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Abstract—As users start carrying multiple mobile devices, we propose a novel, token based mobile device unlocking approach. Mobile

devices are conjointly shaken to transfer the authentication state from an unlocked token device to another device to unlock it. A

common use case features a wrist watch as token device, which remains unlocked as long as it is strapped to the user’s wrist, and a

locked mobile phone, which is unlocked if both devices are shaken conjointly. Shaking can be done single-handedly, requires little user

attention (users don’t have to look at the device for unlocking it), and does not cause additional cognitive load on users. In case

attackers gain control over the locked phone, forging shaking is difficult, which impedes malicious unlocks. We evaluate our approach

using acceleration records from our 29 people sized ShakeUnlock database and discuss influence of its constituent parts on the system

performance. We further present a performance study using an Android implementation and live data, which shows the true negative

rate of observational attacks to be in the range of 0.8—if an attacker manages to gain control over the locked device and shake it in

parallel to the device owner shaking the token device.

Index Terms—Mobile computing, human factors, measurement techniques, authentication

Ç

1 INTRODUCTION

MANY people already carry multiple mobile devices
such as mobile phones, tablets, and smart watches.

Other wearable computing gadgets (e.g., activity or fitness
trackers) are on the rise as well. Most of these devices have
access to, process and/or store sensitive information [2].
Well-known examples include, but are not limited to, com-
munications (email, SMS, instant messaging), context infor-
mation (location), access to non-public networks (WiFi,
VPN), access to payment or identity management applica-
tions, photos, documents, and even health related informa-
tion (e.g., heart rate). In addition, with the “Bring your own
device” trend, employees start to store and process com-
pany data on private devices (cf. [3], [4]). To prevent attack-
ers from gaining access to data stored on these devices,
locking and unlocking mechanisms have been developed.
Those lock devices while not being used (e.g., after a short
idle timeout) and users have to unlock them before usage.
While authentication conceptually is divided into knowl-
edge-, biometrics-, and token based-authentication [5], [6],
so far approaches for mobile devices mostly utilize either
knowledge- or biometrics-based authentication.

The most widely used mobile knowledge-based unlocking
mechanisms are PIN, password and graphical pattern [7]. All
of them increase the cognitive load on the user [8], [9] and
require a certain time to enter the secret knowledge—which
might be cumbersome due to small user interfaces on mobile
devices [10]. In addition, mobile devices are unlocked more
frequently than, e.g., desktop computers, but used for shorter
periods of time (cf. [11], [12], [13], [14]), which deteriorates the
unlock-to-usage-time ratio. Therefore the impact of increased
cognitive load and effort required to perform the unlock is
higher onmobile devices than on desktop computers. Further-
more, knowledge based unlocking approaches are vulnerable
to shoulder surfing attacks (attackerswatching the authentica-
tion process, thereby observing the unlocking secret, cf. [15],
[16]) and smudge attacks (attackers screening the display after
the user authenticated using a graphic pattern to observe the
residual smudge that might remain on the display, thereby
observing the unlocking secret, cf. [17], [18], [19]).

Biometrics-based approaches most commonly used on
mobile devices include fingerprint (e.g., Apple TouchID),
face, or voice (cf. [5], [20]). While those are easy to use and
do not increase the cognitive load, the drawback lies with
securing biometrics of users. Unlike with knowledge- or
token-based authentication, biometric features cannot be
changed—which increases the impact of leakage or theft of
biometrics. In addition, hardware used to capture and pro-
cess biometrics on mobile devices is often proprietary,
which makes identifying and analyzing potential security
issues difficult.

In contrast to knowledge-based authentication and bio-
metrics, token-based unlocking mechanisms are rarely used
on mobile devices. Most approaches proposed so far are
based on proximity of token and device to perform the
unlock. Examples include transmitting a secret from token
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to device via bluetooth, NFC, or IEEE 802.11 (WiFi) [21],
[22], [23], using the device magnetometer to determine
proximity to the token, or mobile speakers and microphones
to transmit/receive a secret [24].

Proximity based approaches have the drawback of
attackers possibly being able to unlock the mobile device
they got under their control if they are close to the user. For
example, with WiFi- or Bluetooth-based approaches it
might be sufficient to be in the same room with the legiti-
mate user to successfully unlock the device. As attackers are
likely to be close to the user when obtaining control over
the mobile device, an immediate unlock would be possible
before leaving the scene. When using token-based authenti-
cation, the token needs to be brought by users everywhere
they potentially want to use their mobile device. Depending
on where the token is kept, it could be possible to obtain
control over both token and device at once and then use the
token to unlock the device. If the token itself is locked to
prevent illegitimate usage in case of theft, the whole prob-
lem is transfered from the mobile device to the token—as
unlocking the token itself again could be done using
knowledge-, biometrics- or token-based authentication.

To address these issues we propose a novel token-based
mobile device unlocking approach: transferring the authenti-
cation state between two devices by briefly shaking them
conjointly. The key idea is that personal mobile devices can
remain unlocked for different periods of time, one could act
as a token, allowing to transfer authentication state between
devices. For example, a mobile phone should lock itself as
soon as it is put aside while a smart watch could remain
unlocked as long as it is strapped to the wrist and automati-
cally lock itself when detached. The smart watch could, e.g.,
be unlocked once in the morning when attached to the wrist
and automatically lock itself when detached, utilizing, e.g.,
heart-rate measurements like with the Apple Watch1 or a
simple connection in the strap that is triggered by opening it.
Using this setup, the authentication state from the unlocked
watch can be transferred to the locked phone to unlock it—
hence the unlocked device can serve as token for unlocking
other devices. Shaking both devices simultaneously with the
same hand serves as a fast, easy and secure trigger for
authentication state transfer. The authentication state trans-
fer is only triggered after an analysis of sensor time series
recorded on both devices concludes that a) both devices
have been shaken simultaneously and b) both devices have
been shaken by the same person. For simplicity, from now
on we will refer to the device from which the authentication
state is transferred as token devicewhere applicable.

