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a b s t r a c t

We report on our extended research on GymSkill, a smartphone system for comprehensive
physical exercising support, from sensor data logging, activity recognition to on-top
skill assessment, using the phone’s built-in sensors. In two iterations, we used principal
component breakdown analysis (PCBA) and criteria-based scores for individualized and
personalized automated feedback on the phone, with the goal to track training quality and
success and give feedback to the user, as well as to engage andmotivate regular exercising.
Qualitative feedback on the system was collected in a user study, and the system showed
good evaluation results in an evaluation against manual expert assessments of video-
recorded trainings.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Regular physical activity is important to personal health and well-being, both for the individual and the society.
Encouraging people to exercise more is key to maintaining or regaining personal health but, unfortunately, difficult to
achieve in practice. One barrier to exercise is that lay people often are insufficiently knowledgeable about effective and
safe physical exercises. Maintaining an exercise regime over longer periods of time requires high levels of motivation. It is
well established that access to a personal trainer has a significant impact on both adherence and motivation to a program
of physical exercise [1], and the quality of the exercise undertaken [2]. They continuously monitor the exercises and both
provide individualized advice and motivate the trainee. Personal trainers also play an important role in rehabilitation, e.g.,
exercise programs for muscle recovery after surgery, for which there is a need for advice regarding effectiveness and safety.
Unfortunately, this is too expensive to provide over extended periods of time, and where financial factors are not a barrier,
personal privacy preferences can be (i.e., the perception of the potential for embarrassment).

Smartphones, being pervasive devices, are ideal to support and contribute to regular physical exercising. Apps for all
purposes have turned the phone to a multi-functional device, far beyond its classic domain of application. They transform
the phone to a platform for a variety of applications pervading everyday life: From reading news on the go, over location-
based services, games, up to specialized leisure-time and ‘hobby’ apps for every flavor. Musicians can turn their phone into
a guitar tuner, gourmets into a wine guide, and so on. This trend is also visible in the sports domain. Increasing processing
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power, integrated sensors, and the ability for rich, multimodal interaction do qualify smartphones not only as personal
assistants, but also as personal fitness coaches for supporting individualized training and skill assessment.

The current generation of smartphones with their wealth of sensing, communication, and computing capabilities
represents an ideal platform for replicating the services of personal trainers in a way that is accessible to and affordable for
virtually everyone. Enabling expert assessment of physical exercises and/or rehabilitation in everyday life (sports) situations
integrates mobile interaction further into the real world and has the potential to have a substantial positive impact on
people’s lives.

We report on our research on an integrated human-activity assessment system, which supports lay users in their
everyday life exercising routine with automatically generated expert assessments. The presented system captures the
complete training process from exercise descriptions, sensor data logging, activity recognition and on-top skill assessment.
This allows the user for individualized, self-determined training supported by coach-quality feedback. Our approach uses
balance board training as one representative example for physical exercise support, applicable to a wide range of users
and scenarios, both for fitness training and rehabilitation. In an iterative process, we developed a smartphone application
that uses integrated sensors for exercise skill assessment on multiple levels for a variety of exercises. We understand skill
assessment as individualized, personalized and automated feedback that allows tracking training quality and success, with
the claim to replicate the expert judgments of a professional human coach.

As a basis for our research, we performed an extensive review of both commercial applications and scientific research
on training support. With the assistance of a sports medicine specialist, we developed an exercise set, exercise descriptions
and training plans that we evaluated in an iterative design process with a focus group. Six users performed a 20-exercise set
twice a day during one week and produced 1200 exercise records. This basis was manually assessed by an expert and used
as a basis and evaluation of ground truths of our assessment algorithms.

In a first prototype, a novel unsupervised and automated activity analysis approach – principal component breakdown
analysis (PCBA) – is used to generate informative and easy to interpret qualitative user feedback in the form of color maps.
Based on this, a second iteration then goes further and generates more precise and targeted feedback on individual qualities
of the performed exercises directly on the device.

Our assessment algorithms show high accuracy in practical evaluations compared to manual judgments provided by
sports medicine experts. Qualitative user feedback indicated the acceptance of our system and a notable potential for
maintaining long-term exercising engagement. The analysis provided to the user is consistent to the professional analysis
of a personal coach. This was confirmed in the two studies presented with the aid of an external expert. Physical interaction
with training devices is facilitated using NFC-augmented (Near Field Communication) balance boards.

We show for the first time that an automated approach utilizing sensing and computing capabilities of modern mobile
phones can provide expert-level feedback on the quality of physical exercises as they are regularly performed for recreation
or rehabilitation purposes. This approach has great potential for the generalizability of physical mobile interaction in sports,
especially in the context of the aging society, but also in the more general domain of human skill assessment of everyday
activities, which is relevant for a number of therapeutical applications, e.g. skill maintenance in Dementia or Parkinson’s
care. Our evaluation indicates that we can keep the motivation with coach-like feedback longer than with conventional
approaches.

2. State of the art

Advances in the miniaturization of (inertial) sensing technology, along with the increasing availability of smartphones
as a sensing platform, have given rise to many commercial appliances, apps, and general academic interest into people’s
physical activity. This allows for embedded interaction [3], that is to look at new opportunities and application areas that
arise for interactive systems and at novel ways for human–computer interaction (HCI) enabled thereby.

Beyond straightforward applications in medicine, where physical activity has to be quantified reliably, many lifestyle,
sports and professional assessment systems have been developed. This section first explores systems that employ inertial
sensors to assess different aspects of physical activity. Subsequently, the landscape of (commercial and free) health and
fitness applications on smartphones is summarized in a comparative study.

2.1. Automatic assessment of physical activity

Body-worn and pervasive sensors have been employed in a large variety of recognition scenarios, identifying different
types of physical activities [4–8] with satisfying accuracy. Quantifying qualitative aspects of human motion, such as motor
performance, has been of intense focus in medicine, where particularly the assessment of degenerative conditions such as
Parkinson’s disease is of interest [9,10]. Automated skill assessment for domains where less prior knowledge is accessible is
a relatively novel application of pervasive computing. Here augmentation of physical training devices with sensors has been
used as the basis for monitoring outdoor sports such as skiing [11] or tennis [12], as well as indoors, such as recognition
and tracking of free-weight exercises with accelerometers in a glove [13]. In the gym, sensor data from balance board
training [14,15] has been used to provide feedback on the performance quality. Furthermore, body-worn inertial sensors
have been used for the assessment of (professional) athletes in sports such as snow-boarding [16], swimming [17] and
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Table 1
The 15 health and fitness apps considered by this review can be classified into the categories GPS tracker, workout planner and exercise book. The last two
columns indicate the number of reviews and average ratings in the Android market.

