
2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

A Model-Driven Approach to Enable Adaptive QoS
in DDS-Based Middleware

J. F. Inglés-Romeroa, A. Romero-Garcésb, C. Vicente-Chicotec, J. Martínezb

aUniversidad Politécnica de Cartagena, ETSI Telecomunicación, Spain
bUniversity of Málaga, ETSI Telecomunicación, Spain

cUniversity of Extremadura, QSEG, Escuela Politécnica de Cáceres, Spain

Abstract—Critical and distributed systems need to be reliable
and comply with the required performance at run-time. In this
vein, Data Distribution Service for Real-Time Systems (DDS)
provides developers with highly configurable middleware to
control the end-to-end Quality of Service (QoS) of the
applications through a wide range of attributes. However,
dynamic and unpredictable environments pose a major
challenge to these systems as their workload and resources
may fluctuate significantly in time depending on the execution
context. Developers usually find it difficult to choose and apply
the right DDS QoS attributes, as once selected, they remain
fixed during the whole execution of the system. They do not
automatically change according to the execution context, e.g.,
to meet non-functional requirements related to performance or
resource consumption. Moreover, changing the QoS attributes
at run-time may lead to incompatibilities, since the
configuration used by the different participants needs to be
mutually consistent. In this paper, we propose a model-driven
approach that enables the safe, automatic and transparent
adaptation of the QoS attributes in DDS-based middleware,
providing the best performance possible within the available
resources at run-time. An example in robotics is presented to
demonstrate the feasibility and the benefits of our proposal.

Keywords—DDS, QoS, Model-Driven Engineering, Software
Adaptation

I. INTRODUCTION
Software adaptation is becoming increasingly important

as more and more applications need to cope with limited
resources and changing conditions dynamically. Adaptation
becomes particularly significant at the middleware level as,
typically, the available resources (e.g., CPU, memory,
network capacity, etc.) fluctuate over the time depending on
how demanding the entities involved in the communication
are. Thus, middleware-based communication systems not
provided with appropriate adaptation mechanisms may
eventually run out of resources, experiencing degradation or
failing to comply with the expected performance. This is a
major issue in critical distributed systems for which
reliability is a must.

Data Distribution Service for Real-Time
Systems (DDS) [1] has emerged as the first open
international middleware standard directly addressing
publish/subscribe communications for real-time and
embedded systems. The DDS standard includes more than
twenty Quality-of-Service (QoS) policies (each one with
several attributes) to specify resource limitations for data
queues, liveliness or reliability, among other features. This

provides developers with a great flexibility to control the
end-to-end QoS of the applications. However, the selection
and appropriate configuration of the right QoS policies
constitutes a great challenge in dynamic environments. The
complexity of this task is twofold. On the one hand, the use
of a static set of QoS policies, considered optimal under
particular conditions, may be inadequate (or at least
suboptimal) when these conditions change at run-time. On
the other hand, changing the QoS policies at run-time may
lead to incompatibilities, since the policies used by the
different participants within the DDS architecture model
need to be mutually consistent.

In this article, we describe a model-driven approach that
enables the safe, automatic and transparent adaptation of the
QoS policies in DDS-based middleware, providing the best
performance possible within the available resources at run-
time. In summary, the main contributions of this article are:
1. The concept of communication templates as a high-level

abstraction mechanism to specify QoS policies in a
distributed communication scenario. A communication
template is a predefined configuration of QoS policies
that covers a common use case for DDS-based systems.
Although communication templates provide clear
semantics about the kind of communication that occurs
between entities (e.g., level of reliability or queue
lengths), they are intended to be general enough to
enable reusability and application independence.

2. The use of software adaptation to support adaptive QoS
policies in communication templates. The values of
these policies are purposely left open at design-time and
dynamically adjusted, with a best-effort approach, to
optimize non-functional properties, such as performance
or resource consumption. Moreover, we provide
designers with the means to specify the limits of the
policies variability according to their applications and
prevent the occurrence of incompatible configurations.

3. A model-driven process to create, refine, validate and
instantiate communication templates in DDS-based
applications.

The rest of the paper is organized as follows. Section 2
provides a background on DDS. Section 3 introduces the
proposed model-driven process. Section 4 presents the
implemented tools for modeling adaptive QoS. Section 5
describes the run-time process and shows the results of
executing adaptive QoS on an example. Section 6 reviews
related work and, finally, Section 7 draws some conclusions
and outlines future work.

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

Figure 1: Overview of a DDS system.

II. DDS: ARCHITECTURE AND COMPONENTS
DDS is a modern standard that introduces a software

architecture, based on the publish/subscribe communication
model, aimed at enabling scalable, real-time, dependable,
high performance and interoperable data exchange. The
standard is composed of a Data-Centric Publish and
Subscribe (DCPS) model, and a DDS Interoperability Wire
Protocol (DDSI). The former defines the DDS architecture,
the entities involved in the communication (e.g., Publisher,
Subscriber, Topic, DataReader, DataWriter, etc.), and a
standard API, along with some profiles that enhance its use
[1]. The latter defines a protocol that ensures interoperability
across DDS implementations from different vendors [2].

The publish/subscribe model implemented in DDS does
not use any central broker to avoid a single point of failure.
Conversely, publishers and subscribers access to the so-
called global data space to exchange information, as
illustrated in Figure 1. Topics are the exchange information
unit in DDS. They identify data of a particular type with an
associated QoS. Topic types are defined using an Interface
Description Language (IDL) and can be defined with a key
that identifies different data flows (called instances). DDS
also defines the concept of sample, which represents a topic
instance over time. Figure 1 shows the definition of a topic
type called sensorInfo considering sensor id as key. Topic
instances have been represented as (sensor id, value) pairs.

DDS entities can be configured with a wide set of QoS
policies (the standard defines twenty two types) and these
policies must be compatible for the communication to take
place. QoS policies specify different features associated with
data delivery, data availability, data timeliness, resources,
configuration, and entities lifecycle. For instance, there are
policies for establishing resource limits for data queues (in
terms of the number of samples, instances, and instances per
sample), liveliness, reliability, deadlines and lifespan, among
others. QoS policies are applied to a particular entity at run-
time once it has been created and activated. Although some
of these policies are immutable during the system execution,
there are many others that can be modified at run-time (see
the DDS specification [1] for detailed information).