Unlocking mobile devices by shaking them conjointly
has noteworthy advantages over other unlocking appro-
aches. Required user attention is assumed to be lower com-
pared to current unlocking approaches, as users only need
one hand and are not required to look at the devices to
unlock them. In terms of speed, studies show that unlocking
duration ranges from 1.5 s (PIN) to 3 s (unlock pattern) [14],
[25]. We assume that these 1-3 s are considered an accept-
able unlocking delay in terms of usability versus security.
To be comparable to other unlocking mechanisms, we aim

for 2 s of shaking to transfer authentication states between
devices while requiring less user explicit attention.

Shaking devices can be utilized on a broad range of
mobile devices nowadays as accelerometers are a common
feature of mobile phones, tablets and smart watches as well
as activity trackers and other wearable computing gadgets.
Previous research on pairing mobile devices by shaking
them conjointly has stated shaking to be secure, as accelera-
tion records are difficult to forge by shaking devices bare
handed [26], making it a suitable choice for security critical
applications.2 We base our approach on these findings but
focus on a different use case: transferring authentication
states from a token device to another device to unlock it.
Consequently, the scenario presented here implies different
approaches towards security and usability with analyzing
acceleration sensed on both devices. This article focuses on
the technical aspect and security implications of ShakeUn-
lock—and leaves a thorough evaluation of usability and
acceptance for future work, as such a study would need to
consider longitudinal effects of muscle memory/muscle
learning (users being able to perform movements without
explicitly thinking about them, like 10-finger-typing on a
keyboard). Summarizing, our contributions are:

� In contrast to previous research on shaking mobile
devices conjointly to establish a secure channel
between them, we focus on shaking as a secure trig-
ger mechanism to transfer authentication states from
a token device to another device over a pre-estab-
lished secure channel.

� Our approach processes data from mobile devices
situated 10-15 cm apart from each other (mobile
phone held in the hand, smart watch strapped to the
wrist) with the wrist as a non-static joint in between,
which implies differences in sensed acceleration on
both devices.

� Using this setup we record the ShakeUnlock data-
base containing 3D acceleration and 3D gyroscope
time series recordings of mobile devices being
shaken conjointly. We use this data to parameterize
and evaluate our approach.

� We give detailed insight into our approach to pair-
wise shaking time series similarity data analysis. We
state in which way and how much constituent parts
contribute to the overall system performance. We
believe that future approaches can benefit from these
detailed insights and findings.

� We implement our approach on Android and pres-
ent a performance study which evaluates three dif-
ferent attack scenarios.

At first we give an overview of related work on shaking
devices (Section 2) and outline the threat model for our
approach (Section 3). We then present our approach (Sec-
tion 4), state details about analysis concepts and evaluate
their influence on system performance (Section 5). Finally,
we present our implementation and an evaluation of differ-
ent attack scenarios using live data (Section 6).

1. Apple Watch heart rate measurements: https://support.apple.
com/en-us/HT204666.

2. Hypothetical attacks could involve, e.g., high speed cameras and
an apparatus to precisely recreate visually observed shaking behaviors
but are beyond the scope of this work.
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2 RELATED WORK

2.1 Shaking Mobile Devices Conjointly

Analyzing movement and acceleration records for deter-
mining if mobile devices were shaken together by the same
body movement has been subject of a significant body of
research over the last 10 years. Research ranges from analy-
sis of simple movements with accelerometer recordings
(cf. [27], [28]) to deriving secret keys from acceleration data
(cf. [26], [29], [30], [31], [32]).

With “Smart-Its Friends”, Holmquist et al. [33] have
been amongst the first to associate devices by shaking
them together. Their devices sense acceleration and
broadcast it, so that other devices may decide on pairing
with them. Their approach purely focuses on pairing
without taking security aspects like Man-in-the-middle
(MITM) or replay attacks into account. In “Are You with
Me?”, Lester et al. [34] have built upon this work but use
frequency domain based magnitude squared coherence
instead of time domain based analysis to pair devices.
Their approach has further been extended by Mayrhofer
and Gellersen in “Shake Well Before Use” [26] which
additionally covers security aspects of pairing devices by
shaking them conjointly.

“Shake Them Up” by Catelluccia and Mutaf [35] utilizes a
related idea, although it does not involve sensing acceleration.
They monitor WiFi received signal strength indication (RSSI)
which is likely to change when devices are moved/rotated.
As devices are moved together they experience similar
changes in RSSI over time on the basis of which devices
decide if they have been moved together. This approach is
designed with MITM protection in mind. However, it
depends onwireless signals andwireless signal strength sens-
ing capabilities to be available on both devices.

The special aspect of shaking devices conjointly which
are apart from each other and have a non-static joint (e.g.,
the wrist) in between was addressed by Fujinami and Pirtti-
kangas [36] for associating objects with users. Amongst
other things they consider toothbrushing with sensors
attached to the users hands and toothbrushes. Similarly,
Bao and Intille [37] have investigated activity recognition
including tooth brushing from 2D acceleration sensors and
time domain features. We deal with the same complicating
issues for robust acceleration time series comparison due to
having a non-static joint between devices, which will cause
devices to sense slightly different acceleration during shak-
ing. Additionally, we have to consider security implications
of attackers trying to forge acceleration patterns to get
access to obtained devices.

In terms of data analysis, shared movement and shaking
has been analyzed in both time and frequency domain. For
in depth comparison we refer to [38], [39] as well as related
research from the field of activity recognition (cf. [40], [41],
[42]). Although analysis in time domain seems to be capable
of yielding higher entropy [29], analysis in frequency
domain seems more resistant to synchronization issues [34].
In our approach, devices independently record acceleration
and decide if they are currently shaken. Devices will sense
slightly different acceleration due to the non-static joint
in between them, hence detect active shaking at slightly
different points in time. As we cannot assume exact

synchronization between devices we use frequency based
analysis. So far the most successful analysis approach is
using frequency-domain based magnitude squared coher-
ence [43], which has been used in various previous studies
(cf. [26], [34], [44], [45], [46], [47]) and which is utilized in
our approach as well.

2.2 Implications of Shaking on Security

In 2011, Studer et al. [48] proved the well known and by
now discontinued mobile phone application “Bump”3 to be
insecure. With “Bump” and similar approaches such as
simultaneously pressing a button on both devices (cf. [28],
[49], [50]) correct timing is the only critical aspect to estab-
lish a channel between devices. As timing cannot be
assumed secret, attackers can easily perform MITM attacks
by forging required information and communicating them
with correct timing. Instead of using timing constraints we
utilize shaking to trigger the transfer of authentication state
from the token device to other devices. Consequently, resis-
tance against forged shaking patterns is required to prevent
attackers from triggering an authentication state transfer
without being in control of both devices at the same time.

