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Abstract—Critical and distributed systems need to be reliable 
and comply with the required performance at run-time. In this 
vein, Data Distribution Service for Real-Time Systems (DDS) 
provides developers with highly configurable middleware to 
control the end-to-end Quality of Service (QoS) of the 
applications through a wide range of attributes. However, 
dynamic and unpredictable environments pose a major 
challenge to these systems as their workload and resources 
may fluctuate significantly in time depending on the execution 
context. Developers usually find it difficult to choose and apply 
the right DDS QoS attributes, as once selected, they remain 
fixed during the whole execution of the system. They do not 
automatically change according to the execution context, e.g., 
to meet non-functional requirements related to performance or 
resource consumption. Moreover, changing the QoS attributes 
at run-time may lead to incompatibilities, since the 
configuration used by the different participants needs to be 
mutually consistent. In this paper, we propose a model-driven 
approach that enables the safe, automatic and transparent 
adaptation of the QoS attributes in DDS-based middleware, 
providing the best performance possible within the available 
resources at run-time. An example in robotics is presented to 
demonstrate the feasibility and the benefits of our proposal. 

Keywords—DDS, QoS, Model-Driven Engineering, Software 
Adaptation 

I.  INTRODUCTION 
Software adaptation is becoming increasingly important 

as more and more applications need to cope with limited 
resources and changing conditions dynamically. Adaptation 
becomes particularly significant at the middleware level as, 
typically, the available resources (e.g., CPU, memory, 
network capacity, etc.) fluctuate over the time depending on 
how demanding the entities involved in the communication 
are. Thus, middleware-based communication systems not 
provided with appropriate adaptation mechanisms may 
eventually run out of resources, experiencing degradation or 
failing to comply with the expected performance. This is a 
major issue in critical distributed systems for which 
reliability is a must. 

Data Distribution Service for Real-Time 
Systems (DDS) [1] has emerged as the first open 
international middleware standard directly addressing 
publish/subscribe communications for real-time and 
embedded systems. The DDS standard includes more than 
twenty Quality-of-Service (QoS) policies (each one with 
several attributes) to specify resource limitations for data 
queues, liveliness or reliability, among other features. This 

provides developers with a great flexibility to control the 
end-to-end QoS of the applications. However, the selection 
and appropriate configuration of the right QoS policies 
constitutes a great challenge in dynamic environments. The 
complexity of this task is twofold. On the one hand, the use 
of a static set of QoS policies, considered optimal under 
particular conditions, may be inadequate (or at least 
suboptimal) when these conditions change at run-time. On 
the other hand, changing the QoS policies at run-time may 
lead to incompatibilities, since the policies used by the 
different participants within the DDS architecture model 
need to be mutually consistent. 

In this article, we describe a model-driven approach that 
enables the safe, automatic and transparent adaptation of the 
QoS policies in DDS-based middleware, providing the best 
performance possible within the available resources at run-
time. In summary, the main contributions of this article are: 
1. The concept of communication templates as a high-level 

abstraction mechanism to specify QoS policies in a 
distributed communication scenario. A communication 
template is a predefined configuration of QoS policies 
that covers a common use case for DDS-based systems. 
Although communication templates provide clear 
semantics about the kind of communication that occurs 
between entities (e.g., level of reliability or queue 
lengths), they are intended to be general enough to 
enable reusability and application independence.  

2. The use of software adaptation to support adaptive QoS 
policies in communication templates. The values of 
these policies are purposely left open at design-time and 
dynamically adjusted, with a best-effort approach, to 
optimize non-functional properties, such as performance 
or resource consumption. Moreover, we provide 
designers with the means to specify the limits of the 
policies variability according to their applications and 
prevent the occurrence of incompatible configurations. 

3. A model-driven process to create, refine, validate and 
instantiate communication templates in DDS-based 
applications.  

The rest of the paper is organized as follows. Section 2 
provides a background on DDS. Section 3 introduces the 
proposed model-driven process. Section 4 presents the 
implemented tools for modeling adaptive QoS. Section 5 
describes the run-time process and shows the results of 
executing adaptive QoS on an example. Section 6 reviews 
related work and, finally, Section 7 draws some conclusions 
and outlines future work. 
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Figure 1: Overview of a DDS system. 

II. DDS: ARCHITECTURE AND COMPONENTS 
DDS is a modern standard that introduces a software 

architecture, based on the publish/subscribe communication 
model, aimed at enabling scalable, real-time, dependable, 
high performance and interoperable data exchange. The 
standard is composed of a Data-Centric Publish and 
Subscribe (DCPS) model, and a DDS Interoperability Wire 
Protocol (DDSI). The former defines the DDS architecture, 
the entities involved in the communication (e.g., Publisher, 
Subscriber, Topic, DataReader, DataWriter, etc.), and a 
standard API, along with some profiles that enhance its use 
[1]. The latter defines a protocol that ensures interoperability 
across DDS implementations from different vendors [2]. 

The publish/subscribe model implemented in DDS does 
not use any central broker to avoid a single point of failure. 
Conversely, publishers and subscribers access to the so-
called global data space to exchange information, as 
illustrated in Figure 1. Topics are the exchange information 
unit in DDS. They identify data of a particular type with an 
associated QoS. Topic types are defined using an Interface 
Description Language (IDL) and can be defined with a key 
that identifies different data flows (called instances). DDS 
also defines the concept of sample, which represents a topic 
instance over time. Figure 1 shows the definition of a topic 
type called sensorInfo considering sensor id as key. Topic 
instances have been represented as (sensor id, value) pairs. 

DDS entities can be configured with a wide set of QoS
policies (the standard defines twenty two types) and these 
policies must be compatible for the communication to take 
place. QoS policies specify different features associated with 
data delivery, data availability, data timeliness, resources, 
configuration, and entities lifecycle. For instance, there are 
policies for establishing resource limits for data queues (in 
terms of the number of samples, instances, and instances per 
sample), liveliness, reliability, deadlines and lifespan, among 
others. QoS policies are applied to a particular entity at run-
time once it has been created and activated. Although some 
of these policies are immutable during the system execution, 
there are many others that can be modified at run-time (see 
the DDS specification [1] for detailed information). 