Category Name Developer Version Downloads Rev. ⋆

GPS tracker AndAndo Javi Pacheco 1.37 50.000–250.000 6342 4.5
GPS tracker Cardio trainer WorkSmart labs inc. 3.3.0 >250.000 28326 4.5
GPS tracker miCoach Adidas 2.0 >1.000.000 11843 4.5
GPS tracker RunKeeper Fitness keeper inc. 2.4.1.10 >250.000 5364 4.6
GPS tracker runtastic runtastic 1.4 50.000–250.000 529 4
GPS tracker Sports tracker Endomondo 3.3.2 >250.000 5999 4.5
GPS tracker Sports tracker Sports tracking ltd. 1.8.5 >500.000 15963 4.5
Workout planner Ab workout free Daniel Miller 1.0 5000–10.000 12 4.5
Workout planner Abs & core PumpOne 1.0 100–500 5 4.5
Workout planner Body fitness Health team 1.2.0 50.000–250.000 662 4
Workout planner C25K lite Guy Hoffmann 1.1.2 10.000–50.000 232 4
Workout planner JEFit JeFit inc. 3.2.1208 >250.000 6342 4.5
Workout planner Workout coach Culleware 2.01 10.000–50.000 79 3.5
Exercise book Fitness expert R4z0 1.5 5000–10.000 32 3
Exercise book Pilates Saulius 1.0 5000–10.000 57 3
Exercise book Yoga SusaSoftX 1.4 50.000–250.000 293 4

running [18]. Beyond applications in sports, similar systems have been employed to assess professional skills, e.g. in surgery
using a sensor-enhanced glove [19] or to assess metal filing skill [20], that have applications in training and evaluation.

UbiFit Garden [21] brings activity recognition to the smartphone. For a certain amount of physical activity, flourishing
flowers appear on the phone’s display as a motivational component. BALANCE [22] estimates the calorie expenditure in
everyday life, contributing to long-term wellness management. Both smartphone solutions rely on additional sensors worn
on the body.

A multitude of commercial health devices and sensors, such as oximeters and heart rate monitors, formerly reserved for
professional use, are now available and can be connected to smartphones. GPSwatches, pedometers and heart ratemonitors,
allow recording and tracking of physical activity. For home use, hardware platforms like Nintendo Wii or Microsoft Kinect
encourage users to physical activity, without focus on correct execution. Activity loggers like activPal1 or FitBit2 monitor
health-related data and help create an activity profile. However, those solutions build upon dedicated systems or external
sensor hardware. Since we want to motivate smartphone solutions working the real world without the need for additional
hardware, the state of the art in health and fitness assistants on the smartphone is investigated subsequently.

2.2. Comparative review of smartphone apps for health and fitness

We evaluated the design space of current (beginning of 2011) popular health and fitness smartphone apps in a
comparative review. For our review, we considered applications from theHealth and Fitness category in the AndroidMarket.
A comparison with other app repositories (iTunes App Store and Nokia OVI Store) revealed that the offerings on different
platforms are very similar. We chose Android for our review, being the platform with the highest coverage in 2011 and the
fastest growing one. The heterogeneity of Android devices makes the platform also very suitable for fitness support, as the
user can select a device adequately for personal needs (e.g. a small and light one on the run, and larger-screen devices for
indoor usage).

In order to reflect the highest quality and most satisfying apps available at investigation time, we used the Most Popular
list in the Android Market and only considered apps with at least 3-star user ratings. We chose 16 apps as a representative
sample for this review according the procedure described above. Except Workout Planner, which costs $1.99, all apps
were available for free. Endomondo Sports Tracker, SportsTracking Sports Tracker, Adidas miCoach, RunKeeper Free, Cardio
Trainer, AndAndo, JEFit, C25K, Daily AbWorkout Free, Body Fitness, Abs & Core, Workout Coach, Fitness Expert, Pilates, and
Yoga (see Table 1). Some of them offer additional functionality in a pay version, but do not show a qualitative difference.

2.2.1. Heuristic evaluation
Quality assessments were created in a heuristic evaluation of the selected apps, performing a three-step analysis:

1. The core task functionality was tested (task-focused walkthrough).
2. Optional features were explored (explorative walkthrough).
3. The descriptions by the app developers in the Android Market were compared to the actual functionality.

1 http://www.paltech.plus.com/products.htm.
2 http://www.fitbit.com/.

http://www.paltech.plus.com/products.htm
http://www.fitbit.com/


206 M. Kranz et al. / Pervasive and Mobile Computing 9 (2013) 203–215

Four heuristics were used to cover the most important aspects of mobile health and fitness support, which are explained
below.
App utility and usability for regular training. The usability for daily application in context of the supported activities was eval-
uated. Factors observed in this area are the adequacy of interaction (size of controls, appropriate output, comprehensibility)
and the customizability, i.e. whether the user can tailor the app to his needs. It was also assessed whether the app makes
‘smart’ use of data (reuses once entered information, infers information from known data to minimize explicit input).
Instructional quality of apps. It was examined how well the instructions serve to enable autonomous training guided by the
mobile device. This includes the comprehensibility and extent of instructions, sufficient level of detail, etc.
Sensor data usage.We evaluated to what extent sensor information is recorded and used by training and fitness applications.
This includes sensor data recording for later review (e.g. GPS traces, acceleration data), inference of activity types, assessment
of exercising skills, and incorporation of recent developments of Pervasive Computing, e.g. location determination to adapt
training to indoor and outdoor environments, context-sensitivity and multi-user interaction.
Motivation. It was examined how well an application is suited to generate and maintain long-term motivation and
engagement, through e.g. diversity in the training experience, cooperative training (social incentive), and feedback provision
on the training progress to maintain extrinsic motivation.