Most previous research on shaking mobile devices con-
jointly in the scope of security aim to establish a secure
channel between devices [26], [29], [30], [51], [52] (also
known as bootstrapping or human verifiable authentication
problem [53]). In contrast to these approaches we study
shaking as trigger mechanism to transfer an authentication
states from the token device to other devices over an pre-
established secure channel.

3 THREAT MODEL

We want to emphasize that a) a user in control of the
unlocked token device and the locked phone is intentionally
able to trigger the authentication state transfer to unlock the
phone, as no biometric authentication is performed. b) the
authentication state transfer is triggered if—and only if—
the token device is unlocked and the phone is locked when
both devices are shaken conjointly, which renders being in
control of the locked token device and phone insufficient
for attacks. Consequently, access protection for the token
device is required. As discussed before, when assuming
that users attach their locked token device to their wrist
once a day, then unlock it (e.g., in the morning), the token
device can stay unlocked until users lock it manually or it is
detached from the wrist. Compared to access to an unlocked
phone or regular authentication token not featuring a lock-
ing mechanism, we argue that this brings an increased level
of access protection to the unlocked token device:

� It is more difficult for the token device to be lost or
stolen, as it is attached to the users wrist.

� For attackers it is more difficult to obtain/access to
the unlocked token device, as it automatically locks
itself when detached from the wrist and accessing it
in an unlocked state therefore would require access-
ing it before detaching it from users wrist, which is
unlikely to go unnoticed.

3. See http://bu.mp.
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For our scenario we therefore assume the token device to
be secure and restrict addressed attack scenarios to the
locked phone being under control of an attacker. We further
assume that the token device is unlocked, as otherwise no
authentication state transfer can be triggered.

3.1 Attack Scenarios

For all attack scenarios, the locked mobile phone is consid-
ered to be under physical control of an attacker trying to
unlock it unnoticed by legitimate users who controls the
token device. To trigger an authentication state transfer
from the unlocked token device to the phone, simultaneous
shaking of both devices is required. This implies the legiti-
mate user also has to shake the token device, which is why
an attacker must synchronize any attack attempts with the
user’s shaking of the token device. We address four such
attack scenarios with different attacker capabilities.

Minimal Effort Attacks. Assume that users have been
tricked into accepting a proxy device as their own and sub-
sequently trie to unlock it by shaking it conjointly with the
token device. Attackers simultaneously shake the target
device they control but without trying to mimic the shaking
pattern of users. Note that we use the term “minimal effort”
because attackers does not take additional effort such as
imitating users’ shaking behavior. Sophisticated prepara-
tion, e.g., obtaining control over the device beforehand and
tricking users into taking a different device for their own, is
still required for this kind of attack. Being resistant against
minimal effort attacks means being resistant against two
people separately shaking both devices at the same time to
trigger an authentication state transfer.

Observatory Attacks. Use the same setup as minimal effort
attacks, but attackers are observing the legitimate users and
attempt to synchronously mimic the users’ shaking patter to
unlock the device, without the legitimate users noticing.

Cooperative Attacks. Allow any cooperation between user
and attacker except touching each other or the other’s
device in order to achieve high similarity in shaking pat-
terns. This attack is supposed to break the approach and
serve as measure of upper boundary to the security
achieved, as in terms of authentication it is both unrealistic
and harder than both previous attacks.

Handshake Attacks. Assume attackers strap the mobile
phone to their wrist using a bandage (see Fig. 1). Then users
and attackers shake hands hard to achieve synchronized
acceleration records on both devices. This requires the hand
to which wrist the token is attached to be used for the

handshake. As with cooperative attacks, handshake attacks
are supposed to break the approach. In a real life scenario,
attackers shaking users’ hands as hard as required to trigger
recording of continuous 2 s shaking would be unrealistic, as
it is far from natural and would make users suspicious.

3.2 Attack Evaluation

From security perspective, evaluating these attacks scenar-
ios could be done with a one-to-one matching of data aggre-
gated from devices both shaken and not shaken conjointly.
These can be used to state a) success rates of legitimately
triggering authentication state transfer (true positive rates)
and b) attack success rates (false positive rates). From a
system parametrization perspective, a larger number of
samples is required to obtain suitable distinguishing capa-
bilities. We therefore use m-to-n matching of uncorrelated
shaking samples in our data set to simulate minimal effort
attacks which we use in turn to parameterize our approach
(see Section 5). To evaluate the remaining three attack
scenarios we use an implementation of the proposed
concept on off-the-shelf Android devices with one-to-one
matching of live data (see Section 6).

4 OUR APPROACH

Our approach is split into two major steps: separately sam-
pling acceleration on both devices and deciding upon trig-
gering an authentication transfer between devices on one
device (Fig. 2). The first step consists of monitoring accelera-
tion, deciding if the device is shaken, and extracting an
active shaking acceleration segment (active segment) inde-
pendently on both devices. If active segments have been
detected, both are aggregated on one device. In the second
step the similarity of active segments is determined to
decide if devices have been shaken conjointly and thus an
authentication state transfer should be triggered. Note that
in contrast to related approaches, no data is stored on the
devices—not even in the form of cryptographic keys or
hashes.

4.1 Active Segment Detection

In our approach devices continuously and separately moni-
tor acceleration, which can be done without excessive drain-
ing of battery power by utilizing hardware dedicated to
acceleration recording. Such hardware is already becoming
available in off-the-shelf mobile devices, such as for back-
ground step counting in the Apple iPhone5, iPhone6, and

Fig. 1. Possible handshake attack setup with a) the mobile phone being
strapped to the attacker’s wrist and b) attacker shaking the user’s hand
hard.

Fig. 2. Data processing chain used in the ShakeUnlock approach.
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Apple Watch, Samsung Galaxy S5 or Sony Xperia Z1(c)-Z3
(c) devices. As shaking is detected, the power efficient hard-
ware can, e.g., power on the main CPUwhich then performs
the computationally more expensive networking and time
series comparisons tasks.

