25] H.Debiao, C.Jianhua, H. Jin, A ID-based client authentication with key agreement protocol for mobile client-server environment on ECC with provable
security, Inform. Fusion 13 (3) (2012) 223-230.
[26] S.Ray, G.P. Biswas, Establishment of ECC based initial secrecy usable for IKE implementation, in: World Congress on Expert Systems, 2012, pp. 1-9.
[27] J. Granjal, E. Monteiro,]. Silva, End to end transport layer security for Internet integrated sensing applications with ECC public-key authentication,
in: [FIP Networking Conference, 2013, pp. 530-535.
[28] R.Jiang, C. Lai, J. Luo, X. Wang, H. Wang, EAP based group authentication and key agreement protocol for machine type communication, Int. J. Distrib.
Sens. Netw. (2013) http://dx.doi.org/10.1155/2013/304601.
[29] X. Yao, Z. Chen, Y. Tian, A lightweight attribute-based encryption scheme for the Internet of Things, Future Gener. Comput. Syst. (2014)
http://dx.doi.org/10.1016/j.future.2014.10.010.
[30] S.R. Moosavi, E. Nigussie, S. Virtanen,]J. Isoaha, An elliptic curve-based mutual authentication scheme for RFID implant system, in: International
Conference on Ambient Systems, Network and Technologies, vol. 32, 2014, pp. 198-206.
[31] Y.P. Liao, C.M. Hsiao, A secure ECC-based RFID authentication scheme integrated with ID-verifier transfer protocol, Ad Hoc Networks 18 (2014)
133-146.
[32] M. Turkanovic, B. Brumen, M. Holbl, A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks based
on the Internet of Things notion, Ad Hoc Networks 20 (2015) 96-112.
[33] K.T. Nguyen, M. Laurent, N. Oualha, Survey on secure communication protocols for the Internet of Things, Ad Hoc Networks 32 (2015) 17-31.
[34] S. Distefano, G. Merlino, A. Puliafito, A utility paradigm for IoT: The sensing cloud, Pervasive Mob. Comput. 20 (2015) 127-144.
[35] P.Persson, O. Angelsmark, Calvin—Merging cloud and IoT, in: International Conference on Ambient Systems, Network and Technologies, vol. 52, 2015,
pp. 210-217.
[36] B.Hancock, Security views, Comput. Secur. 18 (7) (1999) 553-564.
[37] WJJ. Caelli, E.P. Dawson, S.A. Rea, PK], elliptic curve cryptography and digital signatures, Comput. Secur. 18 (1999) 47-66.
[38] M. Ayedemir, L. Bottomley, M. Coffin, C. Jeffries, P. Kiessler, K. Kumar, W. Ligon, J. Marin, A. Nilsson,]. McGovern, A. Rindos, K. Vu, S. Woolet, A. Zaglou,
K. Zhu, Two tools for network traffic analysis, Comput. Netw. 36 (2-3) (2001) 169-179.
[39] L.Vigano, Automated security protocol analysis with the AVISPA Tool, Electron. Notes Theor. Comput. Sci. 155 (2006) 61-86.
[40] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Companga, J. Cuellar, P.H. Drielsma, P.C. Heam, O. Kouchnarenko,]J. Mantovani, S. Modersheim,
D. Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigano, L. Vigneron, The AVISPA Tool for the Automated Validation of Internet Security Protocols
and Application, in: LNCS, vol. 3576, Springer-Verlang, 2005, pp. 281-285.
[41] A.lIzquierdo,].M. Sierra, J. Torres, An analysis of conformance issues in implementations of standardized security protocol, Comput. Stand. Interfaces
31(2009) 249-251.
[42] L. Chao, M. Maode, M. Jianfeng Ma, Z. Yaoyu, A novel three-party authenticated key exchange protocol using one-time key, J. Netw. Comput. Appl. 36
(2013) 298-503.

http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref3
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref4
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref5
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref6
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref7
http://aws.amazon.com/ec2/
http://aws.amazon.com/ebs/
http://www.microsoft.com/azure/default.mspx
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref11
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref12
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref13
http://www.passport.net/
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref16
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref17
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref18
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref19
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref21
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref23
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref24
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref25
http://dx.doi.org/10.1155/2013/304601
http://dx.doi.org/10.1016/j.future.2014.10.010
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref31
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref32
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref33
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref34
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref36
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref37
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref38
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref39
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref40
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref41
http://refhub.elsevier.com/S1574-1192(15)00151-0/sbref42

	Secure authentication scheme for IoT and cloud servers
	Introduction
	Embedded cloud computing: operating environment
	Security issues and related work
	Preliminaries of Elliptic Curve Cryptography
	ECDLP: the hard problem
	Mathematical operations involved in ECC

	Proposed protocol
	Registration phase
	Pre-computation and login phase
	Authentication phase

	Security analysis
	Attack model
	System security requirements
	Security analysis and system requirement analysis
	Resistance to replay attack
	Resistance to man-in-the-middle attack
	Resistance to cookie theft attack
	Resistance to eavesdropping
	Resistance to brute force attack
	Resistance to offline dictionary attack
	Resistance to leak of verifier attack
	Provides mutual authentication
	Provides confidentiality
	Provides anonymity
	Provides forward secrecy

	Computation and communication cost analysis
	Communication cost of the protocol
	Computation cost of the protocol
	Storage cost of the protocol
	Functionality comparisons

	Formal verification of the protocol using AVISPA
	Protocol specification in AVISPA
	Formal security analysis of the protocol

	Conclusion
	References