2.2.2. Results and discussion
We identified three categories of applications: GPS trackers, workout planners, and exercise books, each of which might

include an option to connect, share or otherwise use the data in the context of social networks.
GPS trackers. Apps in this category (see Table 1) annotate outdoor activities like running or cyclingwith location information.
After the training, the GPS traces can be reviewed. Further information from the phone’s built-in sensors, such as
accelerometer or magnetometer data, is usually not included. Some do, however, allow the connection to e.g. heart rate
monitors and adapt training instructions to the heart rate (miCoach).
Workout planners. These apps accompany goal-directed workout such as bodybuilding or weight training. They typically
contain exercises organized by body parts or muscle groups and log exercise performances (quantitative, not qualitative).
While the functionality and usability of apps in this category greatly varies, none offer exercising monitoring in terms of
quality or individual performance.
Exercise books. These apps provides a browsable compendium of exercises, with usually the least functionality, compared to
the other genres, but the deepest background information on correct exercise performance and health-related issues.

Summarizing our findings of the evaluation, the following points can be concluded.

• The diversity of health and fitness apps is limited, despite a great number of apps in the respective category in the Android
Market. Mobile fitness apps either focus on the recording part (which we called GPS loggers), or the instructional part
(which we called exercise books). GPS loggers record location information so that a trace of the cardio activity becomes
visible. A combination of exercise description and logging are workout planners, which often combine the weak parts
of both sides: They just log that a certain exercise was performed, and instructions are not as detailed as in the exercise
book category. The ideal would be combining the advantages from all three categories.

• GPS loggers have the highest popularity (according to the number of downloads) in the Android Market. The reason
probably lies in the high popularity of running, cycling and similar activities and the variety of supported activities by
these apps. It can also be seen as an indicator in favor of a comprehensive approach of supporting fitness in different
situations and locations. Body Fitness already picked up this idea by integrating both workout and cardio into one app,
as well as supplements like a BMI (Body Mass Index) calculator and recipes. However, apps do not support yet pervasive
training (at home, in the office, outdoors, . . . ) with activity recognition and contextually suited exercises.

• Multi-user support is not yet integrated, but could be enabled by the creation of user profiles on the device could enable
multi-user support also for logging applications and workout planners.

• Few applications are compatible with sports hardware, such as heart rate monitors or wearable sensors. Neither
do smartphones use the built-in sensors in current health and fitness applications, although almost all modern
smartphones integrate accelerometers, magnetometers and gyroscopes. Device sensor usage could comfortably enable
more functionality, without the need to buy, connect and synchronize hardware.

• While some apps allow uploading training information to a portal for later review, none provide individualized,
immediate and thereby motivating feedback directly on the phone on the exercise just performed.

• The ‘advice’ provided by current systems such as e.g. the AdidasmiCoach is on amore general level and requires educated
interpretation and therefore is not really comparable to expert-like assessment of the individual exercises.

• Current health and fitness apps only partially focus on long-term motivation so far. Social connections, e.g. to beat a
friend’s results or to challenge a stranger, can be a motivational factor. The Facebook and Twitter integration offered by
some apps is presumably rather motivated by promoting the app. Information on long-term usage is missing in any of
the reviewed app’s descriptions in the Market. If an app would explicitly address motivation, this could be an enormous
benefit for advertisement.We believe that adding individualized and personalized feedback could increase the long-term
motivation of the user. We contribute to this high-level goal by facilitating this feedback on mobile devices.
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2.3. Lessons learned and recommendations

Based on this review, we deduce some general guidelines for future health and fitness apps. The evaluation results show
great potential for improvement in the reviewed disciplines usability, instruction quality and fostering motivation. Sensing
and context information hereby both play an important role.
Usability improvement. Unnecessary interaction with the device can be reduced e.g. by activity recognition. Research
investigated activity detection with wearable sensors [4–6,23]. These techniques need to be tailored to smartphones, which
are already equipped with a multitude of sensors. Evaluating acceleration and gyroscope data, could make the recognition
of the performed activity possible, making a manual activity selection in the app obsolete. Also the activity-related calorie
expenditure can thereupon be estimated. This results in a far more accurate determination of burnt calories after cardio
training, as e.g. pauses or speed changes are taken into account.
Instructional quality. The quality of exercise instructions can be improved through well-founded information and
physiological correctness. Moreover, the combination with skill assessment and targeted feedback could be a large step
towards self-determined, autonomous training. In physiotherapy or rehabilitation, the correct exercise performance is
important for the healing process. The presence of a doctor or physiotherapist is not always possible, and permanent
supervision not comfortable. Accurate exercise assessment based on sensor information and individualized feedback
supports correct exercise accomplishment. Mobile phone feedback could thus be a valuable extension – but no replacement
– to physiological care.
Long-term motivation. We pointed out the importance of intrinsic motivation for upholding regular physical activity. The
integration of feedback in sports and fitness applications adds to establish long-termmotivation and engagement in various
ways. First, a training assessment for singular exercises in the formof a score (‘you reached 85/100 points’)motivates beating
this value and improving further to reach perfection. Second, a history of training results allows tracking improvement,
acknowledging that regular training ‘pays off’. More sophisticated skill assessment, which we report on, could even enable
targeted feedback. Apps could identify aspects of exercises with potential for improvement or indicate body parts that need
particular training. Based on this analysis, the app could suggest suitable exercises addressing ‘sticking points’ and create a
tailored training plan. Training assistance would become more efficient and help to reach goals faster.

The integration of playful aspects and connection to social networks can further contribute to long-term motivation.
Some applications already upload training results to Facebook, but real cooperative training needs to go further. Viewing
friends’ high scores, and beating competitors make physical activity more fun than solitary training. These apps, though,
miss a professional assessment of the training quality. We try to close this gap by the presented research.

A step into this direction are apps such as Nike Training Club,3 an iPhone app (workout planner) combined with a social
network, advertising with long-term motivation, but it does not incorporate automated activity recognition. Based on skill
assessment, apps could also propose individualized training goals so that they are challenging, but not frustratingly hard.
This also has an impact on social sports apps, as then relative comparisons between users would be possible. This, we do
argue, will further support long-term motivation.

Intelligent exercise assessment and monitoring is also relevant for elderly people, e.g. in an Ambient Assisted Living
context. The smartphone application could be a reminder and a motivational factor to support physical activity, which is
important for health risk reduction.