III. COMMUNICATION TEMPLATES FOR ADAPTIVE QOS
When designers face a particular problem, they

(consciously or unconsciously) tend to apply design patterns,
i.e., well-proven solutions to recurring problems appearing in
similar design contexts. This approach avoids errors and

prevents designers from spending time and effort in
reinventing solutions. Communication templates aim to
support this approach in the domain of data distribution. In
particular, we introduce a development process in which
communication templates play a key role in assisting
designers with the selection and configuration of appropriate
QoS policies for DDS-based systems.

Let us introduce the proposed development process with
an example that will be used throughout the paper. This
example takes place in a shopping center where a social
robot, called Gualzru, moves around promoting products and
services. One of the main goals of this robot is to interact
with people, showing them offers and product discounts that
are displayed as commercials in an external panel screen. In
order to be more effective, when Gualzru meets a potential
customer, it creates a profile of the person based on his or
her age and gender. Gualzru invites the person to follow it to
the advertising panel, where the offers and products being
displayed will be selected according to the profile.

The core functionality of this example is provided by
four services depicted in Figure 2: (1) Capturer;
(2) Classifier; (3) DisplayManager; and (4) Panel. The first
three services are executed in the robot whereas the last one
is executed in the advertising panel. The Capturer takes
images from the robot camera and publishes them to the
Classifier. The Classifier segmentates every image in order
to obtain the face of a person (if any). Then, it classifies
these data and assigns a gender and an age to the person.
This information is sent to the DisplayManager, which is
responsible for selecting and arranging the information that
will be displayed according to the profile of the customer.
Finally, the Panel receives this information and displays it in
the panel screen.

Figure 3 shows the proposed model-driven process. The
main steps are:
1. DDS experts define communication templates. Using

the Quality of Service Modeling Language (QoSML),
experts can create communication templates to cover
recurring problems in publish/subscribe applications
that, from their experience, hold certain properties. A
template is created as a predefined configuration of QoS
policies and designed to be reusable, i.e., to enable
designers to exploit them as many times as needed in
different applications. Figure 2 shows the use of three
templates in the robotic example, each one for
addressing a different type of communication. The
continuous data template addresses processes in which
data are constantly updated. It may be suitable for the
transmission of the robot images, or any sensor data.
The events template targets processes where some
relevant events need to be managed, e.g., the detection
and classification of a potential customer. And, finally,
the state information template can be prescribed for
processes in which data are sporadically updated and
have long validity, e.g., the configuration of the Panel
according to the person profile. In addition, Figure 2
includes the key QoS policies prescribed by each of
these templates. This specification is based on the DDS
use cases documented by Hunt in [3].

QoS

QoS

QoS

QoS
QoS

QoS

QoS

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

Figure 2: Overview of the example. Data writers and readers appear
as dw and dr, respectively.

Figure 3: Proposed model-driven process.

2. DDS experts specify adaptive QoS policies. Apart
from fixed configurations, communication templates can
also declare adaptive QoS policies, i.e., policies that can
be adjusted at run-time according to the context. For
example, it may occur that the Classifier cannot handle
all the images sent from Capturer, as the sending rate is
variable depending on the camera parameters (such as
changes in lighting or movement). In order to improve
the efficiency of this communication, continuous data
defines as adaptive the time-based-filter policy. This
policy specifies the minimum separation period between
subsequent samples, allowing the Classifier to control
the flow of images, transparently to the application.
Experts specify the adaptation using the Variability
Modeling Language (VML).

3. DDS experts validate the models. Once the templates
are completely defined and before making them
available to developers, experts need to validate the
QoSML and VML models. For this purpose, we provide
a set of facilities implemented with Maude [4], as a
formal verification framework.

4. Developers design the application services. Using the
Service Modeling Language (SML), developers design
the service architecture, i.e., (1) the services of the
application; and (2) the DDS entities (i.e., data readers,
writers and topics) for the publish/subscribe processes
connecting these services.

5. Developers apply communication templates and
constraints. From a repository of communication
templates (and their corresponding adaptation models),
developers select those that better fit their needs. Then,
they assign templates to the different communications
among the services in the SML model. Every DDS
entity will be configured with the policies described in
the templates. For instance, in Figure 2, continuous data
is linked to the data topic TopicCD, consequently, the
data writer in Capturer and the reader in Classifier are
set accordingly to this template. In case a template does
not fully comply with the requirements of the
application, developers can use QoSML to extend it. In
addition to setting policies, developers can refine
adaptive QoS policies by reducing their variability
range. For example, step 5 in Figure 3 illustrates how
the range of the time-based-filter policy is limited to [0,
1.5] seconds. Thus, at run-time, the adaptation process
will decide the best value in that range. If the adaptive
QoS policy is set with a fixed value, the adaptation
process will have no effect on it. Regarding resource
constraints, QoSML allows developers to define
invariants, such as the maximum allowed CPU, network
or memory consumption. These invariants can target
(1) a concrete service or (2) a particular communication
process (defined by a data topic). At run-time, the
adaptive QoS policies are adjusted to meet these
constraints.

6. Developers validate the models. They need to validate
their specifications similarly to step 3.

7. Developers generate the code and implement the
application services. A transformation generates the
application run-time artifacts to be executed in
Nerve [5,6], a DDS-based middleware enabled with
QoS monitoring and reconfiguration capability.

8. The system execution. Once developers deploy the
services in the different machines, Nerve automatically
instantiates and initializes all the DDS entities with the
prescribed QoS policies and adjusts the adaptive QoS
policies dynamically following a best-effort approach.

IV. MODELING COMMUNICATION TEMPLATES
In this section we detail the modeling languages in the

proposed model-driven process using the robotic example
introduced in Section 31. The first two subsections describe
how DDS experts can create communication templates with
QoSML and VML. After that, we address the use of SML
and QoSML to allow developers to configure their
applications by applying communication templates.