III. COMMUNICATION TEMPLATES FOR ADAPTIVE QOS 
When designers face a particular problem, they 

(consciously or unconsciously) tend to apply design patterns, 
i.e., well-proven solutions to recurring problems appearing in 
similar design contexts. This approach avoids errors and 

prevents designers from spending time and effort in 
reinventing solutions. Communication templates aim to 
support this approach in the domain of data distribution. In 
particular, we introduce a development process in which 
communication templates play a key role in assisting 
designers with the selection and configuration of appropriate 
QoS policies for DDS-based systems. 

Let us introduce the proposed development process with 
an example that will be used throughout the paper. This 
example takes place in a shopping center where a social 
robot, called Gualzru, moves around promoting products and 
services. One of the main goals of this robot is to interact 
with people, showing them offers and product discounts that 
are displayed as commercials in an external panel screen. In 
order to be more effective, when Gualzru meets a potential 
customer, it creates a profile of the person based on his or 
her age and gender. Gualzru invites the person to follow it to 
the advertising panel, where the offers and products being 
displayed will be selected according to the profile. 

The core functionality of this example is provided by 
four services depicted in Figure 2: (1) Capturer; 
(2) Classifier; (3) DisplayManager; and (4) Panel. The first 
three services are executed in the robot whereas the last one 
is executed in the advertising panel. The Capturer takes 
images from the robot camera and publishes them to the 
Classifier. The Classifier segmentates every image in order 
to obtain the face of a person (if any). Then, it classifies 
these data and assigns a gender and an age to the person. 
This information is sent to the DisplayManager, which is 
responsible for selecting and arranging the information that 
will be displayed according to the profile of the customer. 
Finally, the Panel receives this information and displays it in 
the panel screen. 

Figure 3 shows the proposed model-driven process. The 
main steps are: 
1. DDS experts define communication templates. Using 

the Quality of Service Modeling Language (QoSML), 
experts can create communication templates to cover 
recurring problems in publish/subscribe applications 
that, from their experience, hold certain properties. A 
template is created as a predefined configuration of QoS 
policies and designed to be reusable, i.e., to enable 
designers to exploit them as many times as needed in 
different applications. Figure 2 shows the use of three 
templates in the robotic example, each one for 
addressing a different type of communication. The 
continuous data template addresses processes in which 
data are constantly updated. It may be suitable for the 
transmission of the robot images, or any sensor data. 
The events template targets processes where some 
relevant events need to be managed, e.g., the detection 
and classification of a potential customer. And, finally, 
the state information template can be prescribed for 
processes in which data are sporadically updated and 
have long validity, e.g., the configuration of the Panel 
according to the person profile. In addition, Figure 2 
includes the key QoS policies prescribed by each of 
these templates. This specification is based on the DDS 
use cases documented by Hunt in [3]. 
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Figure 2: Overview of the example. Data writers and readers appear 
as dw and dr, respectively. 

Figure 3: Proposed model-driven process. 

2. DDS experts specify adaptive QoS policies. Apart 
from fixed configurations, communication templates can 
also declare adaptive QoS policies, i.e., policies that can 
be adjusted at run-time according to the context. For 
example, it may occur that the Classifier cannot handle 
all the images sent from Capturer, as the sending rate is
variable depending on the camera parameters (such as 
changes in lighting or movement). In order to improve 
the efficiency of this communication, continuous data
defines as adaptive the time-based-filter policy. This 
policy specifies the minimum separation period between 
subsequent samples, allowing the Classifier to control 
the flow of images, transparently to the application. 
Experts specify the adaptation using the Variability 
Modeling Language (VML).  

3. DDS experts validate the models. Once the templates 
are completely defined and before making them 
available to developers, experts need to validate the 
QoSML and VML models. For this purpose, we provide 
a set of facilities implemented with Maude [4], as a 
formal verification framework. 

4. Developers design the application services. Using the 
Service Modeling Language (SML), developers design 
the service architecture, i.e., (1) the services of the 
application; and (2) the DDS entities (i.e., data readers, 
writers and topics) for the publish/subscribe processes 
connecting these services. 

5. Developers apply communication templates and 
constraints. From a repository of communication 
templates (and their corresponding adaptation models), 
developers select those that better fit their needs. Then, 
they assign templates to the different communications 
among the services in the SML model. Every DDS 
entity will be configured with the policies described in 
the templates. For instance, in Figure 2, continuous data 
is linked to the data topic TopicCD, consequently, the 
data writer in Capturer and the reader in Classifier are 
set accordingly to this template. In case a template does 
not fully comply with the requirements of the 
application, developers can use QoSML to extend it. In 
addition to setting policies, developers can refine 
adaptive QoS policies by reducing their variability 
range. For example, step 5 in Figure 3 illustrates how 
the range of the time-based-filter policy is limited to [0, 
1.5] seconds. Thus, at run-time, the adaptation process 
will decide the best value in that range. If the adaptive 
QoS policy is set with a fixed value, the adaptation 
process will have no effect on it. Regarding resource 
constraints, QoSML allows developers to define 
invariants, such as the maximum allowed CPU, network 
or memory consumption. These invariants can target 
(1) a concrete service or (2) a particular communication 
process (defined by a data topic). At run-time, the 
adaptive QoS policies are adjusted to meet these 
constraints. 

6. Developers validate the models. They need to validate 
their specifications similarly to step 3. 

7. Developers generate the code and implement the 
application services. A transformation generates the 
application run-time artifacts to be executed in 
Nerve [5,6], a DDS-based middleware enabled with 
QoS monitoring and reconfiguration capability. 

8. The system execution. Once developers deploy the 
services in the different machines, Nerve automatically 
instantiates and initializes all the DDS entities with the 
prescribed QoS policies and adjusts the adaptive QoS 
policies dynamically following a best-effort approach. 

IV. MODELING COMMUNICATION TEMPLATES  
In this section we detail the modeling languages in the 

proposed model-driven process using the robotic example 
introduced in Section 31. The first two subsections describe 
how DDS experts can create communication templates with 
QoSML and VML. After that, we address the use of SML 
and QoSML to allow developers to configure their 
applications by applying communication templates. 

A. Defining communication templates
QoSML supports the definition of communication 

templates. Through these templates, DDS experts advise the 
use of certain QoS policies to address common use cases. 
We have created a textual editor for QoSML using the Xtext 

                                                             
1 Additional material related to this work can be found in 
www.lcc.uma.es/~jmcruz/journal 
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framework [7]. This editor includes syntax checking, 
coloring and a completion assistant, among other features. 
Listing 1 shows the definition of the three communication 
templates in the robotic example, namely, continuous data, 
events and state information. Note that the QoS 
configurations prescribed by these templates have been 
specified based on the notions provided in [3]. 