3. GymSkill: automated assessment for balance board training

With GymSkill [24,25], we present a smartphone application that addresses the shortcomings described above and
introduces individualized exercise skill assessment fully based on integrated sensors. We describe the iterative design
process, qualitative user feedback and quantitative validation of our assessment algorithm.

3.1. Balance board training

We chose balance board training as a representative discipline for physical exercising support, applicable to a wide range
of young and old users, both for fitness training and rehabilitation [26,27]. With help of a sports medicine specialist, a set of
20 exercises was conceived and fed into the GymSkill application.

3.2. The GymSkill application

GymSkill is implemented as anAndroid application and consists of an exercise database, sensor data recorder and the skill
assessment presentation (see Fig. 3). During the performance, the smartphone (app running) is placed on top of the balance
board (see Fig. 1) so that it can record all of itsmovements. The user begins her training by selecting an individual exercise or a
complete training plan (see Fig. 4). Each exercise is explained step by step in text andpictures. During the actual performance,
the phone records accelerometer and magnetometer data as a basis for the assessment which is presented to the user after
completion of each exercise. GymSkill is freely available in Google Play as a research app under the name ‘GymSkill’.

3 http://www.nike.com/nikewomen/features/faqs?locale=en_GB.

http://www.nike.com/nikewomen/features/faqs?locale%3Den_GB
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Fig. 1. Left: GymSkill setup with smartphone placed on a balance board. Right: subject training with GymSkill.

3.3. Case study

A case study was conducted to collect initial sensor data for automatic exercise assessment, and to collect qualitative
user feedback on satisfaction with the GymSkill application. We recruited six users (2 females, 4 males) aged from 25 to
33 years (average age: 29) to perform sessions of 20 balance board exercises twice a day for five days, thus collecting 1200
exercise records.

3.3.1. Ground truth collection
For all performed exercises performed in the study, we recorded accelerometer data as ground truth using a Nexus One

smartphone that was fixed to the balance board using a rubber mat. The performances were recorded on video and their
quality was assessed by an expert. A rating scheme of 11 individual aspects such as movement angles, regularity and tempo
was used, adding up to 100 possible points.

3.3.2. Qualitative feedback
After the training sessions, participants were interrogated on the GymSkill application. Since the prototype used for

this study was not yet able to provide real-time feedback, the questions focused on the handling of the application and
its potential to motivate for regular training. The need for online feedback that was requested by ten participants at the
end of this study, has been implemented in the second iteration presented later. A summary of the results can be seen in
Fig. 2. Subjects stated that GymSkill could help to reach a training goal faster with an average of 4.2 on a 5-step Likert scale
(1 = fully disagree, 5 = fully agree), SD = 1.3. GymSkill’s potential to maintain long-term motivation was confirmed with
an average of 3.7 (SD = 1.0). Asked for the most attractive potential features of a personal fitness trainer like GymSkill,
individual exercise feedback was named with 5.0 (SD = 0.0), followed by individual exercise suggestions (4.8, SD = 0.4).
Subjects stated that they would use the application regularly with averagely 3.6 (SD = 1.0). The handling of the system
(placing the phone on the board to record data) was evaluated as easy (average agreement: 4.0, SD = 1.1); placing the
phone on the board to record data was apparently not perceived as problematic.

3.4. First iteration: Server-based automatic exercise assessment

In the first iteration, GymSkill was a two-part system consisting of the app itself and a server analysis component (see
Fig. 3, left diagram).

The logged information is sent to a server, where the automatic analysis is performed in terms of a complex retrospective
assessment of the exercise correctness, which serves as an indicator of the user’s skill. The calculated skill level sent back
to the mobile phone, indicated as visual feedback in different steps between ‘thumbs up’ and ‘thumbs down’. Additionally,
more sophisticated graph visualizations are available, which allow the review of the exercise over time and help the user to
identify specific problems.

During training, simple feedback like the remaining number of repetitions or excessive displacement of the board is is
signaled by a warning sound and visually.

3.4.1. Quality measures
In order to assess the quality of exercises, it is important to estimate global quality measures that cover the important

aspects of the performed motion. Advised by an expert clinician, the following attributes were defined.
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Fig. 2. Left: after 5 days of trainingwith a GymSkill prototype, users believe the app couldmotivate and help to reach training goals faster. Right: individual
feedback and suggestions of exercises were particularly attractive features. Answers given on a Likert scale (1 = fully disagree, 5 = fully agree). The box
indicates the interquartile range (middle 50%), the dot the mean value, and the bars minima and maxima.

(a) Iteration 1: the smartphone records sensor data during exercising,
which are processed by a server after the training to generate skill
assessment.

(b) Iteration 2: data is processed on the phone for
real-time feedback as well as sophisticated feedback
addressing individual aspects after the execution.

Fig. 3. Iterations of the GymSkill application.

Smoothness and continuity of movement. For continuous exercises, as they are typical for gym-based training, it is important
to maintain smooth motion. In order to remain relatively independent of the particular exercise and to avoid the excessive
use of prior knowledge, a novel local assessment approach has been developed (next section).
Global motion quality. Each exercise requires the user to perform particular motion sequences. The assessment on how well
these motions were performed is crucial for the assessment of the quality of the performed task.
Usage of board’s degrees of freedom. If a task requires the user to fully displace the board along at least one degree of freedom,
the fraction to which he uses this opportunity while avoiding extreme postures (e.g., touching the ground) provides a
valuable measure for exercise performance.

The goal of the automated assessment is to estimate measures for the aforementioned aspects and to combine them
into a single performance criterion or metric. Aiming at transferability of the method the amount of parameters and prior
knowledge used us limited as much as possible.

Before the actual analysis the recorded orientation-values (azimuth, pitch, roll) are normalized to a common value-range
with zero-mean. Deviation frommean translates into [−180°, +180°] and ismapped to [−1, +1]. For both pitch and roll the
calibrated 0-positions are taken as idle positions while the calibrated maximal displacement angles are mapped to [−1, 1],
i.e., [αmin, αmax] → [−1, +1].



210 M. Kranz et al. / Pervasive and Mobile Computing 9 (2013) 203–215

Fig. 4. User interface of the GymSkill application. Left: skill assessment after exercising, based on the evaluated sensor information.Middle: in the exercise
list, exercises that need further training can easily be identified in the first version of the GymSkill prototype. Right: global score, detailed skill report on
individual criteria and trends (small arrows) in the second iteration of GymSkill.