Our approach looks out for the start of an active segment
by monitoring the variance of the acceleration magnitude of
the 3D acceleration sensor in a sliding window as described
in [26]. If the variance of acceleration within this window
rises above a certain threshold, this marks the start of an
active segment from which acceleration on three axes is
recorded for a short duration, capturing the shaking of the
device. For our evaluation and implementation we use an
acceleration monitoring sliding window of 2 s, an accelera-
tion variance threshold of 6� 10�4 m

s2
and record active seg-

ments of 2 s length after shaking is detected. If users
prematurely stop shaking (i.e., active segment < 2 s), no
authentication state transfer will be triggered.

After active segments have been detected and recorded
separately on both devices, we aggregate them on one
device. Data aggregation could be done on each of the devi-
ces, as both are assumed secure and connected via a secured
channel. However, when transferring the authentication
state from the watch (token) to the phone, data aggregation
on the phone has the following advantages: a) Usually,
mobile phones have higher computational power than
smart watches, hence the decision on performing the
authentication state transfer will be obtained faster. b) If we
conclude to perform the authentication state transfer from
watch to phone based on recorded active segments, no fur-
ther data transfer between devices is required, as the deci-
sion is done on the phone already.

4.2 Authentication Transfer Decision

After active segments have been recorded on both devices
individually and aggregated on one device, we analyze
those active segments to determine if devices have actually
been shaken conjointly. If so, we perform an authentication
state transfer between devices to unlock the device still
locked. Before performing the actual similarity analysis, we
preprocess the two active segments. We compensate for
gravity recorded within the active segments by subtracting
the mean acceleration per axis throughout the active
segment.

Our similarity analysis takes a pair of active segments as
input and yields a scalar metric value as output. If this met-
ric value is above a reference threshold, we conclude that
active segments represent devices shaken conjointly, there-
fore trigger the authentication state transfer and unlock the
locked device. If the metric value is below the predefined
threshold, we conclude that active segments represent devi-
ces not shaken conjointly, therefore refuse the authentica-
tion state transfer and do not unlock the device. Our
similarity analysis consists of different constituent parts,
which we present and discuss in the next section.

5 ACTIVE SEGMENT SIMILARITY ANALYSIS

Previously Mayrhofer and Gellersen [26] showed that it is
feasible to detect if devices—which are pressed against
each other—have been shaken conjointly using magnitude

squared coherence on acceleration time series magnitudes.
In previous research [1] we applied this method with
adapted parameters and preprocessing to acceleration time
series magnitudes of devices somewhat apart and with non-
static joint in between during shaking. The presented
extended approach additionally incorporates derotation of
3D time series before performing the similarity analysis,
bandpass filtering, a different collapsing function, and opti-
mal weighting of individual frequencies. In this section we
discuss and evaluate each constituent part and its influence
on overall performance. Obtained performance compari-
sons are stated in Section 5.9.

5.1 Parametrization and Evaluation Data

We parametrize and evaluate our approach using data from
our publicly available ShakeUnlock database4 [1] on the
basis of devices shaken conjointly and simulated minimal
effort attacks. Other attack scenarios are not based on this
data and are separately covered in Section 6. The ShakeUn-
lock database contains acceleration and gyroscope record-
ings of 29 participants shaking a wrist watch (strapped to
their wrist) and mobile phone (held in the same hand). For
each participant, 20 samples of shaking both devices for 10 s
have been recorded—which results in 580 pairs of shaking
samples and a total of 1, 160 recordings in the database. In
previous research we have evaluated the influence of
shaking duration on unlocking performance [1]. Our find-
ings support the intuition that increasing the shaking
duration improves accuracy when assessing whether
devices have been shaking conjointly, but obviously
impair usability as the effort increases. We found a shak-
ing duration of 2 s to constitute a reasonable trade-off
between usability and security. Consequently, for this
work we restrict ourselves to a shaking duration of 2 s,
therefore extract one active segment of 2 s duration per
time series recording. Active segments shorter than 2 s
are excluded from further analysis, as this simulates users
not shaking their devices long enough.

We use all 580 time series pairs of devices shaken con-
jointly as legitimate tries to trigger authentication state
transfer between devices. Therefore, our positive class P is
of size 580. To simulate minimal effort attacks we use all
580� 579 ¼ 335;820 combinations of time series obtained
from not shaking devices conjointly as our negative class N .
Note that we exclude pairs of same type of devices (two
mobile phones as well as two smart watches) as these sce-
narios are not realistic in real life.5

5.2 Performance Measures

As the sizes of our P and N class differ notably, some per-
formance measures like accuracy are not significant [54].
We therefore rely on a number of well known and more sig-
nificant metrics in our evaluation. The true match rate
(TMR) represents the ratio of correctly identified cases of
users trying to trigger an authentication state transfer with

4. The ShakeUnlock database is available online at http://usmile.
at/downloads.

5. This is different to our previous research [1] in which we
included same device types being shaken conjointly. We consequently
obtain slightly different performance rates with this evaluation.
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devices being shaken conjointly (P class samples). Likewise,
the true non match rate (TNMR) represents the ratio of cor-
rectly identified cases of minimal effort attacks, with devices
not being shaken conjointly (N class samples). We obtain
the TMR and TNMR for all possible metric thresholds, from
which we construct the receiver operating characteristics
(ROC) and the area under the ROC curve (AUC). Both ROC
and AUC capture the overall performance instead of stating
the performance at a specific metric threshold. The equal
error rate (EER) states the error for TMR ¼ TNMR, repre-
senting the intersection between the ROC curve and the
diagonal from TMR ¼ TNMR ¼ 1 to TMR ¼ TNMR ¼ 0.

5.3 Magnitude Squared Coherence with
Acceleration Time Series Magnitudes

With magnitude squared coherence [43] the time series x
and y are divided into n overlapping slices (Fig. 3).