A. Defining communication templates
QoSML supports the definition of communication

templates. Through these templates, DDS experts advise the
use of certain QoS policies to address common use cases.
We have created a textual editor for QoSML using the Xtext

1 Additional material related to this work can be found in
www.lcc.uma.es/~jmcruz/journal

Classifier:
Service dw dr

DisplayManager:
Service dw dr Capturer:

Service dw
Panel:
Service dr

Reliability = Best effort
Durability = Volatile
History = Keep the last sample
Order = By source time
adaptive QoS time-based-filter

Reliability = Reliable
Durability = Persistent
History = Keep the last sample
Order = By source time

Reliability = Reliable
History = Keep all samples
Order = By source time
adaptive QoS lifespan

reliability.kind = BEST_EFFORT
durability.kind = VOLATILE
history.kind = KEEP_LAST ...
adaptiveQoS time_based_filter

parameters
context variables
optimizaton properties
adaptation rules
variation points

QoSML
(Quality of Service Modeling Language)

VML
(Variability Modeling Language)

sto y d _ S .
adaptiveQoS time_based_filter

.. a
v

specified
by

Maude

model correctness
policy compatibility
adaptation consistency

SML
(Service Modeling Language)

QoSML
(Quality of Service Modeling Language)

deadline.period=2s
time_based_filter = range [0s,1.5s]
invariant network<20%

invariant memory<5MB

ML Q

(configured with the QoS policies)

Application

Nerve

licat
executed on

es)

skeleton of the services
Nerve configuration files
adaptation artefacts

sets adaptive QoS
policies

applied to

applied to

(RUN-TIME)

Maude

model correctness
policy compatibility
adaptation consistency

Classifier:
Service dr

Capturer:
Service dw

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

framework [7]. This editor includes syntax checking,
coloring and a completion assistant, among other features.
Listing 1 shows the definition of the three communication
templates in the robotic example, namely, continuous data,
events and state information. Note that the QoS
configurations prescribed by these templates have been
specified based on the notions provided in [3].

Each template sets some QoS policies. For instance,
continuous data (lines 17-21) establishes:
(1) BEST_EFFORT delivery; (2) VOLATILE durability;
(3) KEEP_LAST to set a queue of depth 1; and
(4) BY_SOURCE_TIMESTAMP samples order. It is worth
noting that the base description of the DDS policies is also
modeled with QoSML. Listing 2 shows an excerpt of this
specification, where the declared QoS attributes (names, data
types and default values) comply with the DDS standard [1].
Therefore, the policies omitted in the templates are set by
default according to this description.

Apart from fixing the values of some policies, templates
can also state adaptive QoS policies (). This is
the case of the policies and in
continuous data and events respectively (see lines 14 and 31
in Listing 1). While the former policy allows data flow
control, can be used as a mechanism to control the
memory usage. This policy handles the expiration time of the
samples, beyond which they are removed from any queue.
Highlight that this mechanism is perfectly consistent with
communications based on events, since events normally
become irrelevant as time passes. In addition, adaptive QoS
policies need to be associated with a VML adaptation model
to specify how they are adjusted at run-time. In particular,
each adaptive QoS policy must be linked to a variation point
(), which is a type of variable defined in the
VML model. For example, line 15 shows the mapping
between the variation point and the attribute

 of . The following
subsection will describe how variation points are specified.

Also concerning the adaptation model, we can make
VML parameters accessible in QoSML. This will enable
application developers to easily tune the adaptation process
when extending a template, without having to deal with
VML. In this vein, QoSML includes general and specific
primitives. On the one hand, as for the general ones, lines 9-
10 show how (defined in continuousData.vml)
is accessible through the parameter . On the
other hand, QoSML includes a specific primitive for the
declaration of resources (). For example, line 7
indicates that the parameter , defined in
events.vml, limits the maximum memory usage of the entities
affected by the event template. This will allow developers to
express constraints, such as MEMORY<20Mb, when
extending the template. Note that the procedure to satisfy this
constraint depends on the adaptation described in VML.

Another useful QoSML primitive is . Although
a template can potentially arrange all data readers and writers
involved in the same publish/subscribe process, we can
provide specific settings to a selection of readers and writers.
E.g., line 13 limits the scope to the READERS.

Listing 1: Templates definition using QoSML (file templates.qos).

Listing 2: DDS policies with QoSML (excerpt of ddsQoSPolicies.qos)

B. Specifying adaptive QoS policies
DDS experts can use VML to specify the variability of

the adaptive QoS policies declared in the communication
templates. Like QoSML, we have created a textual editor for
VML using the Xtext framework [7]. In previous work,
VML was successfully applied in other application domains,
such as robotics [8] or data visualization [9].

VML offers, among others, primitives for modeling:
(1) the variation points of the system; (2) the context
variables; and (3) a set of rules and properties that enables
the computation of (1) based on (2). Aligned with Dynamic
Software Product Lines (DSPL) [10], VML variation points
() represent points in the software where different
variants might be chosen to derive the final system
configuration at run-time. Therefore, variation points
determine the decision space in the VML models, i.e., the
answer to what can change. Listing 3 shows the VML model
used for adapting the time-based-filter policy in continuous
data. Recall this policy allows designers to adjust the flow of
data received by a data reader. In the model, the variation
point (line 3) represents the minimum separation period
between subsequent updates. Note that it has been declared
as a number that takes values between 0 and 2 seconds with
a precision of 5ms.

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

Listing 3: VML model for time-based-filter (file continuousData.vml).

Listing 4: Excerpt of the file continuousData.dat.

Figure 4: State diagram representing the modification of weights.
Maxcpuload and maxoverload indicates the satisfaction or non-satisfaction

(¬) of the CPU load limit and the overload limit, respectively.

Once variation points have been defined, we need to
specify the context variables (). These variables
allow us to identify the situations in which variation points
need to be adapted. For instance, Listing 3 includes the
definition of the context variable (line 4) that
indicates the percentage of incoming data that exceeds the
capacity of a data reader. When a reader gets more data than
it can handle, its overload will be greater than 0, which is a
sign of inefficiency and waste of resources. Consequently,
adaptation should avoid this situation keeping this value as
low as possible by adapting . For this, we need to define
how variation points are set according to the context
variables. In VML, this is achieved through properties
() and Event-Condition-Action (ECA) rules ().
On the one hand, properties specify features of the system
that need to be optimized, i.e., minimized or maximized.
Each property is defined using two functions: objectives and
weights. While the first ones characterize the properties in
terms of variation points (i.e., define the functions to be
optimized), the second ones define the importance of each

property in a given context (i.e., they weight the objective
functions such that higher weighted properties have greater
impact than lower weighted ones). On the other hand, the
rules define relationships between context variables and
variation points. These relationships might be direct (e.g.,
when we set a concrete value for a variation point) or
indirect (e.g., when we change the weight of a property).