Each template sets some QoS policies. For instance, 
continuous data (lines 17-21) establishes: 
(1) BEST_EFFORT delivery; (2) VOLATILE durability; 
(3) KEEP_LAST to set a queue of depth 1; and 
(4) BY_SOURCE_TIMESTAMP samples order. It is worth 
noting that the base description of the DDS policies is also 
modeled with QoSML. Listing 2 shows an excerpt of this 
specification, where the declared QoS attributes (names, data 
types and default values) comply with the DDS standard [1]. 
Therefore, the policies omitted in the templates are set by 
default according to this description. 

Apart from fixing the values of some policies, templates 
can also state adaptive QoS policies ( ). This is 
the case of the policies  and  in 
continuous data and events respectively (see lines 14 and 31 
in Listing 1). While the former policy allows data flow 
control,  can be used as a mechanism to control the 
memory usage. This policy handles the expiration time of the 
samples, beyond which they are removed from any queue. 
Highlight that this mechanism is perfectly consistent with 
communications based on events, since events normally 
become irrelevant as time passes. In addition, adaptive QoS 
policies need to be associated with a VML adaptation model 
to specify how they are adjusted at run-time. In particular, 
each adaptive QoS policy must be linked to a variation point 
( ), which is a type of variable defined in the 
VML model. For example, line 15 shows the mapping 
between the variation point  and the attribute 

 of . The following 
subsection will describe how variation points are specified. 

Also concerning the adaptation model, we can make 
VML parameters accessible in QoSML. This will enable 
application developers to easily tune the adaptation process 
when extending a template, without having to deal with 
VML. In this vein, QoSML includes general and specific 
primitives. On the one hand, as for the general ones, lines 9-
10 show how  (defined in continuousData.vml) 
is accessible through the parameter . On the 
other hand, QoSML includes a specific primitive for the 
declaration of resources ( ). For example, line 7 
indicates that the parameter , defined in 
events.vml, limits the maximum memory usage of the entities 
affected by the event template. This will allow developers to 
express constraints, such as MEMORY<20Mb, when 
extending the template. Note that the procedure to satisfy this 
constraint depends on the adaptation described in VML. 

Another useful QoSML primitive is . Although 
a template can potentially arrange all data readers and writers 
involved in the same publish/subscribe process, we can 
provide specific settings to a selection of readers and writers. 
E.g., line 13 limits the scope to the READERS. 

 

 
      
   
 
 
 
 
 
 

Listing 1: Templates definition using QoSML (file templates.qos). 

 

 
 

Listing 2: DDS policies with QoSML (excerpt of ddsQoSPolicies.qos) 

B. Specifying adaptive QoS policies 
DDS experts can use VML to specify the variability of 

the adaptive QoS policies declared in the communication 
templates. Like QoSML, we have created a textual editor for 
VML using the Xtext framework [7]. In previous work, 
VML was successfully applied in other application domains, 
such as robotics [8] or data visualization [9]. 

VML offers, among others, primitives for modeling: 
(1) the variation points of the system; (2) the context 
variables; and (3) a set of rules and properties that enables 
the computation of (1) based on (2). Aligned with Dynamic 
Software Product Lines (DSPL) [10], VML variation points 
( ) represent points in the software where different 
variants might be chosen to derive the final system 
configuration at run-time. Therefore, variation points 
determine the decision space in the VML models, i.e., the 
answer to what can change. Listing 3 shows the VML model 
used for adapting the time-based-filter policy in continuous 
data. Recall this policy allows designers to adjust the flow of 
data received by a data reader. In the model, the variation 
point  (line 3) represents the minimum separation period 
between subsequent updates. Note that it has been declared 
as a number that takes values between 0 and 2 seconds with 
a precision of 5ms. 
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Listing 3: VML model for time-based-filter (file continuousData.vml). 

Listing 4: Excerpt of the file continuousData.dat. 

Figure 4: State diagram representing the modification of weights. 
Maxcpuload and maxoverload indicates the satisfaction or non-satisfaction 

(¬) of the CPU load limit and the overload limit, respectively. 

Once variation points have been defined, we need to 
specify the context variables ( ). These variables 
allow us to identify the situations in which variation points 
need to be adapted. For instance, Listing 3 includes the 
definition of the context variable  (line 4) that 
indicates the percentage of incoming data that exceeds the 
capacity of a data reader. When a reader gets more data than 
it can handle, its overload will be greater than 0, which is a 
sign of inefficiency and waste of resources. Consequently, 
adaptation should avoid this situation keeping this value as 
low as possible by adapting . For this, we need to define 
how variation points are set according to the context 
variables. In VML, this is achieved through properties
( ) and Event-Condition-Action (ECA) rules ( ). 
On the one hand, properties specify features of the system 
that need to be optimized, i.e., minimized or maximized. 
Each property is defined using two functions: objectives and 
weights. While the first ones characterize the properties in 
terms of variation points (i.e., define the functions to be 
optimized), the second ones define the importance of each 

property in a given context (i.e., they weight the objective 
functions such that higher weighted properties have greater 
impact than lower weighted ones). On the other hand, the 
rules define relationships between context variables and 
variation points. These relationships might be direct (e.g., 
when we set a concrete value for a variation point) or 
indirect (e.g., when we change the weight of a property). 