Each slice is multiplied with a weighting window (such
as a Hann or Hamming window). We use slices of 7

8 overlap
and 1 s duration (with 100 Hz sampling rate this corre-
sponds to slice and window lengths of 100 samples), and a
Hann weighting window as proposed in [26]. Next, all slices
are transformed into the frequency domain by applying a
standard fast Fourier transformation (FFT) with 1 s window
size. For each pair of corresponding slices from x and y, the
coherence vector Cxy;nðfÞ is calculated from the power spec-
tral densities Sxx;n and Syy;n and the cross spectral density
Sxy;n (Eq. (1)). Then, all n coherence vectors Cxy;nðfÞ are
averaged to the single coherence vector CxyðfÞ (Eq. (2))

Cxy;nðfÞ ¼ jSxy;nj2
Sxx;n � Syy;n

(1)

CxyðfÞ ¼ 1

n
�
X
n

Cxy;nðfÞ: (2)

Finally, a scalar metric value Cxy is obtained from CxyðfÞ
using a collapsing function (Eq. (3))

Cxy ¼ ColðCxyðfÞÞ: (3)

This metric value Cxy is interpreted as confidence that devi-
ces have actually been shaken conjointly while recording x

and y. Hence, if Cxy � T , with T being a predefined metric
threshold, we transfer the authentication state and unlock
the device. If Cxy < T we refuse to transfer the authentica-
tion state, leaving the device locked. We apply the method
as summarized above on the time series magnitudes of the
two active segments x and y. Using the magnitude accelera-
tion time series is done frequently to compensate for
unknown spatial alignment of accelerometers. Thereby,

time series magnitudes are calculated from the L2-norm of
the active segment 3D acceleration time series. As collaps-
ing function Col we average the coherence vector CxyðfÞ up
to a cutoff frequency of 40 Hz (Eq. (4))

Cxy ¼ 1

41
�
X40Hz

f¼0 Hz

CxyðfÞ: (4)

Using only magnitude squared coherence with acceleration
time series magnitudes, we obtain an AUC of 0.8990 and an
EER of 0.1777.

5.4 Optimal Timeseries Derotation

Relying only on magnitudes for comparing acceleration
time series between different devices implies losing some
potentially important information in the form of rotational
components during the movement. Most previous research
has focused on magnitudes because in general orientation
of devices potentially moved together and of the accelerom-
eters within those devices is unknown.

Comparing movement in three dimensions instead of
only the aggregated magnitude therefore requires: a) the
assumption that the devices retain their relative orientation
with regards to each other during the shared movement,
and b) rotating one of the coordinate systems into the refer-
ence frame of the other. We refer to this process as derotation
and it can be considered an optimization problem to find
the rotation matrix that minimized the distances between
two 3D vectors. Recent results show that a quaternion based
approach can be used to solve this optimization problem
analytically and that it improves the EER with various dis-
tance metrics on the same data set used before [55]. We
apply this approach to derotation as one step for improving
classification accuracy.

Fig. 4 states the coherence density over frequency for the
P and N class for applying coherence on magnitudes as
well as on all axes of previously derotated time series.
Brighter areas represent lower coherence, darker areas rep-
resent higher coherence. Coherence is observably more
dense for the P class when derotating time series before
computing coherence instead of computing the series mag-
nitudes (Figs. 4a and 4b). In contrast, the density for the N
class is only marginally influenced by derotating time series
before computing coherence by being slightly higher on
average (Figs. 4c and 4d). This is to be expected, as corre-
lated time series initially are rotated arbitrarily but inten-
tionally contain similarity—which causes derotated time
series to show noticeably higher similarity. In contrast, ini-
tially not correlated time series only have little coincidental
similarity. Optimally rotating them therefore only causes
an insignificant raise in similarity. This data suggests
that for frequencies showing condensed coherence values,

Fig. 3. Active segment similarity analysis in ShakeUnlock.
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derotation of time series will improve class separation
performance—which is supported by evaluation results
stated below as well.

In contrast to comparing time series magnitudes we
instead compute coherence for each pair of axes (which
have been aligned through derotation). Therefore, coher-
ence computation yields three separate coherence vectors,
one per (aligned) pair of axes. Each coherence vector repre-
sents the frequency range 0-50 Hz for 100 Hz sampling in
data recording. Hence, all successive operations (e.g., filter-
ing frequencies by applying a 0-20 Hz bandpass) have to be
applied to these three coherence vectors individually. We
apply the previously used 40 Hz cutoff to the coherence
vectors, then average them to obtain a final, scalar coher-
ence value. By adding initial time series derotation to our
evaluation setup, we obtain an AUC of 0.9214 and an
EER of 0.1562.

5.5 Coherence Frequency Bandpass

Overall, research on human body motion states quite differ-
entmotion frequencies to usefully representmotion informa-
tion. For example, in Biomechanics and Motor Control of
Human Movement, Winter [56] states human body motion
is in general represented by a frequency range of about
0-10 Hz. In contrast, e.g., Bouten et al. [57] find frequencies
up to 20 Hz being useful to represent humanmovement dur-
ing everyday activities. They further state that body move-
ment of, e.g., limbs is usually faster, compared to movement
of torso and hip, whereas shaking mobile devices with the
hand corresponds to thementioned fastermovements.

In their research on shaking devices conjointly, Lester et al.
[34] pick up the frequency range of 0-10 Hz stated by Win-
ter [56]. They average coherence in the range of 0-10 Hz to
come upwith a scalar similarity value. In contrast, Mayrhofer
and Gellersen [26] average coherence in the range of 0-40 Hz
to determine if deviceswere shaken conjointlywithout stating
details on how this cutoff frequencywas determined. It can be
assumed that results from using a coherence range of 0-40 Hz
were superior to results from using a range of only 0-10 Hz
for their approach, for which the wider frequency range was
used. To determine the optimal coherence frequency range
we explicitly study the influence of different bandpass filters
to classification performance.

As shown in the coherence distribution over frequency
(Fig. 4), coherence is unequally distributed over frequency
in the ShakeUnlock database. Overall, coherence is less
dense as well as less diverse across P and N class for higher
frequencies, compared to lower frequencies, although the
lowest frequencies in the range of 0-2 Hz are less dense and
less diverse across classes as well.