In the VML model shown in Listing 3, there are two
properties: (1) (lines 11-14), aimed at minimizing
resource consumption; and (2) (lines 15-18),
aimed at maximizing performance. Note that the adaptation
process will have to find the right balance between these two
properties considering the current situation. In this case,
minimizing resources and maximizing performance move

 in opposite directions: decreasing could imply
more CPU consumption and network bandwidth but, at the
same time, it could improve the throughput and, thus, the
performance. The objective functions to be optimized can be
described in VML through mathematical expressions or data
import. The latter approach, used in Listing 3 (line 1), helps
VML designers to exploit the advantages of widely used
environments for numerical computing. In the example, we
have modeled the mathematics of the VML properties
through simulations and empirical data with Matlab [11].
The resulting mathematical model has been discretized to
obtain a finite set of data that is imported in VML (see
Listing 4). In addition, the weights are defined in the
properties (lines 12 and 16) and updated in the rules (e.g., see
line 21). For example, the weights of and

 are initialized to 0 and its complement,
respectively. This means that the adaptation will start
considering the most important property. Then,
both weights will evolve in opposite directions depending on
how is updated in the rules. Before
describing those rules, mention that we have introduced two
parameters (lines 7-8) to help users customize the adaptation
process. They are: and , which
indicates the maximum allowed percentage of overload and
CPU load, respectively. The current value of CPU load is
received by the context variable . Recall these
parameters were already declared in the QoSML model in
Listing 1 to allow developers to configure their values when
extending a template. Note that the parameters are set to their
default values in case developers do not determine them.

The rules in Listing 3 (lines 19-33) update the weights
depending on three possible situations, expressed by the
variable state. Namely, (1) STEADY, the constraints imposed
by and are met and then the weights
are preserved; (2) OVERLOADED, at least one constraint is
not satisfied, which, in order to reduce the load, a rule
gradually increases the weight assigned to resources (this
weight remains constant when it reaches its maximum value,
i.e., 1); and (3) OVERSIZED, this case is reached after a
period without updates, during which the system may have
become suboptimal. Therefore, a rule gradually decreases the
weight assigned to resources (this weight remains constant
when it reaches 0). Figure 4 shows the state diagram inferred
from these rules.

¬ maxcpuload
¬ maxoverload timer

maxcpuload
maxoverload
maxcpuload axcpuloadload
maxoverload

¬ maxcpuload
¬ maxoverload

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

Figure 5: SML editor with the model developed for the example.

C. Applying communication templates
Once DDS experts complete the definition of their

templates, they can make them available by uploading the
QoSML models (and the associated VML files, if any) to an
on-line repository. Then, application developers will be able
to search and select the communication templates that better
fit their needs from those available in the repository.
However, before developers need to deal with
communication templates, they have to model the service
architecture of the application using SML. For that, we
provide developers with a graphical editor implemented with
GMF framework [12] (see Figure 5).

SML allows developers to define services and the DDS
entities that connect them. Regarding the latter, we have
considered a simplified representation of the DDS
publish/subscribe model, in which some entities do not
appear explicitly. As we can see in Figure 5, services can
have attached several data readers and writers, depicted as dr
and dw in the diagram. These elements need to be linked to a
data topic to denote the type of data that is exchanged (e.g.,
TopicCD is used to connect Capturer and Classifier). It is
worth noting that several data writers (acting as publishers)
and readers (as subscribers) may be linked to the same topic.
Moreover, developers can configure some DDS aspects of a
selected entity in the property view of the editor. For
example, data topics allow the configuration of the IDL file
that defines them, and the partition and the domain of the
readers and writers associated with the topic. Although DDS
publishers and subscribers are omitted in the diagram, they
are taken into account since we consider an implicit
publisher or subscriber for each data writer or reader, resp.

SML allows annotating data topics and services with
QoSML descriptions. Figure 5 shows annotations linked to
each topic and the Classifier service. The content of these
annotations is stated in Listing 5. It is also worth noting that
the QoSML editor is conveniently embedded in the property
view when we select any annotation element. This editor has
been prepared to automatically import the QoSML models
created by DDS experts (see Listings 1 and 2). Thus,
application developers will be able to refer to the definitions
they content, e.g., when extending a template.

Listing 5: QoSML specification in the annotations of the SML model.

Listing 6: QoSML specification for a topic annotation with no template.

Although we can configure QoS policies without using
templates (Listing 6 shows an example), annotating data
topics revolves around communication templates, i.e., to
enable either their application or their extension in case the
application requirements are not met. In both cases, a
template covers the entire publish/subscribe process defined
by the data topic, i.e., it configures all the data readers and
writers associated with the same topic. Line 8 in Listing 5
shows the application of state information in TopicInfo. This
template fits well with the type of communication between
DisplayManager and Panel and then it does not need any
modification. Conversely, the continuous data template in
TopicCD (lines 1-4) and the events template in TopicEv
(lines 5-7) are extended.

There are four types of actions to extend a template:
(1) developers can set new QoS values or overwrite existing
ones. The continuous data template is completed with the
deadline policy (see line 2) that introduces a real-time
requirement in the communication between Capturer and
Classifier; (2) developers can restrict the variation range of
an adaptive QoS policy. For instance, line 3 establishes a
period between 0 and 1.5 seconds for the time-based-filter
policy. Thus, at run-time, the adaptation process will decide
the best value in that range. In case a QoS policy is set with a

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

fixed value, the adaptation process will have no effect on it.
Besides, note that the new range will only be considered
whether it is a sub-interval of the one originally defined for
the VML variation point (see tmin, line 3 in Listing 3);
(3) developers can set adaptation parameters, e.g. see
max_overload in line 4. Recall this parameter was defined in
the adaptation model as maxoverload and mapped in the
template definition; finally, (4) developers can constrain the
resources consumed by the data readers and writers
associated with a specific topic. The events template includes
an invariant to keep the memory lower than 10Mb (see
line 7). This constraint will affect the data writer in Classifier
and the data reader in DisplayManager. In particular, it
indirectly sets the parameter maxmemload in their adaptation
model according to the resource definition in Listing 1.
When this constraint is not met in one of these entities, its
adaptation process will limit the memory use by adjusting
the lifespan.