In the VML model shown in Listing 3, there are two 
properties: (1) (lines 11-14), aimed at minimizing 
resource consumption; and (2)  (lines 15-18), 
aimed at maximizing performance. Note that the adaptation 
process will have to find the right balance between these two 
properties considering the current situation. In this case, 
minimizing resources and maximizing performance move 

 in opposite directions: decreasing  could imply 
more CPU consumption and network bandwidth but, at the 
same time, it could improve the throughput and, thus, the 
performance. The objective functions to be optimized can be 
described in VML through mathematical expressions or data 
import. The latter approach, used in Listing 3 (line 1), helps 
VML designers to exploit the advantages of widely used 
environments for numerical computing. In the example, we 
have modeled the mathematics of the VML properties 
through simulations and empirical data with Matlab [11]. 
The resulting mathematical model has been discretized to 
obtain a finite set of data that is imported in VML (see 
Listing 4). In addition, the weights are defined in the 
properties (lines 12 and 16) and updated in the rules (e.g., see 
line 21). For example, the weights of  and 

 are initialized to 0 and its complement, 
respectively. This means that the adaptation will start 
considering  the most important property. Then, 
both weights will evolve in opposite directions depending on 
how  is updated in the rules. Before 
describing those rules, mention that we have introduced two 
parameters (lines 7-8) to help users customize the adaptation 
process. They are: and , which 
indicates the maximum allowed percentage of overload and 
CPU load, respectively. The current value of CPU load is 
received by the context variable . Recall these 
parameters were already declared in the QoSML model in 
Listing 1 to allow developers to configure their values when 
extending a template. Note that the parameters are set to their 
default values in case developers do not determine them. 

The rules in Listing 3 (lines 19-33) update the weights 
depending on three possible situations, expressed by the 
variable state. Namely, (1) STEADY, the constraints imposed 
by and are met and then the weights 
are preserved; (2) OVERLOADED, at least one constraint is 
not satisfied, which, in order to reduce the load, a rule 
gradually increases the weight assigned to resources (this 
weight remains constant when it reaches its maximum value, 
i.e., 1); and (3) OVERSIZED, this case is reached after a 
period without updates, during which the system may have 
become suboptimal. Therefore, a rule gradually decreases the 
weight assigned to resources (this weight remains constant 
when it reaches 0). Figure 4 shows the state diagram inferred 
from these rules.  

 

¬ maxcpuload   
¬ maxoverload timer 

maxcpuload   
maxoverload 
maxcpuload axcpuloadload   
maxoverload

¬ maxcpuload   
¬ maxoverload 
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Figure 5: SML editor with the model developed for the example. 

C. Applying communication templates 
Once DDS experts complete the definition of their 

templates, they can make them available by uploading the 
QoSML models (and the associated VML files, if any) to an 
on-line repository. Then, application developers will be able 
to search and select the communication templates that better 
fit their needs from those available in the repository. 
However, before developers need to deal with 
communication templates, they have to model the service 
architecture of the application using SML. For that, we 
provide developers with a graphical editor implemented with 
GMF framework [12] (see Figure 5).  

SML allows developers to define services and the DDS 
entities that connect them. Regarding the latter, we have 
considered a simplified representation of the DDS 
publish/subscribe model, in which some entities do not 
appear explicitly. As we can see in Figure 5, services can 
have attached several data readers and writers, depicted as dr
and dw in the diagram. These elements need to be linked to a 
data topic to denote the type of data that is exchanged (e.g., 
TopicCD is used to connect Capturer and Classifier). It is 
worth noting that several data writers (acting as publishers) 
and readers (as subscribers) may be linked to the same topic. 
Moreover, developers can configure some DDS aspects of a 
selected entity in the property view of the editor. For 
example, data topics allow the configuration of the IDL file 
that defines them, and the partition and the domain of the 
readers and writers associated with the topic. Although DDS 
publishers and subscribers are omitted in the diagram, they 
are taken into account since we consider an implicit 
publisher or subscriber for each data writer or reader, resp.  

SML allows annotating data topics and services with 
QoSML descriptions. Figure 5 shows annotations linked to 
each topic and the Classifier service. The content of these 
annotations is stated in Listing 5. It is also worth noting that 
the QoSML editor is conveniently embedded in the property 
view when we select any annotation element. This editor has 
been prepared to automatically import the QoSML models 
created by DDS experts (see Listings 1 and 2). Thus, 
application developers will be able to refer to the definitions 
they content, e.g., when extending a template. 

Listing 5: QoSML specification in the annotations of the SML model. 

Listing 6: QoSML specification for a topic annotation with no template. 

Although we can configure QoS policies without using 
templates (Listing 6 shows an example), annotating data 
topics revolves around communication templates, i.e., to 
enable either their application or their extension in case the 
application requirements are not met. In both cases, a 
template covers the entire publish/subscribe process defined 
by the data topic, i.e., it configures all the data readers and 
writers associated with the same topic. Line 8 in Listing 5 
shows the application of state information in TopicInfo. This 
template fits well with the type of communication between 
DisplayManager and Panel and then it does not need any 
modification. Conversely, the continuous data template in 
TopicCD (lines 1-4) and the events template in TopicEv 
(lines 5-7) are extended.  

There are four types of actions to extend a template: 
(1) developers can set new QoS values or overwrite existing 
ones. The continuous data template is completed with the 
deadline policy (see line 2) that introduces a real-time 
requirement in the communication between Capturer and 
Classifier; (2) developers can restrict the variation range of 
an adaptive QoS policy. For instance, line 3 establishes a 
period between 0 and 1.5 seconds for the time-based-filter 
policy. Thus, at run-time, the adaptation process will decide 
the best value in that range. In case a QoS policy is set with a 
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fixed value, the adaptation process will have no effect on it. 
Besides, note that the new range will only be considered 
whether it is a sub-interval of the one originally defined for 
the VML variation point (see tmin, line 3 in Listing 3); 
(3) developers can set adaptation parameters, e.g. see 
max_overload in line 4. Recall this parameter was defined in 
the adaptation model as maxoverload and mapped in the 
template definition; finally, (4) developers can constrain the 
resources consumed by the data readers and writers 
associated with a specific topic. The events template includes 
an invariant to keep the memory lower than 10Mb (see 
line 7). This constraint will affect the data writer in Classifier 
and the data reader in DisplayManager. In particular, it 
indirectly sets the parameter maxmemload in their adaptation 
model according to the resource definition in Listing 1. 
When this constraint is not met in one of these entities, its 
adaptation process will limit the memory use by adjusting 
the lifespan. 

Regarding service annotations, developers can declare 
resource constraints in services. For instance, the annotation 
linked to Classifier establishes that the CPU load of this 
service cannot reach or exceed the 15% of the node 
capability (see line 9 in Listing 5). To meet a constraint 
stated in a service, the entities that are susceptible to be 
adjusted are the readers and writers belonging to the service. 
In particular, those configured with a template that is able to 
impact on the resource the constraint expresses. Therefore, 
the invariant in Classifier has an effect on its data reader and 
not on its writer because only the former is able to adjust the 
CPU load by adapting the time-based-filter policy. This 
constraint would indirectly set the parameter maxcpuload in 
the adaptation model of continuous data, according to the 
resource definition in Listing 1. Finally, when there is a 
conflict between two constraints (one specified in a service 
and another one in a topic) that affect the same data reader or 
writer, the more restrictive prevails. 