In order to utilize the best performing coherence fre-
quency range in our approach, we apply a bandpass to
coherence frequencies before successively computing a sca-
lar similarity value from the coherence vector. For real
world applications and from an implementation point of
view, using a bandpass has several advantages over more
complex approaches of restricting the frequency range.
Using a bandpass is intuitive and easy to understand. Fur-
ther, it is fast and easy to implement and of small complex-
ity. In our bandpass evaluation, fL represents the lower
frequency threshold, hence the lowest coherence frequency
included during successive processing. Likewise, fH repre-
sents the upper frequency threshold. The frequency band-
pass performance (Fig. 5) states AUC over pairs of fL and
fH , with darker areas representing higher AUC values,
therefore better performance.

Note that with our setup, performance decreases notably
when increasing fL, while changes of fH seem to have sig-
nificantly less influence on performance. On the one hand,
this indicates that the most important portion of informa-
tion is contained in lower frequencies, and that higher

Fig. 4. Coherence densities per frequnecy of P andN class without and with time series derotation.

Fig. 5. Coherence bandpass performance (AUC per bandpass filter set-
ting) when applied without (a) and with derotation of time series (b).
Note that left and right brightness scaling is differently to increase
distinguishability.

FINDLING ET AL.: SHAKEUNLOCK: SECURELY TRANSFER AUTHENTICATION STATES BETWEEN MOBILE DEVICES 1169



frequency information is less reliable—which is in support
of findings from previous research. If these lower frequen-
cies are excluded, performance decreases significantly. On
the other hand, including frequencies up to about 20 Hz can
improve performance, which is different to what previous
research would suggest [56].

With applying a bandpass to coherence frequencies from
magnitudes of acceleration time series, performance peaks at
fL ¼ 1 Hz (skipping the 0 Hz constant component) and
fH ¼ 16 Hz, with an AUC of 0.9315 and an EER of 0.1418.
When combining the bandpass with initially derotating time
series, peak performance is reachedwith consistent fL ¼ 1Hz
and a slightly higher fH ¼ 18Hz, with an AUC of 0.9469 and
an EER of 0.1293. These results point out that coherence fre-
quency range noticeably influences overall performance—
and therefore should be selected carefully. In comparison to
other constituent parts of our approach, using a coherence fre-
quency bandpass turns out to hold the highest performance
gain—while being amongst those easiest to implement.

5.6 Coherence Frequency Collapsing Function

In previous research on shaking devices conjointly, collaps-
ing a coherence vector to a scalar coherence value has only
been done by averaging coherence. To collapse a coherence
vector, other functions are possible as well, with some of
them being frequently used in other disciplines. We evaluate
the following collapsing functions for obtaining a scalar simi-
larity value from coherence vectors: sum (average), median,
max, euclidean distance de, and square root distance ds.
Square root distance (Eq. (5)) is the counterpart to euclidean
distance (Eq. (6)), by inversing the order of squaring and tak-
ing the square root. Additional functions such as min turned
out to cause significantly worse performance in preliminary
tests and thereforewere disregarded in this evaluation

dsðvÞ ¼
X
i

ffiffiffiffi
vi

p
 !2

(5)

deðvÞ ¼ kvk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

vi2

s
: (6)

Performance comparisons (Fig. 6) show euclidean dis-
tance slightly outperforms averaging as well as all other
tested functions when used to collapse coherence vectors to
a scalar similarity value’ for both time series magnitudes as
well as initially derotated timeseries.

When applying euclidean distance as the best perform-
ing collapsing function to coherence obtained from time
series magnitudes, we obtain an AUC of 0.9023 and an EER
of 0.1670. In contrast, when applying euclidean distance as
collapsing function conjointly with initially derotating
timeseries and using a coherence frequency bandpass filter
we obtain slightly reduced performance, with an AUC of
0.9464 and an EER of 0.1293.

On the one hand, these findings indicate that obtaining a
scalar coherence value from a coherence vector might be
improved by considering not only the mean, but alternative
collapsing functions such as euclidean distance. On the
other hand, when used with other constituent parts of our
approach, the performance gain is minor (or as in our case,
performance even decreased slightly).

5.7 Optimal Coherence Threshold per Frequency

5.7.1 Determining Optimal Coherence Thresholds

After deriving a scalar similarity value from a coherence vec-
tor (obtained from two acceleration time series of devices
shaken conjointly) usually one fixed threshold is used to sepa-
rate the P and N class, as reported by Lester et al. [34] and
Mayrhofer and Gellersen [26]. Using a single coherence
threshold has a significant drawback: all frequencies are com-
bined within one scalar value, therefore the threshold can
only address all frequencies at once. Another approach is to
use an individual and independent threshold for each coher-
ence frequency. Each such threshold represents the optimal
separation between P and N class for that coherence fre-
quency—hence provides better class separation on individual
frequency level. Optimal thresholds differ when derived
from either time series magnitudes or from initially derotated
time series as derotation changes coherence values (see exam-
ple in Fig. 7). Fig. 8 states the optimal coherence threshold per
frequency for using time series magnitudes as well as for
incorporating initial time series derotation.

5.7.2 Using Optimal Coherence Thresholds

Next, we determine if a coherence vector CxyðfÞ obtained
by shaking device x and y corresponds to the P or N

Fig. 6. Influence of coherence vector collapsing functions on overall per-
formance using a) time series magnitudes and b) initially derotated time
series.

Fig. 7. True positive and true negative rate over coherence threshold for
3 Hz. Match rates as well as coherence values themselves for 3 Hz are
higher with derotation than with time series magnitudes.
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class using the optimal coherence thresholds CoðfÞ. We
have explored two ways of doing so: using a) a majority
vote and b) the distances from the optimal thresholds.
With the majority vote, we utilize the amount of fre-
quencies being above their corresponding optimal
threshold. If that amount is above another predefined
threshold, the sample is classified as positive (shaken
conjointly). If it is below the threshold, it is classified as
negative (not shaken conjointly). In preliminary tests, the
majority vote turned out to perform slightly worse than
averaging the coherence vector.