Regarding service annotations, developers can declare
resource constraints in services. For instance, the annotation
linked to Classifier establishes that the CPU load of this
service cannot reach or exceed the 15% of the node
capability (see line 9 in Listing 5). To meet a constraint
stated in a service, the entities that are susceptible to be
adjusted are the readers and writers belonging to the service.
In particular, those configured with a template that is able to
impact on the resource the constraint expresses. Therefore,
the invariant in Classifier has an effect on its data reader and
not on its writer because only the former is able to adjust the
CPU load by adapting the time-based-filter policy. This
constraint would indirectly set the parameter maxcpuload in
the adaptation model of continuous data, according to the
resource definition in Listing 1. Finally, when there is a
conflict between two constraints (one specified in a service
and another one in a topic) that affect the same data reader or
writer, the more restrictive prevails.

D. Semantic validation of the models
Apart from the syntactical correctness, which is basically

checked by the editors, the models also need to be
semantically validated. In this sense, we consider three
essential aspects: model correctness, policy compatibility
and adaptation consistency. Firstly, model correctness
checks issues concerning the construction of the model
itself, e.g., whether the policies are assigned in conformity
with their data types, or ensuring that no invariants and
ranges are used to extend a template without adaptive QoS
policies. As for policy compatibility, it guarantees that the
QoS values are consistent with each other according to the
DDS standard. Finally, adaptation consistency avoids that
readers and writers become incompatible at run-time due to
QoS changes. To check these aspects, we have used
Maude [4] as a formal verification framework.

To represent QoSML models with Maude, we have
adopted an object-based programming approach with Core
Maude, based on [13]. In particular, a model is created as a
collection of Maude objects, which are record-like
structures of the form < o : c | a1:v1,..., an:vn >, where o is the

object identifier, c is the class the object belongs to, ai are
attribute identifiers and vi their corresponding current
values. Listing 7 shows the translation of some QoSML
descriptions into Maude.

Next, we provide some indications about the
implementation in Maude. Concerning model correctness, it
basically involves the verification of a set of conditions in
the models, which is expressed in Maude as membership
equational logic. More complex is assuring policy
compatibility since it implies verifying that all the data
writers and readers belonging to the same topic are mutually
consistent. Communication templates (and its extensions)
can prescribe a considerable number of configurations.
Recall that their scope can go from targeting all the entities
associated with the same data topic to particular settings for
a single writer or reader. Therefore, it is necessary to check
the validity of any connected pair writer-reader. For this
purpose, we use the Maude search command to explore the
space of possible configurations described in a QoSML
model. It allows developers to find counterexamples, in
which the configuration of two entities is invalid, analyze
the problem and then fix it accordingly. In essence, to
enable the search, we need: (1) a set of rewriting rules to
produce different combinations of writer-reader instances
configured according to the QoSML model; and (2) a set of
equations to check the compatibility of these instances.

Finally, regarding adaptation consistency, we have
adopted two different approaches. On the one hand, we
simulate with Maude the VML model to predict unsuitable
configurations of the adaptive QoS policies [14]. On the
other hand, as each adaptive QoS policy has its variation
range explicitly declared (in the definition of the variation
point and occasionally in the template extension), we can
check if the whole range is consistent with the rest of
prescribed configurations. For instance, in Listing 5, the
time-based-filter policy is constrained to the interval [0, 1.5]
and the deadline policy is set to 2s. As these two attributes
represent the minimum and the maximum separation period
between subsequent samples, a deadline lower than the
time-based-filter value would have been inconsistent.
Maude equational logic can support such verifications.

Listing 7: Example of some QoSML sentences in Maude.

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

Figure 6: The model transformation and the run-time process.

V. RUNNING ADAPTIVE QOS
This section presents how the models are executed in

Nerve [5,6], the DDS-based middleware on which adaptive
QoS become effective. We conclude the section by
illustrating the benefits of running adaptive QoS in the
robotic example.

A. Execution of adaptive QoS in Nerve
In order to take the SML, QoSML and VML

specifications into Nerve, we provide developers with a
model-to-text transformation. Figure 6 outlines this
transformation and the main elements taking place at run-
time. It is worth noting that the modeling languages involved
in the process are platform independent. They are aimed at
raising the level of abstraction of dealing with QoS
configuration and its adaptation. Therefore, among other
benefits, it would allow targeting platforms different from
Nerve through the development of new transformations.

In our process, the model-to-text transformation is
divided into three steps: (1) the generation of the Nerve
configuration file with the QoS values assigned to data
writers and readers; (2) the generation of the code skeleton
for each service. The developer will need to complete it with
the application code; and (3) the generation of the artifacts
that are run by the adaptation service.

Regarding the execution part, Figure 6 depicts the Nerve
elements that come into action when a service has a writer or
a reader with at least an adaptive QoS policy. The adaptation
service is the “brain” that selects values for the adaptive QoS
policies. This service executes one process for each adaptive
writer or reader. In the robotic example, the adaptation
service holds three processes: two for Classifier (it has a
reader and a writer configured as a result of applying two
communication templates with adaptation, i.e., continuous
data and events) and one process for DisplayManager (its
reader is set by the events template). Recall that continuous
data does not prescribe writers any adaptive QoS policy, for
that reason Capturer does not have adaptation. In the current
implementation of the example, we have deployed the
adaptation service in a separate node to reduce the system
overhead (see Control PC in Figure 6). However, it would
have been possible to distribute these three adaptation
processes as needed, thanks to the support provided by the
underlying DDS framework. Concerning the operation, the
adaptation service has to solve the constrained optimization

problem posed by the VML models according to the context
situation. The current implementation basically consists of
two parts: (1) a Finite State Machine to update the property
weights (which is specified by the adaptation rules in the
VML model, see Figure 4) and (2) an engine to compute the
variation points through the optimization of the adaptation
properties. For the latter, Nerve uses a constraint solver from
the G12 Constraint Programming Platform [15].