Algorithm 1 Principal Component Breakdown Analysis
Require: seq. S = S1 . . . SL with Si ∈ Rn (e.g. n = 3 for a, p, r orientation), max. window lengthW , reconstr. perc. p
Ensure: matrix P[L × W ] containing localized reconstruction errors for all L samples atW levels
for all w = 2 . . .W do

input dim. s = n × w
extract all analysis windows {W } with length w using sliding window proc. with shift = 1, dim. = s:

S → {W i}i=1...L−(w+1), with W i ∈ Rs

estimate
PCA({W i}) = {(λj, vj)}, j = 1 . . . w, λj ≥ λj+1

estimate target dimensionality d for reconstr. quality p:
d = k :

k
i=1 λi/

w
i=1 λi


≤ p

for pos = 1; pos < L − (w + 1); pos + +; do
extract analysis window W ∈ Rs at position pos
project to d-dim. sub-space: W → W d

∈ Rd

reconstruct original window: W d
→ W ′

∈ Rd

calc. reconstr. error, assign to position pos at level w
Pw
pos = ||W ′

− W ||

normalize pyramid range (across dataset)
end for

end for
return P

3.4.2. PCBA analysis

Local analysis. In addition to an overall analysis of quality of physical exercises GymSkill aims for unveiling interesting and
informative portions of the recorded sensor data streams. When analyzing re-occurring movements, which are smooth in
the ideal case, the term ‘interesting’ refers to those sections where the sensor data appear unusual compared to the rest.
This is e.g. the case when a participant hesitates or gets stuck while exercising.

Unlike standard techniques for time-series analysis (e.g. [28,29]) our approach processes sensor data of arbitrary
dimensionality. This is crucial since flattening sensor data to one-dimensional sequences (e.g. using the Euclidean norm) can
destroy potentially important information of the original signals. Our basic assumption is that sensor data for a particularly
analyzed movement should share certain (unknown) statistical properties. Unusual portions of a sequence will violate this
assumption and can thus be identified as such.

Algorithm 1 describes the local quality assessment algorithm — Principal Component Breakdown Analysis (PCBA). It is
based on a PCA of a sensor data sequence utilizing local neighborhoods. By means of a sliding window technique all analysis
windows of lengthw are extracted and a PCAmodel is learned. It is applied to project all frames to a lower-dimensional sub-
space whose dimensionality is determined by the analysis of the eigenvalue spectrum. Given a pre-defined threshold for
reconstruction quality (typically 95% of the variance shall be preserved) the target dimensionality for a particular frame-size
is chosen. Using the lower-dimensional projection then the original frames are reconstructed. The resulting reconstruction
errors are then used as measure for the quality of the underlying movement, which is sample-wise assigned to the original
sequence. The idea behind this quality measure is that PCA models will require more eigenvectors to preserve a certain
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(a) PCA-based assessment. (b) Wavelet scalogram.

Fig. 5. Local skill assessment using PCBA. Yellow and red areas represent quality breakdowns in exercises.

amount of variance of the original data if the underlying signal is less regular. By fixating the target dimensionality and
implicitly analyzing the modeled variance an effective quality assessment is gained.

For unsupervised analysis the ‘correct’ frame length, i.e., the size of the neighborhood that needs to be analyzed
for discovering potential characteristic breakdowns, needs to be known. Unfortunately, this information is typically not
available for practical applications. To overcome this dilemma we employ a multi-scale approach by performing quality
assessment on a pyramidal adjacency representation of sensor values with increasing frame lengths, which is comparable
to the general idea of Wavelet analysis or the approach presented in [29]. In contrast to the latter, however, the PCA based
approach focuses on self similarity andbreakdownsw.r.t. global characteristics. Fig. 5(a) shows the pyramidal representation
of an exemplary exercise segment where characteristic breakdowns (large values indicated in yellow and green) can clearly
be seen. For example at around t ≈ 60 and t ≈ 300 the participant hesitated in her circular rocker board exercise, which
results in substantial increases of the PCA based reconstruction errors at different scales. For comparison the – far less
informative – Wavelet scalogram of the same data is shown as well (Fig. 5(b)).

As ameasure for continuity themeanof the reconstruction error along a specific scale c is derived for feedback generation,
denoted as Dc :

Dc = 1/W
W

w=1

Pc,w. (1)

Global analysis. In order to derive the global motion quality, the motion axis which shows the largest energy during the
exercise, i.e., the one that provides the dominant signal, is estimated. If the training device offers d degrees of freedom the
following analysis is performed for the d most dominant axes subsequently. Using standard Kaplan–Meier estimation [30]
the empirical cumulative distribution function is derived and then integrated to form the empirical distribution function
(ECDF). This ECDF is compared to a gold-standard template, represented as an ideal distribution function, in two different
settings.

For rocking tasks the ECDF of a sigmoid with an amplitude of 0.8 × αmax with added Gaussian noise is used as the ideal
distribution. For balancing tasks instead a normal distribution with a variance of 0.1× αmax is employed. The parameters of
both distributions are motivated by insights provided by an expert clinician. For other cases where no such prior knowledge
is available instead the performance of a very skilled athlete or professional can be used to estimate the ideal behavior
empirically.

In the first setting, the two normalized distributions (zero-mean, unified variance) are compared using standard
Kullback–Leibler divergence (KLd):

Dg =


+∞

−∞

Pn(x) log
Pn(x)

ECDFn(x)
dx, (2)

where Pn and ECDFn correspond to the normalized ideal and empirical distributions.
Second, the un-normalized distributions are compared. The KLd in this setting gives insights into how well the degrees

of freedom on the board are utilized during the exercise (for rocking tasks) or howwell the subject can keep his balance (for
balancing tasks):

Da =


+αmax

−αmax

P(x) log
P(x)

ECDF(x)
dx. (3)

Fig. 6 illustrates the procedure.
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Fig. 6. The same empirical distribution (blue, continuous line) in comparison with an ideal distribution (red, dotted line) for the normalized (left) and
un-normalized case (right). Although the shape is similar (left) there are significant differences in how far the distributions span the available space. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

For translating these distances into suitable metrics the logarithms of Dg , Da and Dc (cf. Eq. (1)) are transformed with the
sigmoid function:

∀i ∈ {g, a, c} : Mi =
1

1 + exp(log(Di × ci))
(4)

where cg , ca, cc ∈ R > 0 are parameters that determine the sensitivity of the assessment and the impact of each single
attribute. All estimatedmeasuresMg ,Ma andMc lie between 0 and 1where 1 corresponds to an ideal performance. Together
with the (normalized) number of extremepostures (i.e. touching the floor), the average over all themeasures is used to create
the final performance score P . This score is then translated into the visual representation shown in themiddle image of Fig. 4
(the thumb symbol).