We therefore incorporate the distance dxyðfÞ from
optimal coherence thresholds CoðfÞ to coherence vector
CxyðfÞ as well (Eq. (7)). Its fundamental idea is that cer-
tainty rises with the distance to the corresponding opti-
mal threshold. The larger the distance of a coherence
value to its corresponding threshold, the higher the cer-
tainty that it belongs to the P respectively N class. To
obtain a scalar similarity value from dxyðfÞ, a collapsing
function is required again. As with the previous collaps-
ing functions evaluation (Section 5.6), once more euclid-
ean distance slightly outperformed averaging the vector
as well as all other collapsing functions (Eq. (8)). Note
that standard euclidean distance is not applicable any-
more as it eliminates the sign for individual distances.
We therefore use a signed euclidean distance desðvÞ
which preserves the sign of its components (Eqs. (9)
and (10))

dxyðfÞ ¼ CxyðfÞ � CoðfÞ (7)

dxy ¼ desðdxyðfÞÞ (8)

desðvÞ ¼ aðvÞ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
absðaðvÞÞ

p
(9)

aðvÞ ¼
X
i

vi � absðviÞ: (10)

When incorporating the distance to the optimal coher-
ence thresholds and signed euclidean distance collapsing
with coherence obtained from time series magnitudes, we
obtain an AUC of 0.9056 and an EER of 0.1724. When
instead using it with initially derotated timeseries and using
a coherence frequency bandpass filter, we obtain an AUC of
0.9495 and an EER of 0.1257.

5.8 Coherence Frequency Weighting

5.8.1 Weighting Frequencies Individually

The coherence density over frequency (Fig. 4) shows that
coherence is denser for lower frequencies, with P and N
class being visually more separated than with higher fre-
quencies. Consequently, lower frequencies will yield better
class separation performance than higher frequencies. Per-
formances measures from classifiers using only a single
coherence frequency to separate P and N class support this
intuition with lower frequencies in general yielding better
results than higher frequencies (Fig. 9).

Note that without derotation (using time series magni-
tudes), the best performing frequency is 5 Hz. With derotat-
ing time series, the best performing frequency is shifted to
3 Hz. This is a side effect of derotation, which uses the larg-
est eigenvector of the quaternion rotation matrix (obtained
from the time series correlation matrix). Obviously, derota-
tion favors 3 Hz alignment which indicates that optimal der-
otation can be achieved when aligning time series around
that frequency. The dominant frequency seems to be 3 Hz
when derotation shaking acceleration time series. Although
the majority of AUC values is lower with using time series
derotation, overall performance is better with using derota-
tion (Section 5.4). This indicates that the performance gain
through best aligning lower frequencies (increasing their
corresponding performance) is higher than the performance
loss through concurrently decreasing higher frequency per-
formance. This underlines the importance of lower frequen-
cies for separating P and N class (note the strong
performance gain for 2 and 3 Hz). Moreover, this is in line
with our previous finding of the best performing bandpass
covering a narrower range of 1-18 Hz respectively 1-16 Hz,
discarding higher frequencies.

From these insights it can be concluded that individually
weighting coherence frequencies (e.g., based on their class
separation power) when obtaining a scalar similarity value
should improve results. The coherence frequency band-
pass—as a less powerful, special case of such weighting—
already showed to improve performance. With the band-
pass, blocked frequencies are assigned a weight of 0,
whereas passing frequencies are assigned a weight of 1.

5.8.2 Obtaining Coherence Frequency Weights

With our setup we weight 51 coherence frequencies in the
range ½0; 1�. Assuming a coarse granularity of 0.1 (11 steps
of size 0.1 in the range ½0; 1�) results in a grid search space

size of 1151—which is too large for a simple parameter grid

Fig. 8. Optimal coherence thresholds per frequency.

Fig. 9. AUC of classifiers using a single frequency with and without
derotation.
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search. We instead utilize an evolution strategy (ES) [58] to
find an heuristic estimate of the optimal coherence fre-
quency weights. We use a ð1þ �Þ-ES with � ¼ 10 mutants,
randomly initialized starting weights, an initial maximum
mutation rate of 1 per generation and a maximum mutation
rate reduction of 0.005 per generation. With each genera-
tion, all parameters are mutated, and we run 919 genera-
tions in total (corresponds to a final maximum-mutation of
0.01). To obtain reliable results we repeat the ES 100 times
(for both using time series magnitudes as well as initially
derotating time series) and use the best obtained weights.
The heuristic estimate of optimal coherence frequency
weights shows that there is a decline of weights with
increasing frequency (Fig. 10)—however, the decline is
throughout unsteady.

It is important to understand that these estimated
weights represent a highly problem-adapted optimum of
weights (overfitted to our problem) and therefore cannot
be derived from discrimination power metrics like AUC
or directly reused for problems without re-estimating the
weights. Consequently, these weights just serve as a pros-
pect of possible performance gain using frequency
weighting and would have to be re-estimated if applied
to other problems. Using the heuristic estimate of optimal
coherence frequency weights on top of using time series

magnitudes we are able to increase AUC to 0.9420 and
decrease the EER to 0.1329. When instead applying it
with initially derotating timeseries, using the distance to
optimal coherence thresholds and euclidean distance as
coherence collapsing function while replacing the coher-
ence frequency bandpass filter, we are able to increase
the AUC to 0.9551 and decrease the EER to 0.1258. These
gains do not seem to outweigh the added complexity and
risk of overfitting.

5.9 Discussion of Performance Gain

Note that the order of combining constituent parts influen-
ces the associated difficulty of achieving a performance gain
(Fig. 11, Table 1). For constituent parts applied earlier more
room remains to increase performance.

The highest performance gain is achieved by including
coherence frequency weighting or its special case, the coher-
ence frequency bandpass. This emphasizes the importance
of carefully selecting coherence frequencies for human body
motion analysis tasks. With frequency weighting, imple-
mentation complexity is worth mentioning: we use heuristi-
cally obtained estimates of optimal weights and these
weights have to be re-estimated when applied to different
problems. In contrast, the coherence frequency bandpass
provides an easier to implement alternative to frequency
weighting. It achieves optimal performance by including
acceleration frequencies of up to about 20 Hz. This supports
findings from previous research which suggest—against
common assumptions—that human body movement
includes useful information up to or even beyond a fre-
quency of 20 Hz.

The second highest performance gain is achieved using
optimally derotated 3D acceleration time series in consecu-
tive analysis instead of using acceleration time series magni-
tudes. Computing time series magnitudes strips out
rotation information contained in original 3D time series. In
contrast, with optimally derotated time series, parts of rota-
tion information remain (namely changes in rotation over
time), which is supported by improved performances.