Once variation points are determined, they are put into
action through QoS drivers, which are responsible for
configuring QoS policies at run-time. In addition, the
monitoring service gathers context information from the
application and sends it to the adaptation service (at a rate
that is fully configurable). The monitoring topic may contain
information about: (1) CPU and memory consumption from
every service and network traffic in the computer (using the
Sigar multiplatform-API [16]); (2) QoS from DDS data
writers and readers; and (3) monitoring variables associated
with a particular service (e.g., sender and receiver rates,
overload, the processing time of an algorithm or tasks, etc.).
Highlight that Nerve gives developers the option to
implement application-specific monitors and drivers. For
instance, it provides the possibility of targeting as variation
points other attributes different from the DDS QoS policies,
such as parameters for adjusting the transport protocol.
Finally, when the system starts, the QoS initializer
configures the QoS policies according to the Nerve
configuration file. This file includes, in XML format, all the
QoS settings defined to each data reader and writer of the
application, i.e., (1) policies prescribed in a template and not
overwritten (see Listing 1); (2) those overwritten in a
template extension (see Listing 5); and (3) all the other
policies with their default values (see Listing 2). Note that
the adaptive QoS policies are initialized with default values.

B. Adaptive QoS in action
We have measured the performance of the example

system with and without the adaptation service. Regarding
the continuous data template, the dotted line in the left graph
of Figure 7 shows the evolution of the Classifier’s overload
without adaptation. Note that the overload stays around 40%,
which means that the Classifier is receiving more data than it
can process. It also implies that a percentage of the data sent
by Capturer is being overwritten in the Classifier’s queue
(continuous data prescribes a history length of 1). Therefore,
there is a waste of resources in terms of network bandwidth
and CPU consumption. Considering now adaptation,
continuous data tries to mitigate this waste of resources by
adjusting the time-based-filter QoS policy (observe the line
with square markers in the left graph of Figure 7). The
objective of this adaptation is to obtain an overload value
lower than 10% (this percentage was set when the template
was extended, see line 4 in Listing 5). Due to the high initial
overload, the adaptation service gradually increases the time-
based-filter QoS policy up to 0.09s. After a few seconds, the
overload remains stable at 9.9% (note the solid line in the left
graph of Figure 7). As a result, the Capturer sending rate and
the Classifier receiving rate become more balanced.

Classifier
Service dw dr DisplayManager

Service dw dr Capturer
Service dw

Panel
Service dr

G
u

a
l

z
r

u

Monitoring
Service

Adaptation
Service

dr

Monitoring
topic

dw QoS adaptation
topic

dw

dr on dn dr

dr QoS
Driver

Context
Monitor

dw

dr

QoS
Initializer

Advertising
Panel

Control PC

G
E

N
E

R
A

T
IO

N

E
X

E
C

U
T

IO
N

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

Figure 7: (Left axis) Solid/dotted lines meaning the Classifier’s performance with (solid) and without adaptation (dotted). (Right axis) Lines with square

markers representing the value of the QoS policy.

The middle graph in Figure 7 shows the evolution of the
time-based-filter policy when we establish the invariant CPU
< 15% in the Classifier service. This policy is adjusted to a
more restrictive value than in the previous case, causing a
decrease in the CPU load until it meets the established
threshold. Highlight that invariants are addressed by the
adaptation service, see the difference between the dotted and
solid line in the middle graph of Figure 7. The adaptation
assumes a best-effort approach for accomplishing resource
requirements, thus, we cannot assure their inviolability as it
depends on factors beyond the middleware, such as the
implementation of the application services.

Regarding the application of the events template in the
Classifier and DisplayManager, the right graph of Figure 7
shows the memory consumption of Classifier. When the
adaptation service is disabled, the memory consumption
grows up to 35-40 MB (see the dotted line). This is the result
of prescribing data persistence (see line 6 in Listing 5),
which is useful for debugging tasks, since the data writer in
Classifier records all the results about the people detected.
However, it implies that the memory consumption could
grow indefinitely. Fortunately, the configuration of the
lifespan QoS policy allows the adaptation service to control
the size of persistent queues by changing the data expiration
time. Initially, we have configured this QoS policy with a
value of 30 seconds. The solid line in the right graph shows
the evolution of the memory considering adaptation and the
invariant: memory < 10MB. The lifespan decreases to 6.1
seconds at the execution time marked as A (see the line with
square markers). This reduces the memory consumption to
3.5MB. However, the adaptation service has to optimize the
overall performance by using all the available memory, that
is, to adjust the lifespan to achieve a consumption as close as
possible to the limit imposed by the invariant. Consequently,
the adaptation service increases the lifespan value to almost
13 seconds at the execution time marked as B, which
stabilizes the memory consumption between 5 and 10MB.

VI. RELATED WORK
The concept of communication templates is not new.

Outside DDS, the same idea was introduced by the
communication patterns of Smartsoft [17], which provide
fixed semantics for the most common communication
scenarios. Furthermore, adaptation is becoming increasingly
important in distributed systems, e.g. consider the growth of
adaptive streaming technologies for optimizing the viewing
experience of users [18]. In the DDS domain, among the
efforts invested in trying to overcome the complexity of

dealing with the end-to-end QoS of the applications, Real-
Time Innovations Inc. (RTI) has proposed the built-in QoS
profiles [19] in its DDS implementation. It consists in
predefined configurations of QoS policies that developers
can use to create DDS entities with specific QoS properties.
They define three types of built-in QoS profiles:
(1) baselines, which define default configurations for each
DDS QoS policy; (2) generics, to represent simple
communication features; and (3) patterns, which describe
domain-specific use cases in terms of generics, including
some configuration patterns documented by Hunt [3]. It is
worth noting that developers can create new QoS profiles by
extending the existing ones through XML configuration
files. QoS profiles are similar to communication templates in
that both provide an abstraction, which can be reused and
extended, and allow developers to think about the behavior
they want to achieve rather than how to configure each QoS
policy individually. Apart from other differences, QoS
profiles differ from communication templates in that they do
not consider design-time validation (e.g., policy
incompatibilities are only detected at run-time and informed
to the user by means of exceptions).

Other DDS vendors have developed modeling tools, such
as OpenSplice Modeler [20], for creating QoS
configurations. These tools normally provide a graphical
environment to (1) represent the DDS entities involved in the
application; (2) set their QoS policies; (3) check the
configuration; and (4) generate the implementation artifacts.
Unlike our proposal, these approaches (including built-in
QoS profiles) are generally tied to a particular vendor's
technology and to the details of the DDS standard. They do
not give any support for modeling adaptive QoS policies or
mechanism to adjust resources dynamically. Besides, they
also are deficient in development processes aimed at
separating roles and concerns while encouraging reusability.