D. Semantic validation of the models 
Apart from the syntactical correctness, which is basically 

checked by the editors, the models also need to be 
semantically validated. In this sense, we consider three 
essential aspects: model correctness, policy compatibility 
and adaptation consistency. Firstly, model correctness 
checks issues concerning the construction of the model 
itself, e.g., whether the policies are assigned in conformity 
with their data types, or ensuring that no invariants and 
ranges are used to extend a template without adaptive QoS 
policies. As for policy compatibility, it guarantees that the 
QoS values are consistent with each other according to the 
DDS standard. Finally, adaptation consistency avoids that 
readers and writers become incompatible at run-time due to 
QoS changes. To check these aspects, we have used 
Maude [4] as a formal verification framework. 

To represent QoSML models with Maude, we have 
adopted an object-based programming approach with Core 
Maude, based on [13]. In particular, a model is created as a 
collection of Maude objects, which are record-like 
structures of the form < o : c | a1:v1,..., an:vn >, where o is the 

object identifier, c is the class the object belongs to, ai are 
attribute identifiers and vi their corresponding current 
values. Listing 7 shows the translation of some QoSML 
descriptions into Maude.  

Next, we provide some indications about the 
implementation in Maude. Concerning model correctness, it 
basically involves the verification of a set of conditions in 
the models, which is expressed in Maude as membership 
equational logic. More complex is assuring policy 
compatibility since it implies verifying that all the data 
writers and readers belonging to the same topic are mutually 
consistent. Communication templates (and its extensions) 
can prescribe a considerable number of configurations. 
Recall that their scope can go from targeting all the entities 
associated with the same data topic to particular settings for 
a single writer or reader. Therefore, it is necessary to check 
the validity of any connected pair writer-reader. For this 
purpose, we use the Maude search command to explore the 
space of possible configurations described in a QoSML 
model. It allows developers to find counterexamples, in 
which the configuration of two entities is invalid, analyze 
the problem and then fix it accordingly. In essence, to 
enable the search, we need: (1) a set of rewriting rules to 
produce different combinations of writer-reader instances 
configured according to the QoSML model; and (2) a set of 
equations to check the compatibility of these instances. 

Finally, regarding adaptation consistency, we have 
adopted two different approaches. On the one hand, we 
simulate with Maude the VML model to predict unsuitable 
configurations of the adaptive QoS policies [14]. On the 
other hand, as each adaptive QoS policy has its variation 
range explicitly declared (in the definition of the variation 
point and occasionally in the template extension), we can 
check if the whole range is consistent with the rest of 
prescribed configurations. For instance, in Listing 5, the 
time-based-filter policy is constrained to the interval [0, 1.5] 
and the deadline policy is set to 2s. As these two attributes 
represent the minimum and the maximum separation period 
between subsequent samples, a deadline lower than the 
time-based-filter value would have been inconsistent. 
Maude equational logic can support such verifications. 

Listing 7: Example of some QoSML sentences in Maude. 
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Figure 6: The model transformation and the run-time process. 

V. RUNNING ADAPTIVE QOS 
This section presents how the models are executed in 

Nerve [5,6], the DDS-based middleware on which adaptive 
QoS become effective. We conclude the section by 
illustrating the benefits of running adaptive QoS in the 
robotic example. 

A. Execution of adaptive QoS in Nerve 
In order to take the SML, QoSML and VML 

specifications into Nerve, we provide developers with a 
model-to-text transformation. Figure 6 outlines this 
transformation and the main elements taking place at run-
time. It is worth noting that the modeling languages involved 
in the process are platform independent. They are aimed at 
raising the level of abstraction of dealing with QoS 
configuration and its adaptation. Therefore, among other 
benefits, it would allow targeting platforms different from 
Nerve through the development of new transformations. 

In our process, the model-to-text transformation is 
divided into three steps: (1) the generation of the Nerve 
configuration file with the QoS values assigned to data 
writers and readers; (2) the generation of the code skeleton 
for each service. The developer will need to complete it with 
the application code; and (3) the generation of the artifacts 
that are run by the adaptation service. 

Regarding the execution part, Figure 6 depicts the Nerve 
elements that come into action when a service has a writer or 
a reader with at least an adaptive QoS policy. The adaptation 
service is the “brain” that selects values for the adaptive QoS 
policies. This service executes one process for each adaptive 
writer or reader. In the robotic example, the adaptation 
service holds three processes: two for Classifier (it has a 
reader and a writer configured as a result of applying two 
communication templates with adaptation, i.e., continuous 
data and events) and one process for DisplayManager (its 
reader is set by the events template). Recall that continuous 
data does not prescribe writers any adaptive QoS policy, for 
that reason Capturer does not have adaptation. In the current 
implementation of the example, we have deployed the 
adaptation service in a separate node to reduce the system 
overhead (see Control PC in Figure 6). However, it would 
have been possible to distribute these three adaptation 
processes as needed, thanks to the support provided by the 
underlying DDS framework. Concerning the operation, the 
adaptation service has to solve the constrained optimization 

problem posed by the VML models according to the context 
situation. The current implementation basically consists of 
two parts: (1) a Finite State Machine to update the property 
weights (which is specified by the adaptation rules in the 
VML model, see Figure 4) and (2) an engine to compute the 
variation points through the optimization of the adaptation 
properties. For the latter, Nerve uses a constraint solver from 
the G12 Constraint Programming Platform [15].  