Fig. 10. Heuristic estimation of problem specific, optimal coherence fre-
quency weights.

Fig. 11. ROC curve stating the contribution of constituent parts of our approach to overall performance.
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Consequently, derotation of 3D acceleration time series
should be considered before doing consecutive analysis.

Including distance to optimal threshold and modified
coherence vector collapsing functions achieve minor perfor-
mance gains. With the first, the coherence threshold for sepa-
rating classes is chosen optimally for each frequency. With
the latter, euclidean distance turned out to slightly outper-
form the frequently used averaging of coherence on overall
performance. When applied individually, both achieve small
performance gains. When applied in combination with dero-
tated time series and a coherence frequency bandpass, their
performance gain is negligible, hence—depending on the
problem—they can be excluded from implementation in
favor of frequency bandpass and optimal derotation of time
series.

6 IMPLEMENTATION AND USER STUDY

Based on findings from our evaluation we implemented our
approach on Android for mobile phones and wrist watches.6

In the implementation the link is established as soon one
devices starts recording an active segment and acceleration
recordings are aggregated on the mobile phone afterwards.
In case one device did not detect an active segment, unlock-
ing is aborted and the user is notified. Further, the user is
notified about all successful or failed ShakeUnlock attempts
on both mobile phone and smart watch. This ensures the
user is informed in case case of the mobile phone being
under control of an attacker. Based on our finding, for active
segment similarity analysis we chose to include optimal der-
otation of 3D acceleration time series, applying a coherence
bandpass filter and collapsing the remaining coherence vec-
tor to a single scalar value using euclidean distance.

Using our implementation we conduct a user study to
quantify the impact of attacks on our approach, as summa-
rized in Section 3, and to measure upper boundaries (which
are expected to break unlock security). The study featured a
total of 15 pairs of participants pairwise attacking each other
20 times per attack scenario (which results in a total of 600
attacks per scenario). For cooperative attacks, participants
were told to utilize any cooperative strategy or tool at hand
except for touching the other device or participant. This
lead to participants using verbal communication, music, or
even a metronome as help for synchronization.

From study results, we found observatory attacks to be
successful on average with a rate of 0.20, cooperative attacks
with 0.35, and handshaking attacks with 0.90 (all with a

threshold of 0.522, which corresponds to a TPR of 0.82 com-
puted from ShakeUnlock database data only7). On the one
hand—in contrast to [26]—in our setup, forging the second
shaking pattern seems feasible with a rate of about 0.2. We
infer that this is caused by the wrist as joint in between devi-
ces (instead of devices being pressed against each other)—
which causes sensed acceleration to be different on devices
when shaking them, consequently lowering the required
similarity of acceleration records for unlocks as well as
attackers. On the other hand, although this is a realistic
attack, it is connected to a certain effort, as attackers are
required to a) acquire an identical looking device and b)
replace the user’s phone with the proxy device. From study
results, we further consider both cooperative and handshake
attacks to break our approach in terms of unlock security.
We argue that this is acceptable, as we also consider them
unrealistic/easily detectable in real life unlock situations.

7 CONCLUSION

In this article we proposed to conjointly shake an unlocked,
mobile token device and another mobile device still locked
to transfer the authentication state from the token device to
the other device and unlock it. A common use case features
a wrist watch as token device strapped to the wrist and a
mobile phone held in the same hand. Both are pre-paired
and can communicate over a secure channel. While devices
are shaken, we record 3D acceleration time series on both
devices. These are analyzed for similarity to decide if both
devices have actually been shaken conjointly. Therefore,
shaking devices serves as secure trigger mechanism to
transfer the authentication state. Our approach has the
advantage of requiring only acceleration sensors, which are
commonly integrated in mobile devices. Further, accelera-
tion recording can be done power efficiently using dedi-
cated hardware—similar to background step counting,
which is already available in several off-the-shelf mobile
devices from various OEMs.

The evaluation of our approach includes the contribution
of constituent parts to the system performance. We found
coherence frequency filtering and optimal derotation of 3D
acceleration time series to be most effective in improving the
distinguishability of legitimate unlocks and potential attacks.
We further implemented our approach on off-the-shelf

TABLE 1
Contribution of Constituent Parts of Our Approach to Overall Performance, Applied Individually and Atop Previous Parts

Implementation Individual Atop previous parts

Constituent part complexity AUC EER AUC EER

Time series magnitudes low 0.8990 0.1777 — —
Derotated timeseries medium 0.9214 0.1562 — —
Coherence frequency bandpass low 0.9315 0.1418 0.9469 0.1293
Coherence vector collapsing function low 0.9023 0.1670 0.9464 0.1293
Distance to optimal coherence threshold medium 0.9056 0.1724 0.9495 0.1257
Coherence frequency weighting high 0.9420 0.1329 0.9551 0.1258

6. After review, the code will be publicly available at http://www.
usmile.at/downloads.

7. The EER composed from one-versus-all comparisons using posi-
tive samples of the ShakeUnlock database and negative samples only
from the observably attack study is slightly lower with 0.19; using coop-
erative attack data instead it is 0.23 and with handshake attack data it is
0.45.
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Android devices. Using live data from our implementation,
15 pairs of participants tried to attack each other and trigger
unlocks in different attack scenarios. Results indicate that
observational attacks have a success rate in the range of 0.2.
This is higher than anticipated, but seems acceptable, as for
this, attackers at first need to a) replace users’ devices in secret
with mock devices and b) need to shake the obtained device
at the same time as users (with users being informed about
unlock attempts), creating significant barriers for a successful
attack. We conclude that ShakeUnlock is a mobile device
unlock approach complementary to existing unlocking
approaches (e.g., using PIN, password, unlock pattern, or
fingerprint)—similar to these it solves not all, but parts of the
problemof unlockingmobile devices during everyday usage.

Future work should investigate long term acceptance of
ShakeUnlock with an extensive usability study. Such a
study needs to consider, e.g., muscle memory effects, its
learning rate, and effect on usability over time. A short
study would likely only give limited insights and possibly
be biased towards negative feedback, as it might not be able
to account for learning a muscle memory or related effects.
Hence, this study should be performed longitudinally,
spanning several weeks or months.
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