In the reminder of this section we review some work
concerning dynamic QoS adaptation in the middleware.
Hoffert et al. have developed ADAMANT (ADAptive
Middleware And Network Transports) [21] to maintain QoS
properties in dynamic environments for distributed real-time
and embedded systems. Although ADAMANT uses DDS to
propagate the monitoring information needed to determine
adaptations, its target is not the DDS QoS policies.
Conversely, ADAMANT puts the focus on selecting and
configuring the transport protocol to address the QoS
concerns at run-time. For this purpose, it uses several
supervised machine learning techniques and a reconfigurable
transport layer. Other research also copes with the adaptation

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

of transport protocols, such as [22]. This seems to be a
relevant issue that could be exploited together with the
adaptation of QoS policies. We believe that the notion of
communication template for adaptive QoS is not limited to
DDS QoS policies and that our approach could also
contribute to this issue. In addition, Hoffert et al. [23]
propose the Distributed QoS Modeling Language (DQML)
that helps developers to set and generate valid QoS
configurations. However, this language does not include any
abstraction comparable to our communication templates or
elements to express and tune the adaptation at run-time.

Boonma et al. [24] present a DDS-based middleware for
wireless sensor networks, in which the event routing protocol
is adapted to satisfy QoS properties according to the
available resources and the performance. While this work
seems to obtain good results, it (as [21]) lacks in methods for
modeling and validating the adaptation process. Regarding
this concern, some researchers propose the use of formal
methods to provide developers with rigorous tools for
designing and testing the correctness of their systems. In this
vein, Loulou et al. [25] present P/S-CoM, an approach
developed with Z notation for supporting the correct
modeling and the safe dynamic reconfiguration of the
internal architectural style in a publish/subscribe
middleware. Z notation is similar to Maude in that both
enable the formal specification and verification of the
adaptation, which is posed as a remarkable open issue [26].

Gray et al. [27] describe the Adaptive Quality Modeling
Language (AQML) that allows modeling, simulating and
generating QoS adaptation software. AQML defines three
views: (1) QoS adaptation modeling, which specifies the
adaptation logic through finite-state machines;
(2) computation modeling, which describes the system
architecture; and (3) middleware modeling, which includes
the services and the system conditions (e.g., throughput or
latency) provided by the middleware. Designers can express
any parameter in the components in (2) and (3), which
allows the adaptation logic in (1) (through in/out events and
data in transitions and states) to observe and tailor the
behavior of the system. The analysis of the adaptation is
performed from a centric point of view using Matlab. An
engine translates the QoS adaptation specifications defined
in AQML into a Simulink/Stateflow model, which enables
the evaluation of the state machine, e.g., to check the
stability of the system or simulate the state transitions. As
our approach, this work promotes the separation of concerns
(e.g., the adaptation and the QoS configuration is set apart
from the application logic). It also allows model validation
and generates run-time artifacts, which enhances correctness
and scalability, among other benefits. However, Gray et al.
do not put special emphasis on the reusability and the
separation of roles. Thus, application developers will need to
deal with all the modeling details while, in our approach,
they are able to reuse and refine models, e.g., they can
specify resource constraints in a simple way without dealing
with the adaptation logic.

Other research work is specifically aimed at managing
the fluctuations in application workload and system
resources. For example, Wang et al. [28] present a

middleware mechanism to control the CPU utilization in
distributed real-time and embedded systems. Unlike our
proposal, where the adaptation assumes a best-effort role
accomplishing resource requirements, approaches like [28]
try to achieve a more accurate control. For this reason, these
may tend to be tied to the application, the underlying
technology or a particular setting, which would limit some of
the principles that our modeling process promulgates, such
as reusability. Even so, the insights resulted from this
research may allow us to enrich the corresponding adaptation
models with new strategies and algorithms.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we have described a model-driven approach

for supporting the modeling, validation and generation of
adaptive QoS configurations in DDS-based middleware. Our
proposal revolves around the notion of communication
template, i.e., an abstraction that represents a predefined
configuration of (adaptive or fixed) QoS policies.
Considering different roles, first, communication templates
are created and then reused to configure the middleware.
This process is supported using three modeling languages:
the Variability Modeling Language (VML), the Quality of
Service Modeling Language (QoSML) and the Service
Modeling Language (SML), which are used to (1) specify
the adaptation logic, (2) create/extends templates and define
resource constraints, and (3) bind templates to
publish/subscribe processes. Moreover, we have presented
the validation of the models using Maude, aimed at
preventing the occurrence of incompatible QoS
configurations. Finally, after transforming the validated
models into run-time artifacts in Nerve, the results of
executing adaptive QoS policies were shown in an example.

For the future, some of the open challenges that we
consider pivotal are listed next.
• Adaptation consistency in complex systems. Although

we are able to validate to some extent our models with
Maude, the verification of the global effects derived
from a number of adaptive QoS policies running
autonomously is still open. Note that each adaptive QoS
policy seeks optimal values based on its local context
only. Therefore, the challenge is twofold, on the one
hand, to foresee side effects by providing tools capable
of checking the interrelations among VML models and,
on the other hand, to develop run-time mechanisms for
coordinating and leading individual adaptations to a
more global optimization of the system.

• Extension of the QoS description. We have designed
communication templates not only to be used with DDS,
but also to support different ways of describing QoS. In
this sense, it would be interesting to extend our
modeling languages to consider the adaptation of
transport protocols, or to investigate the connection
between communication templates and other high-level
specifications, such as MARTE [29] or AADL [30].

• Practical application to industry. We plan to test our
approach with more extensive case studies, which will
allow us to incorporate the gained experience into our

2471-285X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETCI.2017.2669187, IEEE
Transactions on Emerging Topics in Computational Intelligence

research. Moreover, we are still working on improving
the modeling tools presented in the paper. Although the
current version is functional, there are some parts that
need to be polished before making our tools available to
everyone. For example, the automatic transformation to
generate the Maude representation from the QoSML,
VML and SML models is still under development.
Currently, the Maude files are written manually.