Once variation points are determined, they are put into 
action through QoS drivers, which are responsible for 
configuring QoS policies at run-time. In addition, the 
monitoring service gathers context information from the 
application and sends it to the adaptation service (at a rate 
that is fully configurable). The monitoring topic may contain 
information about: (1) CPU and memory consumption from 
every service and network traffic in the computer (using the 
Sigar multiplatform-API [16]); (2) QoS from DDS data 
writers and readers; and (3) monitoring variables associated 
with a particular service (e.g., sender and receiver rates, 
overload, the processing time of an algorithm or tasks, etc.). 
Highlight that Nerve gives developers the option to 
implement application-specific monitors and drivers. For 
instance, it provides the possibility of targeting as variation 
points other attributes different from the DDS QoS policies, 
such as parameters for adjusting the transport protocol. 
Finally, when the system starts, the QoS initializer 
configures the QoS policies according to the Nerve 
configuration file. This file includes, in XML format, all the 
QoS settings defined to each data reader and writer of the 
application, i.e., (1) policies prescribed in a template and not 
overwritten (see Listing 1); (2) those overwritten in a 
template extension (see Listing 5); and (3) all the other 
policies with their default values (see Listing 2). Note that 
the adaptive QoS policies are initialized with default values. 

B. Adaptive QoS in action 
We have measured the performance of the example 

system with and without the adaptation service. Regarding 
the continuous data template, the dotted line in the left graph 
of Figure 7 shows the evolution of the Classifier’s overload 
without adaptation. Note that the overload stays around 40%, 
which means that the Classifier is receiving more data than it 
can process. It also implies that a percentage of the data sent 
by Capturer is being overwritten in the Classifier’s queue 
(continuous data prescribes a history length of 1). Therefore, 
there is a waste of resources in terms of network bandwidth 
and CPU consumption. Considering now adaptation, 
continuous data tries to mitigate this waste of resources by 
adjusting the time-based-filter QoS policy (observe the line 
with square markers in the left graph of Figure 7). The 
objective of this adaptation is to obtain an overload value 
lower than 10% (this percentage was set when the template 
was extended, see line 4 in Listing 5). Due to the high initial 
overload, the adaptation service gradually increases the time-
based-filter QoS policy up to 0.09s. After a few seconds, the 
overload remains stable at 9.9% (note the solid line in the left 
graph of Figure 7). As a result, the Capturer sending rate and 
the Classifier receiving rate become more balanced.
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Figure 7: (Left axis) Solid/dotted lines meaning the Classifier’s performance with (solid) and without adaptation (dotted). (Right axis) Lines with square 

markers representing the value of the QoS policy.

The middle graph in Figure 7 shows the evolution of the 
time-based-filter policy when we establish the invariant CPU 
< 15% in the Classifier service. This policy is adjusted to a 
more restrictive value than in the previous case, causing a 
decrease in the CPU load until it meets the established 
threshold. Highlight that invariants are addressed by the 
adaptation service, see the difference between the dotted and 
solid line in the middle graph of Figure 7. The adaptation 
assumes a best-effort approach for accomplishing resource 
requirements, thus, we cannot assure their inviolability as it 
depends on factors beyond the middleware, such as the 
implementation of the application services. 

Regarding the application of the events template in the 
Classifier and DisplayManager, the right graph of Figure 7
shows the memory consumption of Classifier. When the 
adaptation service is disabled, the memory consumption 
grows up to 35-40 MB (see the dotted line). This is the result 
of prescribing data persistence (see line 6 in Listing 5), 
which is useful for debugging tasks, since the data writer in 
Classifier records all the results about the people detected. 
However, it implies that the memory consumption could 
grow indefinitely. Fortunately, the configuration of the 
lifespan QoS policy allows the adaptation service to control 
the size of persistent queues by changing the data expiration 
time. Initially, we have configured this QoS policy with a 
value of 30 seconds. The solid line in the right graph shows 
the evolution of the memory considering adaptation and the 
invariant: memory < 10MB. The lifespan decreases to 6.1 
seconds at the execution time marked as A (see the line with 
square markers). This reduces the memory consumption to 
3.5MB. However, the adaptation service has to optimize the 
overall performance by using all the available memory, that 
is, to adjust the lifespan to achieve a consumption as close as 
possible to the limit imposed by the invariant. Consequently, 
the adaptation service increases the lifespan value to almost 
13 seconds at the execution time marked as B, which 
stabilizes the memory consumption between 5 and 10MB. 

VI. RELATED WORK 
The concept of communication templates is not new. 

Outside DDS, the same idea was introduced by the 
communication patterns of Smartsoft [17], which provide
fixed semantics for the most common communication 
scenarios. Furthermore, adaptation is becoming increasingly 
important in distributed systems, e.g. consider the growth of
adaptive streaming technologies for optimizing the viewing
experience of users [18]. In the DDS domain, among the 
efforts invested in trying to overcome the complexity of 

dealing with the end-to-end QoS of the applications, Real-
Time Innovations Inc. (RTI) has proposed the built-in QoS 
profiles [19] in its DDS implementation. It consists in 
predefined configurations of QoS policies that developers 
can use to create DDS entities with specific QoS properties. 
They define three types of built-in QoS profiles: 
(1) baselines, which define default configurations for each 
DDS QoS policy; (2) generics, to represent simple 
communication features; and (3) patterns, which describe 
domain-specific use cases in terms of generics, including 
some configuration patterns documented by Hunt [3]. It is 
worth noting that developers can create new QoS profiles by 
extending the existing ones through XML configuration 
files. QoS profiles are similar to communication templates in 
that both provide an abstraction, which can be reused and 
extended, and allow developers to think about the behavior 
they want to achieve rather than how to configure each QoS 
policy individually. Apart from other differences, QoS 
profiles differ from communication templates in that they do 
not consider design-time validation (e.g., policy 
incompatibilities are only detected at run-time and informed 
to the user by means of exceptions).  

Other DDS vendors have developed modeling tools, such 
as OpenSplice Modeler [20], for creating QoS 
configurations. These tools normally provide a graphical 
environment to (1) represent the DDS entities involved in the 
application; (2) set their QoS policies; (3) check the 
configuration; and (4) generate the implementation artifacts. 
Unlike our proposal, these approaches (including built-in 
QoS profiles) are generally tied to a particular vendor's 
technology and to the details of the DDS standard. They do 
not give any support for modeling adaptive QoS policies or 
mechanism to adjust resources dynamically. Besides, they 
also are deficient in development processes aimed at 
separating roles and concerns while encouraging reusability. 