Automated feedback
The measures Mg ,Ma,Mc , along with the mean and variance of the EDF, are furthermore used to produce automated

textual feedback for the exercising user. Simple rules combine multiple performance aspects in a single condition, which
triggers a specific textual cue:

M1 > ti ∧ M2 < tj ∧ · · · → Textual cue, (5)

where ti corresponds to a real-valued threshold between 0 and 1. This way, expert knowledge can be translated easily into
a rule-set specific for each exercise. Both positive feedback about improvement of certain performance aspects, as well as
constructive criticism is provided to the user. Furthermore, the parameters c{g,a,c} (Eq. (4)) control the sensitivity of the
feedback and can be adapted easily, e.g., for novice vs. advance users, without the need to change the definition of the rules
for feedback generation.

3.5. Second iteration: Criteria-based on-device assessment

With the second iteration of GymSkill, we redesigned the previously described system in terms of comprehensibility,
location- and time-independent training, and physical interaction with the training device, incorporating the gathered
feedback from the users. The three most important additions are:

• The skill assessment is entirely performed on the mobile phone, with no need for an external server or Internet
connection. This is a step towards ubiquitous exercising and training.

• Using a new approach for the assessment, we are able to address individual qualities of performed exercises more
intuitively. While the PCBA renderings of the previous version provide a comprehensive overview on different training
aspects at a glance, sub-scores now directly tell the user where to improve. We also address with this redesign the
limitations of small screens on mobile phones.

• NFC (Near Field Communication) has proven to simplify interaction between phones and the real world [31,32] By
the integration of NFC to GymSkill, we simplified the training setup. Placing the smartphone on an NFC-augmented
rocker board launches the training application on the phone, loads the board’s calibration settings, and the phone even
remembers previous training sessions. The need for manual adjustments is minimized.

• We investigated both accelerometer and magnetometer data for their suitability for automated assessment.
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In the following,wedescribe the implementation of the on-device skill assessment algorithm incorporated in this version.
Based on the additional user feedback we gathered at the end of the first study, we iteratively developed a second, more
sophisticated version of GymSkill. This version does, in comparison to the initial system, feature online feedback (which
was missing and considered important for keeping the motivation by the users) and fine-grained feedback along several
dimensions for each individual exercise.

3.5.1. Skill assessment implementation
The scoring scheme (with slight changes for tilting and balancing exercises) was developed in the second iteration based

on the manual expert assessment. In the following, we list the individual aspects that are weighted and summed to make
up the overall skill assessment score.
Touching the ground/balance. When the board is tilted to the maximal possible angle of deflection (known by initial
calibration), it is assumed that the user touched the groundwith the edge of the board. For each occurrence of this undesired
effect, one point of the maximal possible score of 10 points is subtracted.

For balance exercises, a deviation from the neutral position by more than ±5° (user-adjustable) results in subtraction of
a point.
Repetition count/exercise length. The score in this category is the ratio of actual and required exercise repetitions.

In order to count repetitions and assess other cycle-based quality factors, we detect and count zero crossings in the
orientation data. Under the assumption that we only look at one movement direction (which is the case for the exercise
set considered in VMI Fit), in the ideal case, two zero crossings of the board’s orientation make one repetition. In practice,
when the user is unable to keep steady on one side, more than two zero crossings can occur in one repetition. This problem
was addressed by filtering in the orientation and time domain with values obtained by experimentation. An interval of ±2°
degree was considered as zero crossing, and multiple zero crossings in an interval smaller than 3 samples (corresponding
to 90 ms) were unified to one.

For balance exercises, the ratio of actual and required exercise length is used for this score.
Pace. This aspect scores the length of repetitions, where a periodic time between 0.9 and 2 s is considered as optimal, and
periodic times shorter than 0.5 s or longer than 4.5 s are scored with 0. This sub-score is not used for balance exercises.
Smoothness. Both variances between repetition lengths and distortions within repetitions make up the smoothness value.
Within repetitions, the variance of the amplitude and the DC component is regarded, calculated as average signal to
distortion ratio. This is derived from the Fourier spectrum of a repetition by taking the ratio of the power in the first bin and
the power in the nextmaximum five bins. For an (ideal) sinewave, all the power of the spectrumwould reside in the first bin,
otherwise overtones contribute to the signal. The distorting components were restricted to the first five overtones because
finer ones cannot be consciously controlled by the user any more. However, further overtones can indicate e.g. tremors
and, in future extensions, be a hint for the patient’s general physical condition beyond exercising assessment. For balance
exercises, the smoothness is expressed through the variance of angles during the performance.
Overall correctness. This aspect bundles further criteria, such as the average pitch and roll angle (i.e. the user tends to lean
towards one direction), the number of repetitions where the board was tilted too far (the ideal is stopping slightly before
the ground; the limits are user-adjustable), and average amplitudes. Grouping these criteria to one sub-score decreases
their weight for the overall score, but incorporates features that correspond to the human understanding of correct exercise
execution.

3.5.2. Evaluation of the assessment algorithm
The accuracy of our skill level scores was evaluated against the expert assessment on the recorded training set in an

exercise-by-exercise comparison. We did not consider criteria from the expert score that could not be assessed using our
algorithm (such as body posture).

The assessment was conducted twice, using magnetometer and accelerometer data as input, to compare the differences
in their performance. Themain characteristics of the scores are summarized in Table 2 for dynamic (that are exerciseswhere
the user actively generates motion) and Table 3 for static exercises (that are exercises where the user has to hold or keep a
certain position).

For dynamic exercises, the assessment error was <10% in 77.86% and <20% in 94.27% of the cases (with magnetometer
data). Using the accelerometer, the assessment error was <10% in 65.89% and <20% in 90.10%.