ACKNOWLEDGMENT
This work has been partially supported by the Spanish

Ministerio de Economía y Competitividad (TIN2015-65686-
C5-4-R and TIN2015-69957-R). Juan F. Inglés-Romero
thanks Fundación Séneca-CARM for a research grant (Exp.
15561/FPI/10).

REFERENCES
[1] Data Distribution Service for Real-time Systems (DDS), Object

Management Group, 2007.
[2] The Real-time Publish-Subscribe Wire Protocol DDS Interoperability

Wire Protocol specification, Object Management Group, 2009.
[3] G. A. Hunt, “DDS Use Cases: Effective Application of DDS Patterns

and QoS”, in OMG’s Workshop on Distributed Object Computing for
Real-time and Embedded Systems, 2006.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
J. Quesada, “Maude: specification and programming in rewriting
logic,” Theorical Comp. Sci., vol. 285, no. 2, pp. 187-243, Aug, 2002

[5] J. Martínez, A. Romero-Garcés, J.P. Bandera-Rubio, R. Marfil-
Robles, A. Bandera-Rubio, “A DDS-based middleware for quality-of-
service and high-performance networked robotics,” Concurrency and
Computation: Practice and Experience, vol. 24, no. 16, pp. 1940-
1952, 2012.

[6] A. Romero-Garcés, J. F. Inglés-Romero, J. Martínez, C. Vicente-
Chicote, “Self-adaptive Quality-of-Service in distributed middleware
for robotics,” in Proc. 2nd Workshop on Recognition and Action for
Scene Understanding, 2013.

[7] Xtext. (2017) [Online]. Available: www.eclipse.org/Xtext.
[8] A. Lotz, J. F. Inglés-Romero, M. Lutz, D. Stampfer, C. Vicente-

Chicote, C. Schlegel, “Towards a Stepwise Variability Management
Process for Complex Systems - A Robotics Perspective,”
International Journal of Information System Modeling and Design,
vol. 5, no. 3, pp. 55-74, 2014.

[9] J. F. Inglés-Romero, R. Morales-Chaparro, C. Vicente-Chicote, F.
Sánchez-Figueroa, “A Model-Based Approach to Develop Self-
Adaptive Data Visualizations,” in Proc. 22nd Int. Conf. on
Information Systems Development, pp. 345-357, 2013.

[10] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, “Dynamic software
product lines,” IEEE Computer , vol. 41, no. 4, pp. 93–95, 2008.

[11] Matlab. [Online] 2017. Available: www.mathworks.com.

[12] The Eclipse Graphical Modeling Framework. [Online] 2017.
Available: www.eclipse.org/modeling/gmp/

[13] A. Boronat, J. Meseguer, “An algebraic semantics for MOF,” Formal
Aspects Comput., vol. 22, no.3, pp. 269-296, 2010.

[14] J. F. Inglés-Romero, C. Vicente-Chicote, “Towards a formal approach
for prototyping and verifying self-adaptive systems,” Lecture Notes in
Business Information Processing, Springer Berlin Heidelberg, vol.
148, pp. 432–446, 2013.

[15] G12 Constraint Programming Platform. [Online] 2017. Available:
https://users.cecs.anu.edu.au/~jks/G12/

[16] The Sigar cross-platform API. [Online] 2017. Available:
https://support.hyperic.com/display/SIGAR

[17] D. Stampfer, A. Lotz, M. Lutz, C. Schlegel, “The SmartMDSD
Tollchain: An integrated MDSD Workflow and Integrated
Development Environment (IDE) for Robotics Software”. Journal of
Software Engineering for Robotics, vol. 7, no. 1, pp. 3-19, July 2016.

[18] B. Li, Z. Wang, J. Liu, W. Zhu, “Two decades of Internet video
streaming: A retrospective view,” Multimedia Computing,
Communications, and Applications, vol. 9, no. 1, pp. 33-53, 2013.

[19] Real-Time Innovations Inc. (RTI), “Built-in QoS profiles,”. [Online]
2017. Available: http://blogs.rti.com/2014/02/11/built-in-qos-profiles

[20] Vortex OpenSplice Modeler. [Online] 2017. Available:
http://www.prismtech.com/vortex/vortex-opensplice/tools/modeler

[21] J. W. Hoffert, A. Gokhale, D. C. Schmidt, “Timely Autonomic
Adaptation of Publish/Subscribe Middleware in Dynamic
Environments,” Int. J. Adaptive, Resilient and Autonomic Systems,
vol. 2, no. 4, pp. 1–24, 2011.

[22] J. H. Hwang et al., “DR-TCP: Downloadable and reconfigurable
TCP,” J. Syst. and Soft., vol. 81, pp. 83–99, 2008.

[23] D. S. Joseph W. Hoffert, A. Gokhale, “DQML: A Modeling
Language for Configuring Distributed Publish/Subscribe Quality of
Service Policies,” in Proc. 10th Int. Symp. on Distributed Objects,
Middleware, and Applications, 2008.

[24] P. Boonma, J. Suzuki, “Self-Configurable Publish/Subscribe
Middleware for Wireless Sensor Networks,” in Proc. 6th IEEE Conf.
Consumer Communications and Networking, pp. 1376–1383, 2009.

[25] I. Loulou, M. Jmaiel, K. Drira, A. H. Kacem, “P/S-CoM: Building
correct by design Publish/Subscribe architectural styles with safe
reconfiguration,” J. Syst. and Soft. , vol.83, no.3, pp.412-428, 2010.

[26] M. Salehie, L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1–42, 2009.

[27] J. Gray, S. Neema, J. Zhang, Y. Lin, T. Bapty, A. Gokhale, D. C.
Schmidt, “Concern Separation for Adaptive QoS Modeling in
Distributed Real-Time Embedded Systems,” in Behavioral Modeling
for Embedded Systems and Technologies: Applications for Design
and Implementation, Information Science Reference, 2009.

[28] X. Wang, Y. Chen, C. Lu, X. Koutsoukos, “FC-ORB: A robust
distributed real-time embedded middleware with end-to-end
utilization control,” J. Syst. and Soft., vol.80, no.7, pp.938-950, 2007.

[29] Modeling Analysis of Real-Time Enbedded Systems (MARTE),
Object Management Group, 2011.

[30] Architecture Analysis and Design Language (AADL), SAE standard
AS-5506, 2004.