In the reminder of this section we review some work 
concerning dynamic QoS adaptation in the middleware. 
Hoffert et al. have developed ADAMANT (ADAptive 
Middleware And Network Transports) [21] to maintain QoS 
properties in dynamic environments for distributed real-time 
and embedded systems. Although ADAMANT uses DDS to 
propagate the monitoring information needed to determine 
adaptations, its target is not the DDS QoS policies. 
Conversely, ADAMANT puts the focus on selecting and 
configuring the transport protocol to address the QoS 
concerns at run-time. For this purpose, it uses several 
supervised machine learning techniques and a reconfigurable 
transport layer. Other research also copes with the adaptation 
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of transport protocols, such as [22]. This seems to be a 
relevant issue that could be exploited together with the 
adaptation of QoS policies. We believe that the notion of 
communication template for adaptive QoS is not limited to 
DDS QoS policies and that our approach could also 
contribute to this issue. In addition, Hoffert et al. [23] 
propose the Distributed QoS Modeling Language (DQML) 
that helps developers to set and generate valid QoS 
configurations. However, this language does not include any 
abstraction comparable to our communication templates or 
elements to express and tune the adaptation at run-time. 

Boonma et al. [24] present a DDS-based middleware for 
wireless sensor networks, in which the event routing protocol 
is adapted to satisfy QoS properties according to the 
available resources and the performance. While this work 
seems to obtain good results, it (as [21]) lacks in methods for 
modeling and validating the adaptation process. Regarding 
this concern, some researchers propose the use of formal 
methods to provide developers with rigorous tools for 
designing and testing the correctness of their systems. In this 
vein, Loulou et al. [25] present P/S-CoM, an approach 
developed with Z notation for supporting the correct 
modeling and the safe dynamic reconfiguration of the 
internal architectural style in a publish/subscribe 
middleware. Z notation is similar to Maude in that both 
enable the formal specification and verification of the 
adaptation, which is posed as a remarkable open issue [26]. 

Gray et al. [27] describe the Adaptive Quality Modeling 
Language (AQML) that allows modeling, simulating and 
generating QoS adaptation software. AQML defines three 
views: (1) QoS adaptation modeling, which specifies the 
adaptation logic through finite-state machines; 
(2) computation modeling, which describes the system 
architecture; and (3) middleware modeling, which includes 
the services and the system conditions (e.g., throughput or 
latency) provided by the middleware. Designers can express 
any parameter in the components in (2) and (3), which 
allows the adaptation logic in (1) (through in/out events and 
data in transitions and states) to observe and tailor the 
behavior of the system. The analysis of the adaptation is 
performed from a centric point of view using Matlab. An 
engine translates the QoS adaptation specifications defined 
in AQML into a Simulink/Stateflow model, which enables 
the evaluation of the state machine, e.g., to check the 
stability of the system or simulate the state transitions. As 
our approach, this work promotes the separation of concerns 
(e.g., the adaptation and the QoS configuration is set apart 
from the application logic). It also allows model validation 
and generates run-time artifacts, which enhances correctness 
and scalability, among other benefits. However, Gray et al. 
do not put special emphasis on the reusability and the 
separation of roles. Thus, application developers will need to 
deal with all the modeling details while, in our approach, 
they are able to reuse and refine models, e.g., they can 
specify resource constraints in a simple way without dealing 
with the adaptation logic.  

Other research work is specifically aimed at managing 
the fluctuations in application workload and system 
resources. For example, Wang et al. [28] present a 

middleware mechanism to control the CPU utilization in 
distributed real-time and embedded systems. Unlike our 
proposal, where the adaptation assumes a best-effort role 
accomplishing resource requirements, approaches like [28] 
try to achieve a more accurate control. For this reason, these 
may tend to be tied to the application, the underlying 
technology or a particular setting, which would limit some of 
the principles that our modeling process promulgates, such 
as reusability. Even so, the insights resulted from this 
research may allow us to enrich the corresponding adaptation 
models with new strategies and algorithms. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper we have described a model-driven approach 

for supporting the modeling, validation and generation of 
adaptive QoS configurations in DDS-based middleware. Our 
proposal revolves around the notion of communication 
template, i.e., an abstraction that represents a predefined 
configuration of (adaptive or fixed) QoS policies. 
Considering different roles, first, communication templates 
are created and then reused to configure the middleware. 
This process is supported using three modeling languages: 
the Variability Modeling Language (VML), the Quality of 
Service Modeling Language (QoSML) and the Service 
Modeling Language (SML), which are used to (1) specify 
the adaptation logic, (2) create/extends templates and define 
resource constraints, and (3) bind templates to 
publish/subscribe processes. Moreover, we have presented 
the validation of the models using Maude, aimed at 
preventing the occurrence of incompatible QoS 
configurations. Finally, after transforming the validated 
models into run-time artifacts in Nerve, the results of 
executing adaptive QoS policies were shown in an example. 

For the future, some of the open challenges that we 
consider pivotal are listed next.  
• Adaptation consistency in complex systems. Although 

we are able to validate to some extent our models with 
Maude, the verification of the global effects derived 
from a number of adaptive QoS policies running 
autonomously is still open. Note that each adaptive QoS 
policy seeks optimal values based on its local context 
only. Therefore, the challenge is twofold, on the one 
hand, to foresee side effects by providing tools capable 
of checking the interrelations among VML models and, 
on the other hand, to develop run-time mechanisms for 
coordinating and leading individual adaptations to a 
more global optimization of the system. 

• Extension of the QoS description. We have designed 
communication templates not only to be used with DDS, 
but also to support different ways of describing QoS. In 
this sense, it would be interesting to extend our 
modeling languages to consider the adaptation of 
transport protocols, or to investigate the connection 
between communication templates and other high-level 
specifications, such as MARTE [29] or AADL [30]. 

• Practical application to industry. We plan to test our 
approach with more extensive case studies, which will 
allow us to incorporate the gained experience into our 
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research. Moreover, we are still working on improving 
the modeling tools presented in the paper. Although the 
current version is functional, there are some parts that 
need to be polished before making our tools available to 
everyone. For example, the automatic transformation to 
generate the Maude representation from the QoSML, 
VML and SML models is still under development. 
Currently, the Maude files are written manually. 

ACKNOWLEDGMENT 
This work has been partially supported by the Spanish 

Ministerio de Economía y Competitividad (TIN2015-65686-
C5-4-R and TIN2015-69957-R). Juan F. Inglés-Romero 
thanks Fundación Séneca-CARM for a research grant (Exp. 
15561/FPI/10). 