Static exercise assessments showed a<10% error in 89.58% of the cases and a<15% error in 98.96% (magnetometer). For
accelerometer data, the results were slightly better with a <10% error in 90.63% of the cases and a <15% error in 97.92%.

The bias between automatic and expert score is generally higher for accelerometer data, which could possibly be fine-
tuned by optimized sub-score weighting. Neither accelerometer nor magnetometer show significant advantages over each
other.
Individual aspects. The accuracy differed among the criteria forming the overall score. While repetitions were detected very
precisely with less than ±2 points error in more than 96% of all cases, only about 75% of ground touches could be detected.
The largest differences were observed in pace; about 68% of the automatically assessed exercises had an error smaller than
2 points.
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Table 2
Match of assessment with expert score, dynamic exercises.

Bias |∆| < 10 points (%) |∆| < 20 points (%) Correlation

Magnetometer −3.48 77.86 94.27 0.512
Accelerometer −7.01 65.89 90.10 0.585

Table 3
Match of assessment with expert score, static exercises.

Bias |∆| < 10 points (%) |∆| < 15 points (%) Correlation

Magnetometer 0.08 89.58 98.96 0.764
Accelerometer −0.99 90.63 97.92 0.778

Bias: average of (automatic score — expert score); |∆| < n points: percentage of automatic scores this far
from expert scores; correlation: Pearson’s linear correlation coefficient.

Since the magnetometer assumes a homogeneous magnetic field, distortions by metal objects in the lab could reduce
robustness of the algorithm for dynamic exercises. For static exercises, the differences between accelerometer and
magnetometer results were hardly noticeable. Since the assessment was done on a previously established database, the
magnetometer sensors could not be accurately calibrated. Instead, accelerometer data was searched for close to neutral
moments (pitch/roll close to zero), and the correct offset to the magnetic field components was calculated during these
periods.

4. Discussion and outlook

We reported on the development of GymSkill in an iterative process, a system for individualized assessment and
feedback on physical exercising through sensor data. GymSkill is a representative example for future mobile interactive
applications that incorporate activity recognition, processing and advanced reasoning and interact with physical devices
such as exercising equipment. We proved the acceptance of such mobile assistance systems and their potential to motivate
users to regular activity in a five day study. Our automated skill assessment proved to be accurate in an evaluation against
expert assessments.

In the future, the system could be extended in various ways. More exercise types with more degrees of freedom (circular
movements) or multiple boards (individual left/right foot movements) can be integrated. Coupling with devices like heart
rate monitors using e.g. ANT+ further would increase the sensed database and allow for further, more detailed physical
and physiological assessments. GymSkill could be integrated with health platforms and interact as remote component
of a home infrastructure in relation with other health and fitness applications. The smartphone has the advantage of
immediate feedback and time- and location-independent training. With our second iteration, we addressed the limitations
in feedback presentation on the small phone display by textual aspect-based feedback. Other user interface types than the
presentation on the mobile will be investigated, such as interaction with public displays. A TV over e.g. DLNA can enable
more sophisticated feedback, such as PCBA renderings, on larger screens, or foster the social aspect of training by integrating
multiple users. Wewill also conduct user studies with focus on acceptance of different feedback presentations and usability
aspects ofmobile physical exercise support. Our futureworkwill also have to investigate if this detailed feedback, potentially
combined with social network platforms, can actually sustain the long-term motivation of the user.

Acknowledgments

This work has in part been funded by the RCUK Research Hub on Social Inclusion through the Digital Economy (SiDE).

References

[1] R. Ryan, C. Frederick, D. Lepes, N. Rubio, K. Sheldon, Intrinsic motivation and exercise adherence, International Journal of Sport Psychology 28 (1997)
335–354.

[2] R.W. Jeffery, R.R. Wing, C. Thorson, L.R. Burton, Use of personal trainers and financial incentives to increase exercise in a behavioral weight-loss
program, Journal of Consulting and Clinical Psychology 66 (5) (1998) 777–783.

[3] M. Kranz, A. Schmidt, P. Holleis, Embedded interaction: interacting with the Internet of things, IEEE Internet Computing 14 (2) (2010) 46–53.
http://dx.doi.org/10.1109/MIC.2009.141.

[4] L. Bao, S. Intille, Activity recognition from user-annotated acceleration data, in: A. Ferscha, F. Mattern (Eds.), Pervasive Computing, in: Lecture Notes
in Computer Science, vol. 3001, Springer, Berlin, Heidelberg, 2004, pp. 1–17. http://dx.doi.org/10.1007/978-3-540-24646-6_1.

[5] J. Lester, T. Choudhury, G. Borriello, A practical approach to recognizing physical activities, Pervasive Computing (2006) 1–16.
[6] M. Ermes, J. Parkka, J. Mantyjarvi, I. Korhonen, Detection of daily activities and sportswithwearable sensors in controlled and uncontrolled conditions,

Information Technology in Biomedicine, IEEE Transactions on 12 (1) (2008) 20–26.
[7] A. Mannini, A. Sabatini, Machine learning methods for classifying human physical activity from on-body accelerometers, Sensors 10 (2) (2010)

1154–1175.
[8] S. da Costa Ribeiro, M. Kleinsteuber, A. Möller, M. Kranz, A compressive sensing scheme of frequency sparse signals formobile andwearable platforms,

in: R.Moreno-Díaz, F. Pichler, A. Quesada-Arencibia (Eds.), Computer Aided Systems Theory— EUROCAST 2011, in: Lecture Notes in Computer Science,
vol. 6928, Springer, Berlin, Heidelberg, 2012, pp. 510–518. http://dx.doi.org/10.1007/978-3-642-27579-1_66.

http://dx.doi.org/doi:10.1109/MIC.2009.141
http://dx.doi.org/doi:10.1007/978-3-540-24646-6_1
http://dx.doi.org/doi:10.1007/978-3-642-27579-1_66


M. Kranz et al. / Pervasive and Mobile Computing 9 (2013) 203–215 215

[9] N. Keijsers, M. Horstink, S. Gielen, Ambulatory motor assessment in Parkinson’s disease, Movement Disorders 21 (1) (2006) 34–44.
[10] S. Moore, H. MacDougall, J. Gracies, H. Cohen, W. Ondo, Long-term monitoring of gait in parkinson’s disease, Gait & Posture 26 (2) (2007) 200–207.
[11] F. Michahelles, B. Schiele, Sensing and monitoring professional skiers, IEEE Pervasive Computing (2005) 40–46.
[12] A. Ahmadi, D. Rowlands, D. James, Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve, Sports