REFERENCES 
[1] Data Distribution Service for Real-time Systems (DDS), Object 

Management Group, 2007. 
[2] The Real-time Publish-Subscribe Wire Protocol DDS Interoperability 

Wire Protocol specification, Object Management Group, 2009.  
[3] G. A. Hunt, “DDS Use Cases: Effective Application of DDS Patterns 

and QoS”, in OMG’s Workshop on Distributed Object Computing for 
Real-time and Embedded Systems, 2006. 

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, 
J. Quesada, “Maude: specification and programming in rewriting 
logic,” Theorical Comp. Sci., vol. 285, no. 2, pp. 187-243, Aug, 2002 

[5] J. Martínez, A. Romero-Garcés, J.P. Bandera-Rubio, R. Marfil-
Robles, A. Bandera-Rubio, “A DDS-based middleware for quality-of-
service and high-performance networked robotics,” Concurrency and 
Computation: Practice and Experience, vol. 24, no. 16, pp. 1940-
1952, 2012. 

[6] A. Romero-Garcés, J. F. Inglés-Romero, J. Martínez, C. Vicente-
Chicote, “Self-adaptive Quality-of-Service in distributed middleware 
for robotics,” in Proc. 2nd Workshop on Recognition and Action for 
Scene Understanding, 2013.  

[7] Xtext. (2017) [Online]. Available: www.eclipse.org/Xtext. 
[8] A. Lotz, J. F. Inglés-Romero, M. Lutz, D. Stampfer, C. Vicente-

Chicote, C. Schlegel, “Towards a Stepwise Variability Management 
Process for Complex Systems - A Robotics Perspective,” 
International Journal of Information System Modeling and Design, 
vol. 5, no. 3, pp. 55-74, 2014. 

[9] J. F. Inglés-Romero, R. Morales-Chaparro, C. Vicente-Chicote, F. 
Sánchez-Figueroa, “A Model-Based Approach to Develop Self-
Adaptive Data Visualizations,” in Proc. 22nd Int. Conf. on 
Information Systems Development, pp. 345-357, 2013.  

[10] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, “Dynamic software 
product lines,” IEEE Computer , vol. 41, no. 4, pp. 93–95, 2008. 

[11] Matlab. [Online] 2017. Available: www.mathworks.com. 

[12] The Eclipse Graphical Modeling Framework. [Online] 2017. 
Available:  www.eclipse.org/modeling/gmp/ 

[13] A. Boronat, J. Meseguer, “An algebraic semantics for MOF,” Formal 
Aspects Comput., vol. 22, no.3, pp. 269-296, 2010. 

[14] J. F. Inglés-Romero, C. Vicente-Chicote, “Towards a formal approach 
for prototyping and verifying self-adaptive systems,” Lecture Notes in 
Business Information Processing, Springer Berlin Heidelberg, vol. 
148, pp. 432–446, 2013. 

[15] G12 Constraint Programming Platform. [Online] 2017. Available: 
https://users.cecs.anu.edu.au/~jks/G12/ 

[16] The Sigar cross-platform API. [Online] 2017. Available: 
https://support.hyperic.com/display/SIGAR 

[17] D. Stampfer, A. Lotz, M. Lutz, C. Schlegel, “The SmartMDSD 
Tollchain: An integrated MDSD Workflow and Integrated 
Development Environment (IDE) for Robotics Software”. Journal of 
Software Engineering for Robotics, vol. 7, no. 1, pp. 3-19, July 2016. 

[18] B. Li, Z. Wang, J. Liu, W. Zhu, “Two decades of Internet video 
streaming: A retrospective view,” Multimedia Computing, 
Communications, and Applications, vol. 9, no. 1, pp. 33-53, 2013. 

[19] Real-Time Innovations Inc. (RTI), “Built-in QoS profiles,”. [Online] 
2017. Available: http://blogs.rti.com/2014/02/11/built-in-qos-profiles  

[20] Vortex OpenSplice Modeler. [Online] 2017. Available: 
http://www.prismtech.com/vortex/vortex-opensplice/tools/modeler  

[21] J. W. Hoffert, A. Gokhale, D. C. Schmidt, “Timely Autonomic 
Adaptation of Publish/Subscribe Middleware in Dynamic 
Environments,” Int. J. Adaptive, Resilient and Autonomic Systems, 
vol. 2, no. 4, pp. 1–24, 2011. 

[22] J. H. Hwang et al., “DR-TCP: Downloadable and reconfigurable 
TCP,” J. Syst. and Soft., vol. 81, pp. 83–99, 2008. 

[23] D. S. Joseph W. Hoffert, A. Gokhale, “DQML: A Modeling 
Language for Configuring Distributed Publish/Subscribe Quality of 
Service Policies,” in Proc. 10th Int. Symp. on Distributed Objects, 
Middleware, and Applications, 2008. 

[24] P. Boonma, J. Suzuki, “Self-Configurable Publish/Subscribe 
Middleware for Wireless Sensor Networks,” in Proc. 6th IEEE Conf. 
Consumer Communications and Networking, pp. 1376–1383, 2009.  

[25] I. Loulou, M. Jmaiel, K. Drira, A. H. Kacem, “P/S-CoM: Building 
correct by design Publish/Subscribe architectural styles with safe 
reconfiguration,” J. Syst. and Soft. , vol.83, no.3, pp.412-428, 2010. 

[26] M. Salehie, L. Tahvildari, “Self-adaptive software: Landscape and 
research challenges,” ACM Trans. on Autonomous and Adaptive 
Systems, vol. 4, no. 2, pp. 1–42, 2009. 

[27] J. Gray, S. Neema, J. Zhang, Y. Lin, T. Bapty, A. Gokhale, D. C. 
Schmidt, “Concern Separation for Adaptive QoS Modeling in 
Distributed Real-Time Embedded Systems,” in Behavioral Modeling 
for Embedded Systems and Technologies: Applications for Design 
and Implementation, Information Science Reference, 2009. 

[28] X. Wang, Y. Chen, C. Lu, X. Koutsoukos, “FC-ORB: A robust 
distributed real-time embedded middleware with end-to-end 
utilization control,” J. Syst. and Soft., vol.80, no.7, pp.938-950, 2007. 

[29] Modeling Analysis of Real-Time Enbedded Systems (MARTE), 
Object Management Group, 2011. 

[30] Architecture Analysis and Design Language (AADL), SAE standard 
AS-5506, 2004. 

 