Technology 2 (3–4) (2009) 129–136.
[13] K.-H. Chang, M.Y. Chen, J. Canny, Tracking free-weight exercises, in: Proceedings of the 9th International Conference on Ubiquitous Computing,

UbiComp ’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 19–37. URL http://dl.acm.org/citation.cfm?id=1771592.1771594.
[14] M. Kranz, P. Holleis, W. Spiessl, A. Schmidt, The therapy top measurement and visualization system — an example for the advancements in existing

sports equipments, International Journal of Computer Science in Sport 5 (2) (2006) 76–80.
[15] A. Schmidt, P. Holleis, M. Kranz, Sensor virrig-a balance cushion as controller, 2004.
[16] J. Harding, J. Small, D. James, Feature extraction of performance variables in elite half-pipe snowboarding using bodymounted inertial sensors, Progress

in Biomedical Optics and Imaging 8 (2007) 50.
[17] S. Daukantas, V. Marozas, A. Lukosevicius, Inertial sensor for objective evaluation of swimmer performance, in: Electronics Conference, 2008. BEC

2008. 11th International Biennial Baltic, IEEE, 2008, pp. 321–324.
[18] C. Strohrmann, H. Harms, G. Tröster, S. Hensler, R. Müller, Out of the lab and into the woods: kinematic analysis in running using wearable sensors,

in: Proceedings of the 13th International Conference on Ubiquitous Computing, ACM, 2011, pp. 119–122.
[19] R.C. King, L. Atallah, B.P.L. Lo, G.-Z. Yang, Development of awireless sensor glove for surgical skills assessment, Information Technology in Biomedicine,

IEEE Transactions on 13 (5) (2009) 673–679.
[20] Y. Enokibori, K. Mase, A method to evaluate metal filing skill level with wearable hybrid sensor, in: Proceedings of the 3rd Augmented Human

International Conference, ACM, 2012, p. 6.
[21] S. Consolvo, D. McDonald, T. Toscos, M. Chen, J. Froehlich, B. Harrison, P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, et al., Activity sensing in the wild:

a field trial of ubifit garden, in: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, ACM, 2008,
pp. 1797–1806.

[22] T. Denning, A. Andrew, R. Chaudhri, C. Hartung, J. Lester, G. Borriello, G. Duncan, Balance: towards a usable pervasivewellness applicationwith accurate
activity inference, in: Proceedings of the 10th Workshop on Mobile Computing Systems and Applications, ACM, 2009, p. 5.

[23] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. Campbell, A survey of mobile phone sensing, Communications Magazine, IEEE 48 (9) (2010)
140–150. http://dx.doi.org/10.1109/MCOM.2010.5560598.

[24] A. Möller, J. Scherr, L. Roalter, S. Diewald, N. Hammerla, T. Plötz, P. Olivier, M. Kranz, Gymskill: mobile exercise skill assessment to support personal
health and fitness, in: Ninth International Conference on Pervasive Computing, Pervasive 2011, Video Proceedings, San Francisco, CA, USA, 2011.

[25] A. Möller, L. Roalter, S. Diewald, J. Scherr, M. Kranz, N. Hammerla, P. Olivier, T. Plötz, Gymskill: a personal trainer for physical exercises, in: 2012 IEEE
International Conference on Pervasive Computing and Communications, PerCom, IEEE, Lugano, Switzerland, 2012, pp. 213–220.

[26] T. McGuine, J. Keene, The effect of a balance training program on the risk of ankle sprains in high school athletes, The American Journal of Sports
Medicine 34 (7) (2006) 1103.

[27] G. Waddington, R. Adams, The effect of a 5-week wobble-board exercise intervention on ability to discriminate different degrees of ankle inversion,
barefoot and wearing shoes: a study in healthy elderly, Journal of the American Geriatrics Society 52 (4) (2004) 573–576.

[28] T. Ishigaki, T. Higuchi, K. Watanabe, Spectrum classification for early fault diagnosis of the LP gas pressure regulator based on the Kullback–Leibler
kernel, in:Machine Learning for Signal Processing, 2006. Proceedings of the 2006 16th IEEE Signal Processing SocietyWorkshop on, 2006, pp. 453–458.
http://dx.doi.org/10.1109/MLSP.2006.275593.

[29] L.R. Olsen, et al., Multiscale spectral analysis for detecting short and long range change points in time series, Computational Statistics & Data Analysis
52 (2008) 3310–3330.

[30] D. Cox, D. Oakes, Analysis of survival data, in: Monographs on Statistics and Applied Probability, Chapman and Hall, 1984.
[31] G. Broll, S. Siorpaes, E. Rukzio, M. Paolucci, J. Hamard, M. Wagner, A. Schmidt, Supporting mobile service usage through physical mobile interaction,

in: Pervasive Computing and Communications, 2007. PerCom’07. Fifth Annual IEEE International Conference on, IEEE, 2007, pp. 262–271.
[32] A. Geven, P. Strassl, B. Ferro,M. Tscheligi, H. Schwab, Experiencing real-world interaction: results fromaNFC user experience field trial, in: Proceedings

of the 9th International Conference on Human Computer Interaction with Mobile Devices and Services, ACM, 2007, pp. 234–237.

http://dl.acm.org/citation.cfm?id%3D1771592.1771594
http://dx.doi.org/doi:10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1109/MLSP.2006.275593

	The mobile fitness coach: Towards individualized skill assessment using personalized mobile devices
	Introduction
	State of the art
	Automatic assessment of physical activity
	Comparative review of smartphone apps for health and fitness
	Heuristic evaluation
	Results and discussion

	Lessons learned and recommendations

	GymSkill: automated assessment for balance board training
	Balance board training
	The GymSkill application
	Case study
	Ground truth collection
	Qualitative feedback

	First iteration: Server-based automatic exercise assessment
	Quality measures
	PCBA analysis

	Second iteration: Criteria-based on-device assessment
	Skill assessment implementation
	Evaluation of the assessment algorithm


	Discussion and outlook
	Acknowledgments
	References


